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Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture, an energy-equilibrium model was proposed to ex-
plain the complex stress effect on fatigue behavior. When the summation of the elastic strain energy release and the stored 
strain energy of accumulated dislocations reach the surface energy of a crack, the fatigue crack will initiate in materials. Ac-
cording to this model, for multiaxial stress condition, the orientation of the crack initiation and the initiation life can be de-
duced from the energy equilibrium equation. For the uniaxial fatigue loading with mean stress, the relation between the maxi-
mum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life dia-
gram. If the ratio of the mean stress to stress amplitude is less than a critical value 0.17, and the stress amplitude keeps con-
stant, the fatigue crack initiation life will decrease with the increase of the compress mean stress. In this model, the mean stress 
does not cause damage accumulation with the fatigue cycles in crack initiation. For this reason, the loading sequence of differ-
ent load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule. The proce-
dure of estimating the damage under random loading is also discussed. 
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Nomenclature 

a Half grain size 
 Tilt angle of the normal direction of a plane from 

the tension direction 
ΔU Accumulated dislocation energy per half cycle 
Ws Specific fracture energy 
KI, KII Stress intensity factor of mode I and mode II 

cracks 
G Elastic strain energy release rate for creating unit 

area of crack 
S Area of crack surface 
n Normal stress 

m Mean tensile stress 
a Amplitude of tensile stress 
e Endurance limit 
uts Ultimate tensile strength 
 Shear modulus 
A 2μWs/[(1ν) k2a] 
(, ) Orientation angles of an arbitrary plane 
p Factor for slip irreversibility 
k Resistance of dislocation movement 
m Mean shear stress 
a Amplitude of shear stress 
 Shear stress  
 Shear stress range 
T Loading period 
Nf Fatigue cycles for crack initiation 
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 Poisson’s ratio 
 Phase difference between the tensile stress and the 

shear stress 
 Parameter for combination of complex loading. 

1  Introduction 

Fatigue failure is one of the most common modes of failure 
for mechanical components. In general cases, components 
in service are subject to complex stress, such as a loading 
with mean stress or multiaxial stress. However, most of the 
fatigue data are measured under uniaxial loading condition. 
So, it is very important to develop the criterion of fatigue 
failure for samples under complex loading. Then the 
stress-life curve of uniaxial loading could be used to assess 
the fatigue life of components under complex loading.  

The investigations of mean stress effect of fatigue be-
havior are traced to the early time of the fatigue research 
[1–6]. The relationships of Goodman, Morrow, and Gerber 
can be found in any textbook on fatigue. However, all these 
methods are empirical methods. The micro mechanism of 
fatigue damage with the mean stress is not reflected in these 
models.  

Similar to the investigations of mean stress effect, many 
different methods [7–9] were proposed on the assessment of 
the fatigue life under multiaxial fatigue. You and Lee [8] 
classified these theories into five types, i.e. empirical for-
mulas and modifications of the Coffin-Manson equation; 
application of stress or strain invariants; use of the space 
averages of stress or strain; critical plane approaches; and 
use of energy which has accumulated on the materials under 
consideration. Of these different methods, the method of 
critical plane approaches [9] is the most popular for multi-
axial fatigue assessment because of its effectiveness and 
broad applications. Sines, Findley, McDiarmid, Dang Van, 
etc. [7], proposed the respective stress-based critical plane 
models for fatigue damage criteria. In brief, a linear or non-
linear combination of shear stresses and normal stresses 
acting on the critical plane was calculated to be an equiva-
lent of uniaxial loading. The orientation of the critical plane 
was also determined with different critical plane concepts, 
such as the plane of maximum shear stress or the plane of 
maximum shear stress range. Similar to those based on 
stress analysis, the approaches based on strain analysis were 
also proposed by Brown and Miller, Fatemi and Socie, 
Smith, Watson and Topper [7], respectively. All these 
methods succeeded in some cases of multiaxial fatigue as-
sessment. However, these models were also empirical. Pa-
rameters in these models should be determined by sufficient 
experimental data for different materials. The mechanism of 
fatigue damage for multiaxial fatigue is not very clear in 
these models. 

In general, for polycrystalline metals or alloys, the micro 
mechanism of fatigue damage is related to the extrusion or 

intrusion along the persisting slide band in the grains 
[2,10,11]. Fatigue crack would initiate at these sites. Based 
on dislocation accumulation with cyclic loading, Mura and 
coworkers proposed a model [12–14] for fatigue crack initi-
ation. Chan [15] extended Tanaka and Mura’s model to in-
clude crack size and relevant micro structural parameters in 
the equations. However, in these models, the parameter of 
stress is only the shear stress range on the slip plane. So, 
these models can not be used to describe the fatigue under 
the loading case with mean stress or multiaxial stress. 

Although the fatigue life varies with the loading condi-
tion, the micro mechanism of fatigue damage must be the 
same. So, there must be a unified equation to describe the 
fatigue life under different loading conditions, including the 
mean stress effect and multiaxial loading. Based on this 
point and Tanaka & Mura’s fatigue model, this paper at-
tempts to propose a modified Energy-Equilibrium method 
for assessment of fatigue with complex stress. This new 
model provides a unified criterion for multiaxial fatigue. 
The mean stress effect and multiaxial stress effect are dis-
cussed in detail.  

2  Model and analysis 

2.1  Energy-equilibrium model 

In 1981, Tanaka and Mura [12] proposed a dislocation 
model for fatigue crack initiation. They pointed out that if 
the stored strain energy due to dislocations accumulated 
after n-cycles became equal to the surface energy, a crack 
with the length of grain size 2a would initiate.  

 f s2 4 ,N U aW   (1) 

where Nf is the cycle of loading for crack initiation, ΔU is 
the accumulated energy per half cycle, a is the half length of 
the grain size, and Ws is the specific fracture energy for a 
unit area.  

Later, Mura and coworkers [13,14] developed their mod-
el based on free energy considerations. The total free energy 
of the system increases with fatigue cycle number due to the 
increase in stored elastic strain energy of accumulated dis-
locations. When the Gibbs free energy change attains a 
maximum at a critical number of cycles, a micro crack 
would initiate. In this modified model, the mechanical en-
ergy release was added in the energy equilibrium equation. 
However, in their paper, the mechanical energy release is 
related to the stress range, but not the maximum stress.  

As described in Griffith’s fracture theory, there is always 
elastic strain energy release with the crack initiation in solid. 
So the elastic strain energy release with the forming of a 
fatigue crack is not negligible. Based on this point, we work 
out a modified energy balance equation for fatigue crack 
initiation as follows: 
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 max f s
0

d 2 2 ,
S

G S N U SW    (2) 

where, G is the elastic strain energy release rate for creating 
unit area of crack. The first item at the left of the equation is 
the maximum value of virtual elastic strain energy release in 
one cycle of loading for creating a crack with an area of S. 
Obviously, this value should be determined by the maxi-
mum loading instead of the loading range in one cycle. The 
second item at the left side of the equation is the dislocation 
energy accumulated with the number of the cycles, which is 
the same as the item in Tanaka-Mura’s model. The item at 
the right side of the equation is the surface energy for creat-
ing a fatigue crack with an area of S. That is to say, if the 
sum of the elastic strain energy release and stored strain 
energy due to dislocations accumulated after n-cycles be-
comes equal to the surface energy, a fatigue crack will initi-
ate.  

For complex conditions, stress tensor varies with the time. 
This means that not only the value but also the direction of 
the main stress changes with the time. And the stress condi-
tion on an arbitrary plane also varies with the time. 

As shown in Figure 1(a), for an arbitrary plane (, ), 
the normal stress n and the shear stress  will be solved by 
using coordination transform. According to the value of the 
normal stress n and the shear stress , the maximum of 
virtual elastic strain energy release in one cycle of loading 
for creating a crack of area S in this plane could be calcu-
lated by using linear elastic fracture mechanics method. 
Here, if n is compressed, there will be no mode I type elas-
tic strain energy release.  

The accumulated dislocation energy per half cycle can be 
estimated with the maximum range of shear stress in this 
plane. As shown in Figure 1(b), in the plane (, ) the shear 
stress  changes with the time. In one cycle, the trace of the 
shear force vector forms a closed curve in the plane. The 

maximum caliper diameter is the range of the shear stress in 
this plane. 

Then, according to eq. (2), the fatigue crack initiation life 
Nf in terms of the loading parameters n,  and  on the 
plane (, ) could be produced. The minimum of the fa-
tigue life Nf with the change of the orientation (, ) is the 
fatigue crack initiation life of the sample. And the plane (, 
) which is related to the minimum of the fatigue life Nf is 
the orientation of the fatigue crack.  

2.2  Tension-Torsion fatigue crack initiation  

For 3-D crack initiation, the analysis is very complicated. 
However, for Tension-Torsion fatigue, it's relatively simple. 
From eq. (2), we have 
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where n is the normal stress on crack surface,  is the shear 
stress on crack surface, k is the resistance of dislocation 
movement on the slide plane,  is the range of shear stress 
on crack surface in one cycle of loading, and it must be 
greater than the 2k. C is a geometrical factor of the crack. 
Here, if n is compressed, then there will be no elastic strain 
energy release of Mode I.  

Consider a sample subject to the tension and torsion force, 
as shown in Figure 2. The waveform of loading is  

 

Figure 1  (Color online) (a) Stresses acting on a plane in the sample signed as plane (, ), where ,  were orientation angles of the normal direction of 
this plane in a three-dimensional coordinate system on the sample; (b) the trace of shear stress vector on the plane (, ) in a cycle forms a closed curve. The 
range of the shear stress is the maximum caliper diameter of the area surrounded by the curve. 
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Figure 2  A schematic illustration of stresses acting on the surface of a 
rod under tension-torsion fatigue loading. 

sinusoidal and the periods of tension stress and shear stress 
are the same. The stress tensor is as follows: 
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where m, a are the mean stress and the amplitude of ten-
sion stress respectively, and m, a are the mean stress and 
the amplitude of shear stress respectively.  is the phase 
difference between the tension stress and the shear stress, 
and T is the period of loading. 

For a plane, in which the normal direction tilts an angle  
from the tension direction, the normal stress and the shear 
stress are calculated as follows: 
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The range of shear stress on plane  is 
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2 cos sin cos2 cos cos2 sin .a a a



        



   

(7) 

Obviously, the normal stress and the shear stress in this 
plane vary with the time. The virtual elastic strain energy 
release of modes I and II also changes with the time in one 
loading cycle.  

If the normal stress is tensile, the elastic strain energy re-
lease includes mode I and mode II part. Otherwise, there is 
only mode II part. As mentioned in eq. (2), the virtual elas-

tic strain energy release should be the maximum of the pos-
sible values in one loading cycle. 

Then, put the maximum value of the elastic strain energy 
release and the range of shear stress in this plane into the eq. 
(3), and the possible fatigue life of this plane can be de-
duced.  

Finally, the fatigue life of the sample is the minimum 
value of all the fatigue life with different orientations.  

In eq. (3), both items at the left side is related to orienta-
tion angle  and the first item-elastic strain energy release 
should be the maximum of the possible values in one load-
ing cycle. Hence, the analytical solution is very complicated, 
except for samples under uniaxial fatigue loading. Numeri-
cal simulation is more practical for samples under common 
tension-torsion fatigue loading. 

2.3  Tensile fatigue loading with mean stress 

For the sample under uniaxial tensile fatigue loading, the 
stress tensor takes the form: 
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From eqs. (5)–(7), the normal stress and the shear stress on 
the plane  are calculated as follows: 
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And the range of the shear stress on the plane  is 

 a sin 2 .     (11) 

If there is m 0,   the maximum value of elastic energy 

release is at the T/4, when the normal stress is tensile in an 
arbitrary plane . So, in this case, there is joint mode I and 
mode II elastic strain energy release.  

From eq. (3), we have 
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where stress is normalized by the twice frictional stress for 
dislocation movement.  
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This equation demonstrates that, in any plane , the maxi-
mum stress and the amplitude stress are in agreement with 
an ellipse equation.  

The fatigue life Nf is determined from eq. (12) as:  
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Obviously, the fatigue crack initiation life changes with the 
direction of the plane. Let the derivative of Nf equals zero, 
and we have  
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Root of eq. (14) gives out the direction angle  of the crack 
initiation surface. According to the results of numerical 
simulation with different parameters, this tilt angle  is less 
than but close to the 45 degree, which is related to the plane 
with maximum shear stress. 

If m a ,    the normal stress in an arbitrary plane  is 

always compressed in the loading cycle. So, in this case, 
there is only mode II elastic energy release and the maxi-
mum value of virtual elastic strain energy release appears at 
the 3T/4. 

From eq. (3), we have 
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In this case, the tilt angle  of fatigue crack initiation plane 
is always the 45 degree. 

So, we have  
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If a m 0,     the maximum value of virtual elastic 

strain energy release is at the T/4 or 3T/4. In one cycle of 
loading, when t = T/4, the normal stress is tensile, so the 
elastic strain energy release includes mode I and mode II. 
When t = 3T/4, the normal stress is compressed, and the 
elastic energy strain release includes only mode II. So, if  
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Then, the maximum value of virtual elastic energy release 
appears at the T/4.  

That is to say, if  

 

 
 

 

 
 

2

m a 2
2

m a

m a

a m

sin

0 arcsin ,

 


 

 


 






 
      

 

(18) 

the fatigue life Nf () is solved by using eq. (13), otherwise 
using eq. (16). As shown in Figure 3, eq. (18) gives the 
boundary line. At the left side of the boundary line, eq. (16) 
is used to calculate the fatigue initiation life. Because the 
fatigue initiation plane is always at or close to the 45 degree, 
a critical ratio of the mean stress to the stress amplitude can 
be calculated as follows. 

For 4,    from eq. (18), we have  
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If the ratio of the mean stress to the stress amplitude is less 
than the critical value, eq. (16) will be used to solve the fa-
tigue life. Otherwise eq. (12) will be used.  

Furthermore, according to Tanaka and Mura’s model  
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Figure 3  The boundary between the area of using eq. (12) and the area of 
using eq. (16) for the calculation of the elastic strain energy release. 

[12], the range of shear stress must be greater than twice the 
frictional stress of dislocations on the slide plane. So, for the 
tilt angle , we must have 
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That means, for fatigue under uniaxial loading, the fatigue 
initiation plane will not appear at the 0 degree or 90 degree 
tilt from the loading direction.   

2.4  Torsion fatigue loading with mean stress 

For the sample under torsion fatigue loading, the stress ten-
sor takes the form 
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From eqs. (5)–(7), the normal stress and the shear stress on 
the plane  are calculated as follows: 
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And the range of the shear stress on the plane  is 

  a2 cos 2 .     (24) 

From eq. (3), we have 
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(25)

 

where if m 0,   there is m a   used at the left side of 

this equation. Otherwise, there is m a  . In this condition, 

the fatigue crack will always initiate along the 0 degree or 
90 degree, which is the plane of maximum shear stress. 

3  Discussion 

3.1  The parameters in the model 

In Tanaka and Mura’s model [12], there are some parame-
ters of materials, such as: specific fracture energy Ws, grain 
size 2a and frictional stress of the dislocation k. It’s difficult 
to determine all these parameters directly in practice. How-
ever, if the sample is only loaded under a monotonic in-
creasing tensile stress untill break, the maximum of possible 
tensile stress is the ultimate tensile strength of the sample, 
and the orientation of fracture surface would be 45 degree 
tilt to the loading axial for ductile metals. Then, from eq. 
(12), we have 

 
2
uts ,
2

A


  (26) 

where C=1. And the ultimate tensile strength uts  is nor-

malized by twice the frictional stress for dislocation move-
ment. For ductile metals, in addition to the ultimate tensile 
strength uts ,  the true fracture strength f  or the fatigue 

strength coefficient f   maybe other possible choice in eq. 

(26). 
The frictional stress of dislocation k gives a fatigue limit. 

That means that if the shear stress is less than the frictional 
stress, there will be no fatigue damage. So, endurance limit 
e can be used to substitute it. 

In Tanaka and Mura’s model [12], it is assumed that the 
dislocations formed by each cycle of loading are irreversible. 
This assumption is not rational, especially for the case when 
the shear stress range is very close to twice the frictional 
stress of dislocation. This assumption leads to the calculated 
fatigue life being less than the experiment results for several 
orders. Mura and Nakasone [14] discussed the reversibility 
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of dislocations and proposed a parameter f in their extension 
model where, f varies from 0 to 1, representing complete 
reversibility to complete irreversibility of slip. Mughrabi 
[10,11] proposed a similar parameter p for the cyclic slip 
irreversibility. p will be zero when the slip is entirely re-
versible, and it will be equal to one when the slip is entirely 
irreversible. 

According to all these considerations, eq. (12) will take 
the following form 

      2 2 2
max f a e utscos 2 sin 2 2.C pN         (27) 

In eq. (27), the parameter p is a constant factor for slip irre-
versibility. However, as mentioned by Mughrabi [11], the 
slip irreversibility was found to vary significantly in mag-
nitude from case to case. Higher loading amplitudes would 
induce a higher irreversibility. Obviously, the loading fre-
quency and the temperature are also important for slip irre-
versibility. The farther reseach of the effects of all these 
parameters are out of this paper, and should be investigated 
in the future work. 

Assume that the relation between the slip irreversibility 
and the loading amplitudes is a power law function: 
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Here, B and m are constants for slip irreversibility. Then eq. 
(27) will take the form as follows:  

 

 

22 2
max a uts

f2 2
ee e

1
2 2 12
uts max 2

a e e f2
e

2 1
2 2

2 .
2

m

m
m

BN

N
B

  
 

 
  





 


 
   

 

 
    

 

 

(29)

 

Here, C=1 and the crack initiates alone 45 degree tilt plane 
which is the plane with the maximum shear stress. This 
formula is similar to Basquin’s equation. Here, the fatigue 
strength coefficient and the Basquin exponent take the form 
as follows: 
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3.2  Mean stress effect 

For the case of m ,
1 2

1 2a








 with the increase of the 

normal tensile stress, the tilt angle  would decrease from 
45 degree to a smaller degree. However, in the long life 
fatigue regime, this angle is very close to 45 degree. So, 
from eq. (12), the relation between the maximum stress and 
the amplitude stress agrees with the ellipse curve.  
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In addition, from eq. (27), the relation between the mean 
stress and the amplitude stress takes the form as follows: 
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The constant life diagram of this model is shown in Fig-
ure 4. Compared to other models, this model gives an ex-
tended constant life diagram including compress mean 
stress. In this diagram, if the stress amplitude keeps constant, 
the fatigue initiation life will increase with the decrease of 

the mean stress when m

a

1 2
,

1 2








 and will decrease 

with the decrease of the mean stress when m

a

1 2

1 2








. 

That is to say, the compress mean stress is not always bene-
ficial to preventing fatigue crack initiation, although it is 
beneficial to decreasing the fatigue crack propagation rate.  

In practice, there would be friction between the crack 
surfaces when there is normal compress stress on this plane. 
Due to the friction of crack surface, the value of the elastic  

 

Figure 4  (Color online) A schematic illustration of constant life diagram 
of this model. If m/a  0.17, the constant life curve would be described 
by eq. (32), the dash curve in this figure. Otherwise, the curve would be 
described by eq. (33), the solid curve in this figure. The curves described 
by Gerber relationship and Goodman relationship are also shown as com-
parison.  
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energy release of Mode II may be very difficult to calculate. 
Although eq. (33) is very simple in physical mechanism, the 
analysis for fatigue crack initiation might be more complex 
for cases with compress stress. Eq. (33) would be the low 
limit for crack initiation with compress mean stress.  

Dowling [3] collected the experiment data of three dif-
ferent alloys for the mean stress effect in his book. The 
comparison of these experimental data and the prediction by 
eq. (32) is shown in Figure 5. 

From Figure 5, for all these alloys, the simulation curves 
fit the experiment data very well, except for Ti6Al4V when 
the fatigue life increases to 105 cycles or longer. And it 
seems that the simulation parameter p for cyclic slip irre-
versibility decreases with the increase of the fatigue life. 
The range of p is from 105 to 108, which is much lower  

 

Figure 5  (Color online) Constant life diagrams for three different alloys. 
The symbols in these figures are experiment data from reference [3]. The 
continuum curves are simulation results for different fatigue life. (a) A517 
steel. (b) Ti6Al4V. (c) 7075-T6. 

than those collected by Mughrabi [11]. In his paper, the 
irreversibility p of some pure metals or single phase alloy 
including copper, -brass, and -iron varies from 1 to 105. 
Obviously, the microstructure of metallic alloys is much 
more complex than pure or single phase metals. The cyclic 
slip irreversibility of dislocations would be very sensitive to 
the microstructure. Because of the importance of p in fa-
tigue damage accumulation, the cyclic slip irreversibility for 
different metals or alloys should be investigated in the fu-
ture work. 

3.3  Critical plane method for multiaxial fatigue 

Eq. (3) gives the general relationship between the fatigue 
initiation life and the normal stress, shear stress, and the 
shear stress range on an arbitrary plane. Substituting eq. (26) 
into eq. (3) and considering the slip irreversibility for an 
arbitrary plane, if the normal stress is tensile, we have 
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where the item at the right side of this equation is a nonlin-
ear combination of the stress parameters on this plane and 
the material parameters. This combination is related to the 
virtual life for an arbitrary plane, which varies with the 
plane orientation.  

If we define a parameter  as the combination of the 
loading condition, the complex loading could be converted 
to the effective uniaxial stress amplitude. Then, the fatigue 
life could be estimated with the S-N curve under uniaxial 
loading. 
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Here,  is the parameter which is related to the fatigue 
life and the crack orientation. For an arbitrary plane, the 
orientation with the minimum value of the  is the tilt angle 
of the crack plane. For all the loading conditions, the same 
value of  means the same fatigue life. 

Obviously, this model belongs to the energy model for 
multiaxial fatigue. And all the energies for crack initiation 
could be calculated with the normal stress and shear stress 
on an arbitrary plane. Different from other energy models 
for multiaxial fatigue, the virtual elastic strain energy re-
lease in this model does not cause accumulated damage 
with the loading cycles for crack initiation.  

This model can be used for proportional or nonpropor-
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tional loading without any change in the parameters. How-
ever, it can only be used to estimate the fatigue crack initia-
tion life for polycrystalline metals and alloys, but not the 
total life. Obviously, fatigue crack initiation tends to appear 
on the plane with maximum shear stress, while the crack 
propagation tends to appear alone the plane with maximum 
normal stress. The mechanism of damage accumulation 
would change in the course of crack growth. So, this model 
is not good enough to assess the fatigue crack growth for 
multiaxial fatigue.  

3.4  Damage accumulation and random fatigue 

According to Tanaka and Mura’s model [12], fatigue crack 
will initiate when the amount of stored dislocation energy of 
each cycle reaches the value of surface energy. Obviously, 
Tanaka and Mura’s model coincides with the 
Palmgren-Miner cumulative damage rule, which means that 
the load sequence has no effect on the fatigue damage ac-
cumulation. However, in this new model, the linear damage 
rule is not correct. Although the amount of stored disloca-
tion energy accumulates linearly with the fatigue cycles, the 
virtual elastic strain energy does not produce any damage 
with the fatigue cycles, until the last cycle of the crack initi-
ation. 

For example, a sample is tested under two uniaxial stress 
conditions one after another. The first stress condition is at 
the maximum stress-stress amplitude combination (max1, 
a1), and the fatigue life under this stress condition is N1. 
The other stress condition is at the (max2, a2), and the fa-
tigue life under this stress condition is N2.  

According to the energy-equilibrium eq. (3), a simplified 
form is as follows: 

 s ,i i iE N U E    (36) 

where Ei is the virtual elastic strain energy release, which is 
related to the maximum stress level maxi. ΔUi is the accu-
mulated dislocation energy in one cycle, which is related to 
the stress amplitude ai. Es is the surface energy for producing  

a crack with a length of grain diameter. As shown in Figure 
6, there are two cases. In the first case, the sample is loaded 
under (max1, a1) for n1 cycles, then under (max2, a2) for n2 
cycles to break. In the second one the sample is loaded un-
der (max2, a2) for n2 cycles, then under (max1, a1) for n1 
cycles to break. Let max1<max2, so we have E1<E2. 

From eq. (36), for the first case, we have 
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For the second case, we have 
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Obviously, because the possible elastic strain energy release 
is different for the different loading conditions, only if max1 
equals max2, the loading sequence will induce the cumula-
tive damage to deviate from the Palmgren-Miner cumula-
tive damage rule. 

However, this conclusion is contrary to many research-
ers’ work [16,17] and the experiment results. A reasonable 
explanation is that this model is for fatigue crack initiation, 
but not for the crack propagation. Otherwise, in Tanaka and 
Mura’s model, there is no load sequence effect on the dam-
age accumulation of dislocations. Actually, as discussed 
earlier, the cyclic slip irreversibility would vary with the 
loading condition. So, the effect of loading history on evo-
lution of dislocation should be investigated in the future 
more deeply.  

For random fatigue, the general process includes cycle  

 

Figure 6  A schematic illustration of the energy accumulation for two different load sequences. The arrow line describes the energy accumulated with the 
fatigue cycles. The dash line describes that of the sample under only (max1, a1), the point line describes that of the sample under only (max2, a2). Here, let 
max1<max2, so E1<E2. (a) Sample loaded under (max1, a1) for n1 cycles, then under (max2, a2) for n2 cycles to break; (b) sample loaded under (max2, a2) 
for n2 cycles, then under (max1, a1) for n1 cycles to break. 
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counting and subsequent damage accumulation calculation. 
Through cycle counting, a random stress history could be 
resolved to a set including a series of amplitude-mean stress 
combinations (mi, ai). Then, methods proposed by Good-
man, Gerber, Morrow etc. are used to convert each ampli-
tude-mean combination to equivalent completely reversed 
stress amplitude ari respectively. Finally, from an S-N 
curve for stress ratio R=1, the accumulated damage can be 
estimated by using Palmgren-Miner rule. However, as dis-
cussed earlier in this section, the mean stress does not bring 
accumulative damage with the fatigue cycle. According to 
this model, the accumulative dislocation energy is only re-
lated to the stress amplitude levels. The conversion of am-
plitude-mean combinations (mi, ai) to ari would bring 
errors in damage calculation. However, the maximum stress 
MAX (mi+ai) or the minimum stress MIN (miai) in the 
whole loading history is important, which determines the 
maximum possible elastic strain energy release in the fa-
tigue crack initiation.  

There are many different methods used for cycle count-
ing. Rainflow method [2,3] might be the most popular one. 
From our model, the cycle counting would be much simpler. 
What we should do is just recording the ranges between 
each peak and the adjacent valley. As shown in Figure 7, 
the load history would be resolved to a set of simple range 
Δi . For example, Δ1 = |B A|. Here, if Δi is less than 
twice the friction stress of dislocation, this segment should 
be neglected. For example, if Δ6 = |G –F | < 2k, the seg-
ment F-G should be neglected, and there is only segment 
E-H rather than E-F, F-G, and G-H. The maximum stress at 
point D would be used to calculate the virtual elastic strain 
energy release, so it should be recorded in the cycle count-
ing.  

Based on eq. (29), the accumulative damage for random 
fatigue could be as follows: 
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Here, n is the number of the stress range in the random  

 

Figure 7  A schematic diagram of a random loading history with the time. 
The simple ranges between the peak and adjacent valley should be record-
ed in the cycle counting, so does the maximum stress or minimum stress in 
the whole wave. The simple range less than 2k should be neglected. 

loading spectrum. Nf is the repetition number of the random 
loading spectrum for fatigue crack initiation. max is the 
maximum stress in the random loading spectrum. 

4  Conclusions 

Based on Tanaka and Mura’s model, an energy-equilibrium 
model for complex stress effect on fatigue crack initiation is 
proposed in this paper. From this model, some conclusions 
reached in this investigation are as follows: 

(1) The elastic strain energy and the stored dislocation 
energy both contribute to the fatigue crack initiation. When 
the summation of the accumulated stored dislocation energy 
and the virtual elastic strain energy release reaches the sur-
face energy for producing a crack with the size of grain di-
ameter, the fatigue crack will initiate. 

(2) For samples under uniaxial fatigue loading, the rela-
tion between the maximum stress or the minimum stress 
and the stress amplitude is in agreement with an ellipse 
equation on an arbitrary plane.  

(3) There is a critical ratio of mean stress to stress am-
plitude, which equals about 0.17. If the ratio of mean 
stress to stress amplitude is less than the critical value, and 
the amplitude keeps constant, the fatigue initiation life will 
decrease with the decrease of the mean stress. Compress 
mean stress is not always beneficial to prolonging the life of 
crack initiation.  

(4) Because of the effect of elastic strain energy release, 
the Palmgren-Miner rule will yield incorrect results in 
damage accumulation for fatigue crack initiation. 

(5) The traditional procedure for estimating the damage 
under random loading might be incorrect, for the mean 
stress does not bring accumulative damage with fatigue cy-
cles.  

The authors wish to thank Prof. HONG Y S and Dr. SUN C Q of the Insti-
tute of Mechanics, Chinese Academy of Sciences for helpful discussions in 
this work. This work was supported by the National Basic Research Pro-
gram of China (Grant No. 2012CB937500), and the National Natural 
Science Foundation of China (Grant Nos. 11072243 and 11202210). 

1 Sendeckyj G P. Constant life diagrams—a historical review. Int J Fa-
tigue, 2001, 23: 347–353 

2 Suresh S. Fatigue of Materials. New York: Cambridge University 
Press, 1991. 130–132, 97–111 

3 Dowling N E. Mechanical Behavior of Materials: Engineering 
Methods for Deformation, Fracture, and Fatigue. Englewood Cliffs, 
NJ: Prentice Hall, 1993. 370–376 

4 Nihei M, Heuler P, Boller C, et al. Evaluation of mean stress effect 
on fatigue life by use of damage parameters. Int J Fatigue, 1986, 8(3): 
119–126 

5 Dowling N E, Calhoun C A, Arcari A. Mean stress effects in 
stress-life fatigue and the Walker equation. Fatigue Fract Eng Mater 
Struct, 2009, 32: 163–179  

6 Dowling N E. Mean stress effects in strain–life fatigue. Fatigue Fract 
Eng Mater Struct, 2009, 32: 1004–1019 



926 Zhao S C, et al.   Sci China-Phys Mech Astron   May (2014)  Vol. 57  No. 5 

7 Socie D F, Marquis G B. Multiaxial Fatigue. Warrendale, Pa.: Socie-
ty of Automotive Engineers, Inc., 2000. 129–230 

8 You B R, Lee S B. A critical review on multiaxial fatigue assess-
ments of metals. Int J Fatigue, 1996, 18(4): 235–244 

9 Karolczuk A, Macha E. A review of critical plane orientations in 
multiaxial fatigue failure criteria of metallic materials. Int J Fracture, 
2005, 134: 267–304 

10 Mughrabi H. On the life-controlling microstructural fatigue mecha-
nisms in ductile metals and alloys in the gigacycle regime. Fatigue 
Fract Eng Mater Struct, 1999, 22: 633–641 

11 Mughrabi H. Cyclic slip irreversibilities and the evolution of fatigue 
damage. Metall Mater Trans A, 2009, 40A: 1257–1279 

12 Tanaka K, Mura T. A dislocation model for fatigue crack initiation. J 
Appl Mech, 1981, 48: 97–103 

13 Venkataraman G, Chung Y W, Nakasone Y, et al. Free energy for-
mulation of fatigue crack initiation along persistent slip bands: Cal-
culation of S-N curves and crack depths. Acta Metall Mater, 1990, 
38(1): 31–40 

14 Mura T, Nakasone Y. A theory of fatigue crack initiation in solids. J 
Appl Mech, 1990, 57: 1–6 

15 Chan K S. A microstructure-based fatigue-crack-initiation model. 
Metall Mater Trans A, 2003, 34A: 43–58 

16 Mesmacquea G, Garciab S, Amrouchea A, et al. Sequential law in 
multiaxial fatigue, a new damage indicator. Int J Fatigue, 2005, 27: 
461–467 

17 Košút J. History influence exponent in cumulative fatigue damage 
determined using two-step loading experiments. Fatigue Fract Eng 
Mater Struct, 2002, 25: 575–586 

 


