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H I G H L I G H T S

� We introduced a generalized lattice-spring lattice-Boltzmann model (GLLM) for numerical simulation of flexible bodies in fluids.
� Validation of GLLM is conducted by comparing our results with existing theoretical and experimental results.
� Swimming of a flexible filament driven by its header with a harmonic function is simulated at Reynolds numbers ranged 0.15–5.1.
� The wave patterns of the filament are consistent with the theory of elastohydrodynamics at low Reynolds number and the wave wriggles increase
as the Reynolds number increases.

� Intensity of vortices and propulsive force increases as Reynolds number increases.
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a b s t r a c t

A generalized lattice-spring lattice-Boltzmann model (GLLM) is introduced by adding a three-body force
in the traditional lattice-spring model. This method is able to deal with bending deformation of flexible
biological bodies in fluids. The interactions between elastic solids and fluid are treated with the
immersed boundary-lattice Boltzmann method. GLLM is validated by comparing the present results with
the existing theoretical and simulation results. As an application of GLLM, swimming of flagellum in fluid
is simulated and propulsive force as a function of driven frequency and fluid structures at various
Reynolds numbers 0.15–5.1 are presented in this paper.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In a fluid environment, self-propel locomotion is one of popular
movements employed by various biological life, from small size
with nanometer and submicron-meter, such as bacteria and
microorganism, to large size with more than 10 m, for example,
whale. The Reynolds number ranges from Re¼ 10�5 � 10�1 for
microorganism to Re¼ 107 for fish swimming. Taylor (1951) first
explained how microorganisms could propel itself using the
viscous force, then followed by Machin (1958) who calculated
the locomotion patterns of flagellar-like swimmer. Wiggins et al.
(1998) introduced a new theory called elastohydrodynamics. Later,
the theory played a significant role in this field due to the ability of

the prediction for the shape pattern and the propulsive force of
flagellum. Lagomarsino et al. (2003) and Lowe (2003) used the
slender body theory to simulate the flagellum locomotion. Their
studies were summarized by Lauga and Powers (2009). In addition
to the theory developments, many experimental works for micro-
organism swimmers were also performed. For example, Wiggins
and Goldstein (1998) measured the shape pattern and proposed
bending moduli for the flagellum. Yu et al. (2006) measured the
propulsive force for the swimming flagellum, Pak et al. (2011)
designed a flexible nanowire motor to give a high speed propul-
sion for the flagellum. All the above work are based on the Stokes
equation where inertia is ignored and the Reynolds number is
zero. It is noted that the Stokes equation is identical under time
reversal. As a result, Purcell (1977) introduced the general “scallop
theorem“ and pointed out that there is no net propulsive force
under “reciprocal motion”. However, as Reynolds number gradu-
ally and continuously increases to a non-zero value, the inertia
may start to play a role due to the symmetry breaking down, and a
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net propulsive force may be produced, even in a very small
Reynolds number. In particular, Lauga (2007) demonstrated that
the breakdown of Purcell's scallop theorem with inertia can take
place in a continuous way. In other words, as long as the Reynolds
number is non-zero, the net force is non-zero. In fact, Leal (1980)
pointed out that the inertial effects could be experimentally
detected when the Reynolds number is as small as Re¼ 10�3.
Therefore, in this paper we will focus on the motion of flagellum
with a non-zero Reynolds number in the order of Re¼ 10�1 � 1,
corresponding to large ciliates, such as Paramecium (Lauga and
Powers, 2009).

The elastohydrodynamics with the slender body theory, based
on the Stokes laws, are extensively used for a very low Reynolds
number case in this field. Simultaneously, a direct simulation
method, which can deal with flexible and deformable body in a
non-zero Reynolds number fluid, was developed. The first method,
called immersed boundary method (IBM), was presented by
Peskin (1977), Peskin (2002). In IBM, the Navier–Stokes equations
are solved in a regular cubic lattice while the motion of an elastic
body is described in a Lagrangian coordinate system. The force due
to elastic body is computed by tracking the deformation of the
flexible body and imposed on the nearby fluid grids. The fluid
velocity is updated under the influence of the elastic force and the
new velocity is then interpolated at the elastic body points, which
are moved at the interpolated velocity. IBM is extensively used in
blood flow, platelet aggregation during blood clotting, aquatic
animal locomotion, etc. Later, a study of self-propelled anguilli-
form swimming was reported by Carling et al. (1998) who used a
finite difference method to solve fluid dynamic equations. The
deformation was described by a mass center coordinate and a
shape coordinate. The two coordinates were linked by an angle or
an orientation of the deformed structure. A similar method
(Hu et al., 2007) has also been used to simulate forward breaking
and backward locomotion of angulla. The method along with other
methods was reviewed by Miller et al. (2013).

A lattice Boltzmann method was applied to the deformable
body in fluids. Qi (2006) used the lattice Boltzmann method to
attack the Navier–Stokes equation while a solid body was dis-
cretized as a chain of rigid segments contacting each other at the
their ends through ball and socket joints that allow adjacent
segments to be bent. Buxton et al. (2005) used the lattice
Boltzmann method to solve the Navier–Stokes equations and a
lattice spring method to model the deformation of a flexible body.
The deformable solid body is discretized as individual particles
located in a regular lattice and connected by a two-body spring
force between two nearest neighboring solid particles as a bond.
The two-body force can deal with extension and compression but
cannot accurately handle the bending deformation, because the
two-body central force is a function of distance between two
neighboring solid particles and does not provide any bonding
angle information between two adjacent bonds or springs. The
angle information is necessary for accurate description of solid
structures. For example, a triclinic structure has three unequal
bonding angles. Without the bond angle data, one is not able to
construct the triclinic solid lattice. In Buxton lattice-Boltzmann
lattice-spring method (LLM), the interaction between the fluid and
the solid particle was simply treated by a moving bounce-back
boundary rule (Ladd, 1994), therefore, the hydrodynamic forces
were not very smooth. To overcome this problem, the immersed
boundary method originally proposed by Peskin (1977) was used
to treat the interaction between fluid and a rigid solid body (not a
flexible body) in the frame of the lattice Boltzmann equation by
Feng and Michaelides (2004). Subsequently, based on the lattice
Boltzmann approach, the immersed boundary method was used to
deal with the coupling between the fluid flow and a flexible body
by Wu and Aidun (2010) who used the same lattice-spring model

as Buxton, which cannot deal with bending deformation due to
the lack of three-body forces or angular bonds.

The purpose of the present work is to introduce a three-body
force, through angular bonds among a central solid particle and its
two nearest neighboring solid particles, into LLM and allow the
model to handle the bending deformation of a flexible body,
immersed in a fluid, in a Reynolds number range from zero to
non-zero. This method is called a generalized lattice-spring lattice-
Boltzmann method (GLLM). It is demonstrated in the next section
that the three-body angular bond plays a critical role in GLLM.
Without the three-body angular bond the deformable body would
not be properly bent. In GLLM, the coupling of elastic solid body
with fluids is treated by using the immersed-boundary method.
The validation of GLLM is presented. Due to discrete characteristics
of the solid body, the lattice spring model can also be used to
construct any shape of flexible bodies, such as spherical, non-
spherical and clinic structures and disk-shaped membrane. Poten-
tially, motion and adhesion of leukocytes and cancer cells in blood
fluid can be simulated effectively by using GLLM.

As an application, a flagellum, or a flexible filament is created
by the generalized lattice-spring model (GLSM) and the flagellum
is oscillated in fluid by driving its head to move following a pre-
described harmonic function. The shape patterns of the flexible
filament, propulsive force and fluid structures are computed and
the results are compared with the theoretical and experimental
results (Pak et al., 2011; Taylor, 1951). In simulation, various
Reynolds numbers from Re¼0.15 up to Re¼5.1 are used.

The generalized lattice-spring lattice-Boltzmann method will
be described in Section 2. The comparison of the present results
with existing theory and simulation results will be presented in
Section 3. The simulation of oscillation of a flexible flagellum will
be conducted at various Reynolds numbers in Section 4. The
conclusion is made in the last section.

2. Simulation method

2.1. Immersed-boundary lattice Boltzmann method

Immersed-boundary lattice Boltzmann method is a numerical
method which combines the lattice Boltzmann method (LBM)
with the immersed-boundary method.

In LBM, a group of lattice nodes are used to represent fluid.
Each node has distribution functions f s and discrete velocity es,
where s depends on the chosen lattice model. The Boltzmann
equation with Bhatanaga–Gross–Krook single relaxation time is

f sðrþes; tþ1Þ ¼ f sðr; tÞ�
1
τ
½f sðr; tÞ� f eqs ðr; tÞ� ð1Þ

where τ is the relaxation time and f eqs ðr; tÞ is the equilibrium
distribution function at position r and time t as

f eqs ¼ωsρf 1þ3ðes � uÞþ9
2 ðes � uÞ2�3

2 ðu � uÞ
n o

ð2Þ

In this simulation, the D3Q15 lattice model is applied and the
discrete velocity is given by

es ¼
ð0;0;0Þ; s¼ 0
ð71;0;0Þ; ð0; 71;0Þ; ð0;0; 71Þ; s¼ 1
ð71; 71; 71Þ; s¼ 2

8><
>: ð3Þ

and the weight coefficient is

ωs ¼

2
9; s¼ 0
1
9; s¼ 1
1
72; s¼ 2

8>><
>>:

ð4Þ

T.-H. Wu et al. / Journal of Theoretical Biology 349 (2014) 1–112



The fluid density ρf and the momentum density ρfu are given
by

ρf ¼∑
s
f s ð5Þ

ρfu¼∑
s
f ses ð6Þ

The kinematic viscosity ν is related to the relaxation time τ and is
given by

ν¼ 1
3 ðτ�1

2 Þ ð7Þ
The immersed-boundary method coupled with LBM was pre-

sented by Feng and Michaelides (2004). The fluid nodes are
applied to a regular Eulerian grid, so every boundary solid node
will not coincide with the exactly adjacent fluid node. Therefore,
the fluid velocity at the boundary solid node can be extrapolated
from the fluid velocity of the surrounding fluid nodes by using a
discrete Dirac delta function (Peskin, 2002)

DðrÞ ¼
1

64h3
1þ cos

πx
2h

� �
1þ cos

πy
2h

� �
1þ cos

πz
2h

� �
; jrjr2h

0 otherwise

8<
:

ð8Þ
where h is the lattice length. The fluid nodes are within a spherical
volume Π of a radius of 2h, centered at a given solid node.
The fluid velocity uf at the position of the solid boundary node
is given by

uf ðrb; tÞ ¼
Z
Π
uðrl; tÞDðrl�rbÞ drl ð9Þ

where rb is the boundary solid position and rl is the position of the
lattice fluid nodes within the sphere as shown in Fig. 1.

Only a part of particles on a plane is shown in this figure to
illustrate the interaction between fluid and solid particles in a
three-dimensional space. The small circles represent the fluid
particles and the squares denote the solid particles. The squares
with the thicker edges are the boundary solid particles which
directly interact with their surrounding fluid particles within a
sphere. For example, the velocities uðrl; tÞ of the fluid particles
around the kth solid boundary particle (see Fig. 1a) are interpo-
lated to the kth particle position in step 1 (see Fig. 1b) to have
uf ðrb; tÞ using Eq. (9). Under the non-slip condition, the boundary
solid node velocity is equal to the fluid node velocity, and thus the
momentum difference represents the interaction force Fint on the
solid boundary over one time step as follows:

Fintðrb; tÞ ¼ ρf ðuf ðrb; tÞ�usðrb; t�1ÞÞ ð10Þ
Next, the discrete Dirac delta function is used again to distribute
the reaction force to the surrounding fluid nodes

gðrl; tÞ ¼ �
Z
Γ
Fintðrb; tÞDðrl�rbÞ drb ð11Þ

where g is the distributed reaction force and Γ is a spherical
volume of a radius of 2h, located at rl. The force distribution
process is illustrated in step 2 of Fig. 1b. Finally, the reaction force
term is added to the Boltzmann equation as follows:

f sðrþes; tþ1Þ ¼ f sðr; tÞ�
1
τ
½f sðr; tÞ� f eqs ðr; tÞ�þ3ωsðg � esÞ ð12Þ

2.2. Generalized lattice spring model

In a mesoscopic scale, the interparticle force can be regarded
following Hooke's law. Based on this idea, Buxton et al. (2005)
provided the lattice spring model to represent the elastic struc-
ture. The model consists of two parts: (1) a solid body is
discretized into particles and the solid particles space regularly

and (2) two adjacent particles are linked by a harmonic spring.
In this way, the spring energy Us acted on the ith node is given by

Us
i ¼

1
2
ks∑

j
ðrij�r0ijÞ2 ð13Þ

where ks is the spring coefficient; r0ij is the equilibrium length of
the spring between two neighboring particles i and j; j are the
nearest neighboring solid particle of the ith solid particle;
rij ¼ ri�rj. The spring force is a two-body central force which
allows either extension or compression between two solid parti-
cles and cannot handle bending deformation accurately as men-
tioned before. Therefore, it is necessary to include an additional
three-body force among three solid particles to realize the bending

Fig. 1. (a) The small circles represent the fluid particles; the squares denote the
solid particles; the large circles represent spheres around their central solid
particle. (b) Step 1 shows that the flow velocities of fluid particles are interpolated
to their central the kth solid particle and step 2 shows that the reaction force of the
kth boundary solid particle on the fluid is interpolated to its surrounding fluid
particles. The arrows denote the interpolation from the fluid to the solid particle
positions in step 1 and from the solid to the fluid particle positions in step 2.
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deformation, called the generalized lattice-spring model (GLMS).
Angular bonds are added and shown in Fig. 2.

The angular energy Ua is given by

Ua
i ¼

1
2
ka∑

j
∑

k;ka j
ðθijk�θ0ijkÞ2 ð14Þ

where ka is the angular coefficient; j,k are the nearest neighboring
solid particles of ith solid particle; θijk is the angle between the
bonding vector rij and the bonding vector rik; θ0ijk is the corre-
sponding equilibrium angle. The elastic force Fi on the ith solid
particle can be computed from the gradient of the total energy:

Fi ¼ �∇ðUs
i þUa

i Þ ð15Þ
If the solid structure is isotropic, the elastic modulus of the

solid body can be related to the spring and angular coefficients by

E¼ ks
r0

ð16Þ

G� 4ka
r20

ð17Þ

where E is Young's modulus of the deformable solid body and G is
its shear modulus. The derivation of the relationship between ks
and E and the relationship between ka and G are presented in
Appendix A.

The total force FiT ¼ FiþFint drives the solid particle to move.
The leap frog algorithm has been used to update the position and
velocity of each solid particle at each time step by using the
Newtonian mechanism. For details about the leap frog algorithm
refer to Chapter 3 of the book by Allen and Tildesley (1987).

3. Validation

In all the simulations throughout this work, nondimensional
units are used. One unit of time is 1:3� 10�4 s and one unit of the
length is 0:081 cm.

3.1. Beam model

To validate the generalized lattice-spring model (GLSM) of a
rectangular cantilever beam a static force F acting at the right end
of the beam is simulated using the generalized lattice-spring
model while the left end of the beam is fixed as shown in Fig. 3.
Four different sizes of the cantilever beams are used. The notation
of ðw;h; lÞ in Fig. 4 represents, respectively, the (width, height,

length) of the beam in the non-dimensional length units (1 unit¼
0.081 cm).

From the Euler–Bernoulli beam theory, the deflection is

zb ¼
FL3

3EI
ð18Þ

where L is the length of cantilever beam and EI is the bending
rigidity. Eq. (18) is applied to the small deflection case, whereas
the large deflection results have also been solved using the elliptic
integration by Gere and Timoshenko (1987). It is noted that in the
first order approximation it is assumed that shear modulus G is
infinitely large in the Euler–Bernoulli beam theory and the shear
deformation is ignored. In a higher order approximation, Timoshenko
theory (Gere and Timoshenko, 1987) includes the shear deforma-
tion with a finite G and the deflection is

zb ¼
FL3

3EI
1þ 3EI

κGAL2

� �
ð19Þ

where κ is the shear coefficient depending on geometry; κ¼ 5
6 for

the rectangular beam; A is the cross-sectional area. However, the
deflection results of Timoshenko theory is not essentially different
from those of Euler–Bernoulli for a long beam (with an aspect ratio
about 10). The current study is limited to the long beam cases.

The simulation results of the non-dimensional normalized
deflections as a function of the non-dimensional normalized force
for four different sizes of the cantilever beams are displayed and
compared in Fig. 4. The red line is the theoretical values; the
symbols are the present simulation results for the beams with
various sizes. The simulation results agree well with the theore-
tical results. As a comparison, the results of the deflection
calculated by using Buxton model B, where each solid particle is

Fig. 2. The solid particles are located in a cubic lattice and the particle lattices are
linked by springs and angular bonds.

Fig. 3. A three-dimensional rectangular cantilever beam under a static force F at
the beam right end. The left end is fixed. The deflection in the z-direction is zb.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

FL2/EIz
z b/L

theory
GLSM (2,2,20)
GLSM (3,3,10)
GLSM (3,3,30)
GLSM (3,3,50)
Buxton B (3,3,30)

Fig. 4. The nondimensional normalized deflection as a function of the non-
dimensional normalized force for four different sizes of the cantilever beams. The
red solid line is theoretical calculation results; the symbols are the simulation
results for various beams. The results calculated by using Buxton model B is also
shown. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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bonded by its nearest and next nearest neighbors, are shown in
the same figure for the beam of ð3;3;30Þ. The error is very large as
compared with the theoretical results. In addition, the results of
the deflection against time are shown in Fig. 5 and compared
among GLSM, Buxton model A and B. In Buxton model A, each
solid particle is bonded by its nearest neighbors only. It is shown
that the value of the deflection quickly approaches to the beam
length for Buxton model A. In other words, Buxton model A cannot
stand the bending deformation. While the deflection has a
significant error for Buxton model B, the deflection results calcu-
lated by using GLSM are close to the theoretical value as shown by
the triangle sign in Fig. 5.

3.2. Sedimentation of a flexible fiber

To further validate the GLLM, the sedimentation of a flexible
fiber in fluid by the gravity is simulated by using two different
methods: one is the present method and the other is the lattice
Boltzmann flexible particle method (LBFPM), which was devel-
oped, validated and applied to simulate the flexible fiber suspen-
sions and flexible wings (Qi, 2006; Qi et al., 2010; Liu et al.,
2011) The simulation is performed in a box of ðNx;Ny;NzÞ ¼
ð2L;4L;1:1LÞ¼(100, 400, 100) where L¼90 is the length of the
fiber. The walls are set at both the ends of the z-direction and a
periodic condition is imposed in the x- and y-directions. The
gravity is in the y-direction in Fig. 7(a). The long body of the fiber
is initially lying along the x-direction with an initial velocity being
equal to zero. A cylindrical and a rectangular fiber are used. Their
aspect ratios are 9. The results of the sedimenting velocity as a
function of time are shown in Fig. 7(a) for the rectangular fiber and
in Fig. 7(b) for the cylindrical fiber, where the red solid lines are
the results by using GLLM and the green dashed lines are those by
using LBFPM. The Reynolds number is defined by Re¼ v0L=ν,
where v0 is the terminal velocity of a very stiff fiber and L is the
fiber length. The results by using the two methods are consistent
with each other, demonstrating that GLLM faithfully describes a
correct physical picture. The bending shape at an instance during
sedimenting is shown in Fig. 6(a) for the rectangular fiber and in
Fig. 6(b) cylindrical fibers where the GLLM is used.

3.3. Ellipsoidal particle in a shearing fluid

To provide more evidence, the motion of an ellipsoidal particle
in a shearing fluid flow is simulated by using the GLLM. A very
large rigidity with ks¼1.2 and ka¼0.12 for the solid particle is used
in the simulation and its deformation can be ignored. A simulation
box size is ðNx;Ny;NzÞ ¼ ð64;64;64Þ. The sizes of ellipsoidal parti-
cles ða; b; cÞ ¼ ð3;3;9Þ and ð3;3;6Þ are used, where a, b, c are the
lengths of the semi-principal axes of the ellipsoid. The density of
the solid particle is equal to the fluid density. The rotation of the

ellipsoidal particle is located in the center of the simulation box
and driven by a shear fluid imposed between two driving lips. The
top lip is located at z¼Nz and has a velocity in the x-direction and
the bottom lip is located at z¼0 and has an opposite velocity to the
top lip. The shear rate _γ ¼ 1:56� 10�4 in the simulation. The
periodic conditions are imposed in other directions. The angular
velocity simulation results are compared with those of Jeffrey
(1922) theory at zero Reynolds number. According to Jeffery
theory, a rigid ellipsoid in a simple shear flow will has a rotation
angle ϕ and angular velocity _ϕ as a function of time as follows:

ϕ¼ tan �1 b
c
tan

bc_γ t

b2þc2

� �
ð20Þ

_ϕ ¼ _γ

b2þc2
ðb2 cos 2 ϕþc2 sin 2 ϕÞ ð21Þ

The simulation results of the normalized angular velocity as a
function of the time are compared with those of the Jeffery theory
in Fig. 8, where the ellipsoids with two different aspect ratios c/b
are used. The Reynolds number, defined by Re¼ _γc=ν, is 0.17. We
have had a good agreement.

4. Swimming of a filament

The locomotion of a filament in fluid is an interesting subject
and is intensively studied experimentally and theoretically by
many biologists (Machin, 1958; Wiggins et al., 1998; Wiggins and
Goldstein, 1998; Lagomarsino et al., 2003; Lowe, 2003; Yu et al.,
2006; Lauga and Powers, 2009). Now, the motion of one-arm
filament in fluid is simulated in various Reynolds numbers by
using GLLM.

4.1. Wave pattern

An elastic filament with an aspect ratio of 10 is constructed and
its motion is simulated by using the GLLM. The simulation boxes of
a coarse grid of ðNx;Ny;NzÞ ¼ ð12:8D;8:32L;8LÞ ¼ ð64;416;400Þ and
a fine grid of ð90;582;560Þ are used, respectively, to treat the same
problem where D and L are the diameter and the length of the
cylindrical flagellum, respectively. A periodic condition is imposed
in the x-, y-, z-directions. The filament with L¼50 or L¼70 is
located in the center of the simulation box as shown in Fig. 9. The
density of the filament is the same as the fluid density. Two
coefficients are set as ks¼0.26 and ka¼0.025 to ensure that the
filament is flexible.

A driven point is located at the center of the cross section of the
left end of the filament. The motion of the driven point follows a
pre-described harmonic function with a small transverse ampli-
tude

z¼ z0 sin ωt ð22Þ
where z0 ¼ 0:05L is the amplitude; ω¼ 2πf ; f is the frequency.
The maximum velocity of the driven point is v1 ¼ z0ω. The right
end is allowed to move freely.

Based on the elastohydrodynamics, when the inertia can be
ignored, i.e., the Reynolds number is very small, Wiggins et al.
(1998) obtained a solution of wave pattern, which is given by

z¼ 1
2 z0½e� ~Cη cos ð ~SηþωtÞþe� ~Sη cos ð ~Cη�ωtÞ� ð23Þ

where ~C ¼ cos ðπ=8Þ; ~S ¼ sin ðπ=8Þ; η¼ y=lω. A characteristic length
lω is defined by

lω 	 EI
ωζ?

� �1=4

ð24Þ

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

t (step)

z b/L

GLSM
Buxton A
Buxton B

Fig. 5. The deflections as a function of time are compared among GLSM, Buxton
model A and B. The triangle in the right axis denotes a theoretical deflection value.
The beam size is (3,3,30).
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where the drag coefficient

ζ? ¼ 4πμ

ln
L
D

� �
þ1
2

is derived from the slender body theory, μ is the viscosity while
the sperm number is defined by

Sp	 L
lω

ð25Þ

The simulation results of the wave patterns of the filament at
different time instances are shown and compared with those of

Wiggins et al. (1998) in Fig. 10, where the axes are normalized by
the length of the filament. The lines labeled as “theory” are plotted
from the analytic solution of Eq. (23) for the case of Sp¼5. The
simulation results agree well with the theory, indicating that the
present developed method is reliable and can be used to simulate
the locomotion of a flexible body.

Meanwhile, the wave patterns are compared between using the
coarse grids and using the fine grids in Fig. 11. The agreement
between the two wave patterns suggests that the coarse grids are
good enough and will be used for this work.

One of the advantages of the direct simulation is that fluid
structures can be extracted from fluid flow data while the same
information cannot be obtained by using elastohydrodynamics

Fig. 6. The bending shape of the flexible fibers: (a) a rectangular solid and (b) cylinder.

Fig. 7. The comparison of the GLLM results (red solid line) with the LBFPM results
(green dashed line) (a) for the rectangular fiber and (b) for the cylindrical fiber.
All sedimentation velocity vsed is normalized by the terminal velocity v0 and the
time is normalized by t0 ¼ L=v0. (a) The rectangular fiber of (a,L)¼(10,90) where a is
the width of the cross section and L is the length of the fiber.; Re¼17.43; ν¼ 0:16;
EI¼3902.17 with ks¼0.78 and ka¼0.075; the solid density ρs ¼ 1:2; fluid density
ρf ¼ 1:0. (b) The cylindrical fiber of (r,L)¼(4.5, L) where r is the radius of the cross
section and L is the length of the fiber. Re¼14.06, ν¼ 0:16, EI¼251.35 with ks¼0.78
and ka¼0.075; ρs ¼ 1:2, ρf ¼ 1:0. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 8. The results of the normalized angular velocity as a function of the time are
compared. The ellipsoids with the different aspect ratios of c=b¼ 2 and c=b¼ 3 are
used. The solid lines are the Jeffery results and the square symbols are the
simulation results. The Reynolds number is Re¼0.17.

Fig. 9. The 3D fluid vorticity figure. The color iso-surfaces represent the vorticity on
the x-direction and the black nodes represent the flagellum. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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and other analytic methods. The results of the contour of the
vorticity in the x-direction along with the flow velocity vectors in
the cross section of the yz-plane are computed and displayed in
Fig. 12 for the case of Re¼0.3 at t ¼ 0:5T and t¼T where T is a
period time.

As shown, during swimming, transverse movement may alter
the local slope of the wave pattern and induce vortices even at
very low Reynolds numbers. There are a pair of vortices with
opposite sign, distributed and focused around the left driven end
and the right free end, since the two ends experience a larger
shearing force than the main body.

4.2. effects of inertia

In order to study the effect of inertia on the motion of filament,
simulations are conducted at the same conditions except that
Reynolds number ranges from Re¼0.15 to Re¼5.1. The wave
patterns, fluid structures, propulsive force can be computed and
compared at different Reynolds numbers. The propulsive force can

be calculated by

Fhy ¼∑
i
Fhiy ð26Þ

where Fhiy is the hydrodynamic force in the y-direction on the ith
solid particle and the propulsive force coefficient is defined by

cL ¼ Fhy
0:5ρf DLv

2
1

ð27Þ

The average of any physics quantity, such as force, is a time
average over the third through fifth cycles in this work.

The results of the average propulsive force as a function of
driven frequency are shown in Fig. 13.

It shows that the average propulsive force is positively corre-
lated to the frequency. As the frequency increases, the propulsive
force increases.

The results of the average propulsive coefficient as a function of
Reynolds number are shown in Fig. 14 where a double exponential
fitting is attempted.
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Fig. 10. The simulation results of the wave patterns of the filament at different time instances are compared with those of the theory results at Sp¼5. The Reynolds number
for the simulation is Re¼0.3. The horizontal and the vertical axis are normalized by the length of filament L.
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Fig. 11. The simulation results of the wave patterns of the filament at different time instances in the coarse grids are compared with those of the fine grids. the theory results
at Sp¼5. The Reynolds number for the simulation is Re¼0.3. The horizontal and the vertical axis are normalized by the length of filament L.
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It shows that the average propulsive force coefficient cL

decreases with increasing the Reynolds number, dramatically for
the Reynolds number Reo1, and then more slowly for Re41.

The propulsive force as a function of time is compared among
cases Re¼0.15, 0.3 and 5.1 in Fig. 15. It shows that the propulsive
force is much larger for Re¼5.1 than for Re¼0.15 and 0.3,
illustrates that the propulsion increases as the Reynolds number
increases due to inertia.

The wave patterns at different time instances within the fourth
cycle are compared between cases Re¼0.3 and Re¼5.1 in Fig. 16.

At t ¼ T=6 (T is the time period), there are two peaks on the
curve of Re¼5.1, one minimum and one maximum (if the two ends
are not counted) while there is only one peak on the curve of
Re¼0.3. At t ¼ 3T=6 there are three peaks on the curve of Re¼5.1

while there is only one peak on the curve of Re¼0.3. Obviously,
the case of Re¼5.1 has richer waves than that of Re¼0.3. The
higher Reynolds number or the higher driven frequency results in
more wriggles.

The results of the vorticity in the x-direction and the velocity in
the yz-plane are compared between cases Re¼0.3 and 5.1 in
Fig. 17.

It shows that the intensity of the vorticity is much larger for
Re¼5.1 than for Re¼0.3, indicating that the inertial effect greatly
enhances propulsive forces as shown in Figs. 13 and 15. For a
visualization purpose, a three-dimensional iso-surface of the
vorticity is shown in Fig. 9 for the case of Re¼5.1 at t ¼ T=2.

When all the body of the filament is allowed to move freely in
the horizontal or y-direction, the propulsive force will drive the
filament to swim in the negative direction of the horizontal or
y-axis. The results of the displacement Δy=L¼ �ðyðtÞ�yð0ÞÞ and
the velocity of the center of mass vy in the y-direction as a function
of time step are shown in Fig. 18.

It is shown that the swimming is much faster for the case of
Re¼5.1 than that of Re¼0.31. In both the cases, the filament is
migrating backward with clear oscillating in the y-direction.

5. Conclusion

In this paper, a GLLM is introduced by adding a three-body
force into the lattice-spring model where only a two-body force is
used. The current model allows one to simulate both bending and
extension or compression deformation. It is demonstrated that the
GLLM is reliable by comparing the present results with elastohy-
drodynamics and other existing results and is suitable for simula-
tion of motion of flagellum. Subsequently, the GLLM is applied to
simulate swimming of flagellum in a range of the Reynolds
number 0.15–5.1. It is found that as the Reynolds number increases
the propulsive force increases. A pair of vortices with opposite sign
is distributed around the driven end and the free end. As the
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Fig. 12. The results of the vorticity in the x-direction along with the fluid velocity in the yz-plane at t ¼ 0:5 T (left) and t¼T (right) for the case of Re¼0.3 are shown with
the filament shape.
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Fig. 13. The propulsive force as a function of the driven frequency. The red circles
are simulation data and the black line is the fitting curve. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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Fig. 14. The propulsive coefficient cL as function of Reynolds number, The red
circles are simulation data and the black line is the fitting curve. The fittings show
that the propulsive coefficient decrease sharply at the low Reynolds number. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Fig. 15. The simulation results of the propulsive force fP as a function of time are
compared among cases Re¼0.15, 0.3 and 5.1.
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Fig. 16. The simulation results of the wave patterns of the filament at different time instances are compared between cases Re¼0.3 and 5.1. The horizontal and vertical
axis are normalized by the length of filament L.
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Reynolds number increases the intensity of the vorticity and the
propulsive force increase due to inertial effects. It is also observed
that the propulsive coefficient decreases with increasing the
Reynolds number, dramatically for the Reynolds number Reo1,
and more slowly for the Reynolds number Re41.
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Appendix A. The relationship between the elastic modulus and
coefficient

At the first part of this appendix, the relationship between
Young's modulus E and spring coefficient ks (Eq. (16)) is derived,
and in the second part the derivation of relationship for the shear
modulus and angular coefficient Eq. (17)) is shown.

A.1. Young's modulus and spring coefficient

In Fig. 19, the external tensile force Fext only creates the tensile
deformation Δr. On the equilibrium, the external force Fext is equal
to the interparticle elastic force Fe, which includes the spring term
and the angle term in GLLM. Because the deformation is only in
the tensile direction, and the angular term is vanished

FextþFe ¼ Fext�∇ðUsþUaÞ ¼ Fext�∇Us ¼ 0

Fe ¼∇Us ¼ ksΔr

In Fig. 20, the area A0 for a particle in GLLM is r20.
According to Young's modulus definition, the tensile stress over

tensile strain, the relationship can be shown as follows:

E¼ tensile stress
tensile strain

¼ Fext=A0

Δr=r0
¼ ksΔr=r20

Δr=r0
¼ ks
r0

A.2. shear modulus and angular coefficient

For a given particle in the solid, there are four interparticle
angular elastic forces Fe (the red marks in Fig. 21) under the
external force Fext . For the shear deformation, the contribution
from tensile spring term is zero and the shear modulus could be
derived (see Figs. 21 and 22):

Fextþ4 � Fe ¼ Fext�4 �∇ðUsþUaÞ ¼ Fext�4 �∇Ua ¼ 0

Fext ¼ 4kaΔθ

Δx
r

¼ tan Δθ�Δθ

G¼ shear stress
shear strain

¼ 4kaΔθ=r20
Δx=r

� 4ka
r20

Fig. 19. The blue points are solid nodes and the black lines represent springs. Under
the external force Fext , the spring, whose original length is r0, would have the
tensile deformation Δr. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 20. The unit area of each node is a square (the red square) and its value is r20.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 21. For a particle, there are four angular elastic force Fe (the red marks) under
the external force Fext . The spring has no deformation, and thus the interparticle
angular elastic force Fe means angle bond force. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this paper.)
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