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Joint-constraint model for large-eddy simulation of helical turbulence
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A three-term mixed subgrid-scale (SGS) stress model is proposed for large-eddy simulation (LES) of helical
turbulence. The new model includes a Smagorinsky-Lilly term, a velocity gradient term, and a symmetric vorticity
gradient term. The model coefficients are determined by minimizing the mean square error between the realistic
and modeled Leonard stresses under a joint constraint of kinetic energy and helicity fluxes. The model formulated
as such is referred to as joint-constraint dynamic three-term model (JCD3TM). First, the new model is evaluated
a priori using the direct numerical simulation (DNS) data of homogeneous isotropic turbulence with helical
forcing. It is shown that the SGS dissipation fractions from all three terms in JCD3TM have the properties of
length-scale invariance in inertial subrange. JCD3TM can predict the SGS stresses, energy flux, and helicity flux
more accurately than the dynamic Smagorinsky model (DSM) and dynamic mixed helical model (DMHM) in
both pointwise and statistical senses. Then, the performance of JCD3TM is tested a posteriori in LESs of both
forced and freely decaying helical isotropic turbulence. It is found that JCD3TM possesses certain features of
superiority over the other two models in predicting the energy spectrum, helicity spectrum, high-order statistics,
etc. It is also noteworthy that JCD3TM is capable of simulating the evolutions of both energy and helicity
spectra more precisely than other models in decaying helical turbulence. We claim that the present SGS model
can capture the main helical features of turbulent motions and may serve as a useful tool for LES of helical

turbulent flows.
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I. INTRODUCTION

The kinetic helicity is known as a global pseudoscalar,
whose density is defined by the correlation between the
velocity and vorticity h = u - ®, and can be either sign
depending on the system of reference (left- or right-handed).
Helical turbulence is characterized by the presence of nonzero
mean helicity (or helicity integral), which is a topological
invariant, measuring the knottedness, or amount of the linkage,
of vortex lines [1]. The relative helicity r, = h/(|u||®|)
represents a measure of the tendency of the velocity to
align with the corresponding vorticity, and thus indicates the
characteristics of local motions, i.e., helical (r, — £1) or
nonhelical (r;, — 0) type. Helicity can lead to the formation
of large-scale coherent structures in turbulent flows, though
the underlying mechanisms still remain controversial [2—4].
Of particular importance are the roles played by helicity, for
example, in the formation of tornadoes in atmospheric flows,
the generation of magnetic fields in astrophysical flows [5],
and the enhancement of mixing of chemical components [6].

The influence of helicity on the turbulence dynamics
has been a matter of debate since the recognition that the
kinetic helicity is a second inviscid integral invariant of three-
dimensional (3D) incompressible homogeneous and isotropic
turbulence, in addition to the kinetic energy [1]. Two scenarios
have been proposed for the cascade processes of the kinetic
energy and helicity in helical turbulence [7]. One picture
is that helicity cascades successively to smaller scales in
the high-wave-number segment [with a helicity spectrum
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H(k) ~ k~*/3], while energy is transferred to larger scales
in the low-wave-number segment [with an energy spec-
trum E(k) ~ k~7/?], analogous to the dual cascade of two-
dimensional (2D) turbulence [8—11]. This possibility was then
excluded by Kraichnan [12] using a helical wave interaction
theory and by André and Lesieur [13] through numerical
simulation based on the so-called eddy-damped quasinormal
Markovian (EDQNM) model. However, Kraichnan suggested
in Ref. [12] that the helical motion be apt to slow down
the cascade of energy to small scales, and, as a result, lead
to the reduction of energy decay (a mechanism invoked to
interpret the formation of long-lifetime strong storms [14]).
This argument was further upheld by the works of Levich and
Tsinober [15] as well as Pelz et al. [16], who pointed out that
strong fluctuations of the local helicity might play an important
part in the diminution of the energy cascade. This point of
view originates from the inspection that intense helicity will
result in severe reduction in the magnitude of the Lamb vector
£ = u x w, whose solenoidal part is responsible for the non-
linear interaction in Navier-Stokes turbulence. Nevertheless,
Kraichnan and Panda [17] stressed that the alignment between
the wave vector and the Lamb vector must be considered in
order to understand the impact of helicity on the reduction of
nonlinear transfer of energy. It was recently shown for freely
decaying turbulence that, although the initial energy decay is
suppressed in the presence of mean helicity, the self-similar
decay rate is the same as in the nonhelical case [18]. Recently,
Biferale er al. [19] found that the phenomenon of inverse
energy cascade can possibly occur in all 3D turbulent flows if
the mirror symmetry is broken by the single-signed helicity.
Another aspect is that both the energy and helicity are
transferred from the driven scale to small scales (with their
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spectra following the Kolmogorov —5/3 law) until they are
arrested by viscous dissipations. The joint or parallel cascade
of the energy and helicity is supported by evidence from
both direct numerical simulations [20-22] and experimental
measurements of the atmospheric boundary layer flow [23].
It was shown through dimensional arguments and by using
a shell model that there exists an inner scale £ for helicity
dissipation, which is always greater than the Kolmogorov scale
n (characterizing the energy dissipation), and is increasingly
so for helical turbulence with growing Reynolds number
[24]. It was thus suggested that the helicity cascades linearly
with the energy in an inertial range between the forcing
scale and &, and the helicity dissipation dominates in another
inertial range of energy between £ and n, where the turbulent
motion is nonhelical. Recently, it was deduced by using a
phenomenological approach that there should be a distortion
time scale (ty) for the helicity cascade in analogy to that for
the energy cascade (tg) [25]. The value of the ratio 7z /Tty
can be measured by the square root of the spectral relative he-
licity (a(k) = |H (k)|/[2k E(k)] ~ 1/k for the parallel cascade
regime), and consequently, 7, is comparable to Tz even in the
low relative helicity (or mean-helicity-free) limit. It was then
demonstrated numerically that the joint cascade of energy and
helicity is likely to be observed in two inertial subranges,
i.e., a low-wave-number range with the spectra scaling as
k=373 and a higher-wave-number range scaling as k~*/3. The
former scaling law is determined by 7, while the latter spectral
dynamics is dominated by t. Besides, it was put forth that
even the nonhelical homogeneous and isotropic turbulence
possesses potential helicity from individual helical modes,
which may have important effect on the spectral dynamics,
especially in the predissipative range [26]. It was argued that
the bulk helicity (or the total mean-flow helicity) plays a crucial
part in the appearance of the axial-flow reversal in a turbulent
swirling pipe flow [27].

Due to the overwhelming computational cost, direct nu-
merical simulation (DNS) of the Navier-Stokes equations
is still far from feasible for most engineering flows. The
most striking technique besides DNS is large-eddy simulation
(LES), which can ensure the fidelity of the flow fields to
the largest extent, and has been widely used in engineering
application and scientific research [28-30]. One of the the
main tasks in LES approach is the modeling of the effects of
subgrid-scale (SGS) motions based on the resolved quantities.
A series of SGS models have been proposed for simulation
of flows in various geometries, including the Smagorinsky
model [31], the dynamic Smagorinsky model [32,33], the
mixed model [34,35], the Lagrangian model [36], the scale-
dependent model [37-39], the vortex-based model [40,41],
etc. It has been addressed that the incorporation of certain
physical constraints in the SGS modeling is beneficial to
avoiding unphysical solutions both in spectral space [42]
and in physical space [43-45]. As manifested in Ref. [46],
the variation process under an SGS dissipation constraint is
helpful in improving the performance of a mixed dynamic
model for simulation of driven and decaying isotropic turbu-
lence. It was also shown that the inclusion of the near-wall
Reynolds stress (and heat flux) constraint(s) in the SGS
modeling allows the LES technique to simulate wall-bounded
turbulent flows at moderate grid resolutions with promising
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accuracy [47,48]. Although the physical mechanism of the
interplay between energy and helicity cascades still remains
unclear, the effect of helicity has been taken into account for
turbulence modeling. For example, Yokoi and Yoshizawa [49]
studied the impact of helicity in inhomogeneous turbulence
using a two-scale direct-interaction approximation (TSDIA)
theory and proposed a three-equation (k-e-H) model for
a Reynolds-averaged Navier-Stokes (RANS) simulation of
inhomogeneous turbulent flows. Efforts were also made to
construct a second-order Reynolds stress model accounting
for the effect of turbulent helicity on energy cascade [50].
Recently, improved spectral SGS model was developed based
on the simultaneous evolution of the energy and helicity
transfer terms in order to incorporate the effect of energy-
helicity interactions [51,52]. The model with helical effect
shows some advantages over that without helical effect in
predicting the evolution of the spectra and velocity fields. In
the light of the definition of the SGS helicity dissipation, Li
et al. [53] suggested adding a vorticity gradient term to the
traditional Smagorinsky formulation to yield a mixed helical
model for LES of helical turbulence. Noticing that the vorticity
gradient term is scale dependent even in the inertial subrange,
Yu and Xiao [54] introduced a pseudo microscale (instead of
the filter width) for the helical eddy diffusivity in the vorticity
gradient term and proposed to calculate the model coefficients
dynamically under a constraint of SGS helicity dissipation.
The helical model refined as such improves the prediction of
forced and decaying helical isotropic turbulence as compared
with the traditional dynamic model in the absence of helicity
flux constraint. Using a phenomenological analysis method,
Yu et al. [55] derived a novel eddy-viscosity model, in which
the eddy viscosity is closely associated with the correlation
between the large-scale strain rate tensor and vorticity gradient
tensor, a measurement of the resolved helicity dissipation rate.

To summarize, the turbulent helicity can have latent
influence on the energy cascade process in both helical and
non-helical turbulent flows. The presence of mean helicity may
result in the formation of large-scale flow structures in6 the
flow field. Therefore, the aim of this paper is to develop an SGS
model for LES of helical turbulence, which is expected to have
a high correlation with the real SGS stress and satisfy relevant
physical constraints. Formally, a three-term dynamic SGS
model is proposed, and the dynamic procedure is optimized
by a joint constraint of SGS energy and helicity dissipations.
The proposed model is tested a priori and a posteriori through
simulation of forced and decaying helical isotropic turbulence.
The calculated results are compared with those from DNS
and LES using the unconstrained three-term model and other
models.

II. THEORETICAL ANALYSIS

A. Governing equations

The basic equations for LES of incompressible turbulent
flows are the coarse-grained (low-pass filtered) conservation

equations of mass and momentum:
oiu; =0, (D

~ ~~ 1, . ~ >
8,14,-—|—8j(u,»uj)=—;aip—}—vajaju,-—l—fi—8jr,-j. (2)
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Here, the tilde denotes spatial ﬁltering at the grid scale A, and
f, is the external driving force. t;; = w;u; — ;1 is the SGS
stress tensor, which needs to be modeled using the resolved
velocity field ;.

The resolved Kinetic energy (ka) is defined as ka = u;ii; /2.
Thus, it is easy to derive from Egs. (1) and (2) the governing
equation for the resolved kinetic energy,

Ok +0; (i ka) = 8,7, — IE — 208,85, + filli.  (3)

Where S, ;= (8 u; + 9;u;)/2 is the resolved strain rate tensor,
J_ =1U; (ZvS,] D8ij/p — t;;) the spatial transport term of ka,
and % = —§;; ;7ij the local SGS energy flux across scale A.
Here, §;; is the Kronecker delta.

Similarly, the resolved kinetic helicity is defined by hp =
1;@;. One can show from the filtered Navier-Stokes equations
[Egs. (1) and (2)] and the large-scale vorticity (@;) equation
(not shown here) that the control equation for the resolved
helicity reads

dha + 0;(@jha) = 0;0; — I — &SR +2fid;, (4)

in which 1?,-]- = (Bch)i + 9;w;)/2 is the resolved symmet-
ric vorticity gradient tensor, é ;= 2w
pwj/p—i-uua)]/Z—i—Zv(u R,J—i—a),S,j) iklukﬁ is the
spatial transport term of &4, and 4 A = —2R;;7;; is the local
SGS helicity flux across scale A. Here, ;i is the alternating
symbol.

— kUi 0Tk —

B. A three-term SGS model

In order to account for the helicity effect and ensure the
scale-invariant properties, Yu and Xiao [54] improved Li
et al.’s [53] two-term SGS model by introducing a pseudo-
Taylor microscale (A ) to amend the helical term. The refined
two-term helical model can be written in the form

70 = C1A%[S]S;; + C2A AIS|Ry, (5)

where |§| = (2S,- S j)l/ 2is the magnitude of the resolved strain
rate tensor, and C; and C, are the model coefficients to be
determined. An = (15(it; - i1;)/{@; - &;))"/? scales as A!/? and
measures the ratio of the mean resolved energy to enstrophy at
the grid scale A. Here, (-) represents an average over directions
of statistical homogeneity or along pathlines.

The Smagorinsky-Lilly part in Eq. (5) is the simplest
and most commonly used SGS model both for scientific
research and engineering application. However, the traditional
Smagorinsky-Lilly model has intrinsic drawbacks, such as
being purely dissipative, being incapable of predicting the
backscatter phenomenon, and having low correlation with
the real SGS stress [33,40,56]. The second term in Eq. (5)
may improve the performance of the mixed model, especially
for the prediction of helicity cascade, as long as the model
coefficient C; is determined in a proper way [54]. The gradient
model (also referred to as nonlinear model), an approximation
of the scale-similarity model, can give a better description of
the SGS stress in comparison with the Smagorinsky-Lilly type
model, and does not need a second filtering [57,58]. However,
it is claimed that the SGS dissipation provided by the gradient
model is insufficient [30]. Therefore, it was suggested that the
gradient model be used in combination with the Smagorinsky
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model to form mixed model [34,35]. To take full advantage of
the three models mentioned above, we suggest the following
three-term SGS model

7o = CIAYS|S;; + CzAzg—kg— + G322 AIS|R;;. (6)
The model coefficients C;, C,, and C3 can be prescribed a
priori or calculated dynamically as the numerical simulation
proceeds.

Dynamic SGS models were first investigated by Germano
et al. [32], Lilly [33], and Meneveau ef al. [36]. In these
Smagorinsky-based dynamic models, the model coefficient
is assumed to be scale invariant (within the inertial range)
and is calculated simultaneously as the simulation progresses.
Formally, a test filtering operation with a filter width ¢ A (1 <
o < 2) is introduced to define the subtest-scale (STS) stress
T;j = w;u; — u;ii ;. Here, the overbar denotes spatial filtering
at the test scale ¢ A. The stresses at the grid and test scales are
related to each other by the Germano identity [59],

Llj = Tl] ?ijs (7)
where L;; =u;ii; — i, is called resolved stress, which

is a known quantity, given the resolved velocity field ;.
According to the proposed three-term SGS model [Eq. (6)],
the corresponding formulation for the STS stress 7;; reads

o, 8uj

0Xx Xk 8xk

ﬁij- ®)
T;; in Eq. (7) yields

T = Cy(@A)(S|5) + Calar)>—

+C322,@A)|S

Substituting 7/7° and 7;7°¢ for 7;; and

Lmod Tmod

Tmod, 9)

ij
The standard dynamic procedure for the three-term model
[Eq. (6)] is to minimize the mean square error

€ =((Ly - L)) (10)

with respect to the model coefficients C;, C,, and Cs, sepa-
rately. The three-term SGS model with the model coefficients
so determined is referred to as D3TM.

C. Joint-constraint SGS model

It has been demonstrated numerically that there exists
a joint cascade of energy and helicity from the injection
scale to smaller scales until they are arrested by the viscous
dissipation [21,22]. Therefore, for high-Reynolds-number
helical turbulence, the mean energy and helicity fluxes (or
the so-called SGS dissipations) should remain nearly constant
in the inertial subranges of energy and helicity (due to the
negligibly small viscous effect), and approximately equal to
the injection rates of energy and helicity, respectively. In
physical space, the SGS dissipations of energy and helicity
(due to the works done by the SGS stress against the large-scale
strain and symmetric vorticity gradient) for given filter width
8 are written as

&s =<H5E>=_(Tij§ij>a (11)
and

ns = (M) = —2(z;; R;)). (12)
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If the SGS dissipations [Egs. (11) and (12)] are evaluated
at the test scale oA, and the Germano identity [Eq. (7)] is
employed, we can readily arrive at the following balance
conditions for the SGS energy and helicity dissipations:

(TS0 = (Liy + 7S, (13)

and
<Tij§ij> = <(Lij +?ij)§ij>~ (14)
Replacing 7; and 7;; with 7,7 and 777 in Egs. (13) and (14)

yields the following constraints on the SGS dissipations for
any proposed SGS model:

(T7055) = (L + 7)), (15)

and
(T Rij) = ((Lij + T Ry ). (16)
Shi et al. [46] applied the SGS energy dissipation constraint
[Eq. (15)] to modeling of the SGS stress for LES of
homogeneous isotropic turbulence, assuming that both grid
and test scales are within the inertial range. Similarly, Yu
and Xiao [54] utilized the SGS helicity dissipation constraint
[Eq. (16)] to optimize a mixed SGS model for helical
isotropic turbulence. In this paper, we propose to improve the
performance of the dynamic three-term SGS model presented
in Sec. IIC by controlling both the mean energy flux and
helicity flux using Eqgs. (15) and (16). The model coefficients
can be determined dynamically using the method of Lagrange
multipliers as follows. Let f;;; (k =1,2,3) represents the
individual term in rl.‘;“)d, and Fy ;; the corresponding term in
774, Define ayij = Fiij — frij» e = (Frij — fri)Sii)»
and yx = ((Fr;j — 7,(’,»]-)1?,7). Thus, the joint-constraint dy-
namic three-term SGS model JCD3TM) is implemented by
minimizing the following error function with respect to the
three model coefficients and the multipliers (; and A,):

3 2 3
gL — <<Lij - Z Ck()lk,ij) >+ MM <Z CiBx — Hg)
k=1 k=1
3
+ Ao (Z Ceyve — H’,j) ,
k=1

where Hg = (§ijLij) and Hg = (E}jL,’j).

a7

III. NUMERICAL SIMULATIONS AND RESULTS

A. A priori tests

In order to validate a priori the performance of the
newly proposed models, we carried out DNS of helical 3D
incompressible homogeneous isotropic turbulence by solving
the forced Navier-Stokes equations using a pseudospectral
solver in a cubic box with sides of length 27. Periodic
boundary conditions are imposed in all three directions. The
Orszag 2/3 rule is used for dealiasing, and the second-order
Adams-Bashforth scheme for the time integration. The system
is driven by constant injection rates of energy and helicity,
i.e., € = 0.1 and n = 0.3, respectively, in the first two wave-
number shells [53]. The latter can provide the system with
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a positive mean helicity. The initial condition is specified
by a Gaussian random field with an energy spectrum of
the form Eo(k) = Ak*UZky e /%, with ko = 4.5786 and
Uy = 0.715. The grid resolution is 5123, and the kinematic
viscosity (v) is taken as 6 x 107*. The initial large-eddy
turnover time is defined as ty = 7 /(koUp). The system reaches
a statistically steady state after about five large-eddy turnover
times, and the resulting microscale Reynolds number (Re;,)
is about 172. The Kolmogorov length scale, ¢ = (v3/e)1/4,
is 0.0068. A Gaussian filter is employed to implement the
filtering operations. The performance of JCD3TM is compared
with those of the traditional dynamic Smagorinsky model
(DSM) and the dynamic mixed helical model (DMHM) [53].

As addressed in Sec. II C, the SGS dissipations of energy
(es5) and helicity (ns) are expected to remain constant if the filter
width is within the inertial range of high-Reynolds-number
helical turbulence. This argument has been numerically
demonstrated both in spectral space [21] and in physical
space [54]. One of the original goal of the proposed model
(JCD3TM) is to predict the scale-invariant property of the SGS
energy and helicity dissipations. Substituting rl.’]‘.“’d in Eq. (6)
for 7;; in Egs. (11) and (12) yields

Ci f1(8) + C2 f2(8) + C3 f3(8) = —1,
C181(8) + C282(8) + C3g3(8) = —1/2,

where f1(8) = (£2|§|Sij5ij)/€5, [0 = @2%ﬁiakﬁjsij>/85,
f3(0) = (A§5iS|Ri,jSij>/56, g1(9) =~<¢33|5J5i,/Rij>/Ua’ 808 =
(828kl7,‘ Bk'zlj R,’j)/?]g, g';((S) = ()»§5|S|RU Rij)/né- If the model
coefficients (C;, C,, and C3) in D3TM and JCD3TM remain
unchanged, a straightforward solution is that the nondimen-
sionalized functions (f; to g3) maintain constant values for
varying filter width §.

Ithas been shown that f;, f3, g1, and g3 are scale invariant in
the inertial range of helical 3D incompressible homogeneous
isotropic turbulence [54]. In this paper, the variation in the
values of f, and g, with respect to the filter width § is tested
a priori using the DNS data for helical isotropic turbulence.
We plot in Fig. 1 the dependence of f,(§) and g»(8) on the
filter width §. It is seen that both f,(8) and g,(8) remain nearly
constant when § varies in the inertial range. Therefore, all three
terms in JCD3TM [see Eq. (6)] satisfy the requirement of scale
invariance.

Shown in Fig. 2 are the probability density functions (PDFs)
of the modeled energy flux IT4 through the chosen filter scale
A = 80¢. The PDF for the real energy flux is also plotted for
comparison. The horizontal axis is normalized by the energy
input rate €. All three models can predict the forward transfer
of energy (all PDFs are positively skewed), but only JCD3TM
can successfully capture the backscatters, which are believed
to be a physical phenomenon in the 3D energy cascade [22].
The result for DMHM is similar to that for DSM because the
contribution of the second term of DMHM is negligibly small
in contrast with the first term when it predicts the physical
quantities related to kinetic energy. Backscatters account for
about 22% of the total space points in the field of real energy
flux and about 15% in that of the modeled energy flux by
JCD3TM. The modeled energy flux from JCD3TM correlates
with the real energy flux at the level of 91%, which is much
higher than those of the other two models.

(18)
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FIG. 1. (Color online) Dependence of (a) f,(§) and (b) g,(6) on
the filter width § from an a priori test. The filter width is normalized
by the Kolmogorov scale ¢.

We display in Fig. 3 the PDFs of the modeled helicity flux
T4 across the given filter scale A = 80¢. It can be seen that
the PDF of the real helicity flux is nearly symmetric with small
positive skew, which indicates transfer of positive helicity from
large to small scales on average. DMHM and DSM are almost
identical to each other, overestimating the PDF by an order of
magnitude near the median IT#, and severely underestimating
the probability and magnitude of tail events. The PDF of the
modeled helicity flux from JCD3TM is much closer to that of
the real flux, especially near the peaks. The local helicity fluxes

FIG. 2. (Color online) PDFs of the local energy flux I1% for the
filter width A = 80¢ calculated using the JC3TDM (dashed line),
DMHM (line with squares), DSM (line with triangles), and real SGS
stress (bold solid line). The horizontal axis is normalized by the
energy injection rate €.
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FIG. 3. (Color online) PDFs of the local helicity flux IT# for the
filter width A = 80¢ calculated using the JCD3TM (dashed line),
DMHM (line with squares), DSM (line with triangles), and real SGS
stress (bold solid line). The horizontal axis is normalized by the
helicity injection rate 7.

predicted by JCD3TM, DSM, and DMHM correlate with the
real helicity flux at levels of 93%, 13%, and 14%, respectively.

The pointwise correlation of the modeled SGS stress with
the real stress can also measure the performance of the SGS
models. We show in Fig. 4 the PDFs of one component of
the modeled SGS stress (rlnz“’d) and the real SGS stress (712)
for the filter width A = 80¢. It is observed that the PDFs
for DMHM and DSM are much narrower than that for the
real stress. The PDF of JCD3TM is close to that of the real
stress. It is also noted that the PDFs of JCD3TM and the real
stress are nearly symmetric, while those of DMHM and DSM
are obviously skewed to the right. The pointwise correlation
between JCD3TM and the real stress is as high as 94%, while
the correlations between the other two models and the real
stress are much lower (less than 25%). These observations
also apply to other off-diagonal components of the SGS stress.

The probability of the new SGS model in simulating the
local SGS energy and helicity fluxes can be seen more clearly
in Figs. 5 and 6, which plot, respectively, the instantaneous

FIG. 4. (Color online) PDFs of the modeled SGS stresses t/3%:
JCD3TM (dashed line), DMHM (line with squares), DSM (line
with triangles), and the real SGS stress 7y, (bold solid line) for
the filter width A = 80¢. The horizontal axis is normalized by the
characteristic stress Ug.
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FIG. 5. (Color online) Instantaneous isosurfaces of the SGS energy fluxes I15 calculated by (a) real SGS stress, (b) JCD3TM, and

(c) DMHM for the filter width A = 80¢.

isosurfaces of the energy flux (I1%) and helicity flux (IT%),
calculated using the real SGS stress, JCD3TM, and DMHM
at the filter scale A = 80¢. The same levels of magnitude are
shown for the three panels in each figure in a 128* subdomain.
Both the real energy and helicity fluxes are characterized by
tubelike structures surrounded by sheetlike structures. To the
eyes, JCD3TM can simulate the pointwise real fluxes more
accurately than DMHM, especially for the energy flux. The
behaviors of DSM are similar to those of DMHM, or even
worse (not shown here).

Kraichnan [60] introduced a refined similarity hypothesis
(RSH) for the local energy flux IT¥ to study the intermittency
effects of the turbulent energy cascade. Kraichnan’s RSH
states that the structure functions of the velocity difference
(lu(x; + €;8,t) — u(x;,t)|?) and the structure functions of the
local energy flux (|8T1£]7/3) must have the same scaling
exponents (;“pE ) with respect to the filter scale §. Here, u is the
velocity vector field from DNS or experimental measurement,
and e; is the unit vector in the ith direction. § represents
the filter width. Similarly, Chen er al. [22] suggested that
the structure functions of the local helicity flux (|§2T12 [P/3)
should have the corresponding intermittency exponent ;If for
each p, and found that the helicity flux is more intermittent
than the energy flux in helical 3D Navier-Stokes turbulence.
In this paper, the capability of the new model in predicting
such high-order statistics is also examined a priori. Shown in
Fig. 7 are the £th order structure functions of the normalized

energy flux ((|8T15|/u"®)?/?) as function of the filter length

(@) REAL

scale 8. Here, u’ is the root-mean-square (r.m.s.) value of
the DNS velocity fluctuations. The results obtained from real
energy flux (solid line) are plotted to assess those predicted
by different models (dashed lines). In order not to pollute
the figures, only the results for p = 1,3,6,8 are shown here.
It is seen in Fig. 7(a) that JCD3TM can predict the energy
flux structure functions very well when p < 3, especially in
the inertial subrange (65 < §/¢ < 115), and behaves with the
same tendency as the real SGS stress for p > 3 despite the
overestimated values of the structure functions. Both DMHM
and DSM fail to predict the inertial-range structure functions
of the energy flux for all p’s [see Figs. 7(b) and 7(c)].

Similarly, we show in Fig. 8 the corresponding mo-
ments of the normalized helicity flux of different orders
(18211 /u’)P/3) as functions of the filter scale 8. It is obvious
that JCD3TM can simulate the helicity flux structure functions
accurately up to the third order, but tends to give much
higher values of the higher-order (p > 3) structure functions.
However, the curves given by DMHM and DSM deviate
strongly from those by the real SGS stress, especially for large
p’s as can be seen in Figs. 8(b) and 8(c).

B. A posteriori tests

The proposed SGS model (JCD3TM) was then tested a
posteriori in LES of helical 3D incompressible homogeneous
isotropic turbulence subject to external forcing. The results are
compared with those from LESs using the other two models

FIG. 6. (Color online) Instantaneous isosurfaces of the SGS helicity fluxes 1% calculated by: (a) real SGS stress, (b) JCD3TM, and

(c) DMHM for the filter width A = 80¢.
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FIG. 7. (Color online) Moments of the normalized energy flux
of order p/3 as functions of the filter scale §/¢: (a) JCD3TM, (b)
DMHM, and (c) DSM. The model-predicted moments are denoted
by dashed lines, and the real moments by solid lines. The inertial

range of energy flux is located in the range 65 < §/¢ < 115. u’ is the
r.m.s. velocity.

and DNS. In LES, the filtered Navier-Stokes equations (1)
and (2) are numerically solved with the SGS stress term t;; re-
placed by the models under consideration. The computational
parameters are the same as those used in DNS mentioned in
Sec. III B. The grid resolution is 64°.

In Fig. 9, we plot the energy spectra from LESs using
various SGS models and the spectrum from DNS. Note that
all the spectra shown here are obtained by averaging the
simulated spectra over at least two large-eddy turnover times
after the systems reach statistically steady state. It is seen
that JCD3TM can accurately predict the energy spectrum for
almost all wave numbers. DMHM and DSM, however, give
similar spectral energy distribution, overestimating the energy
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FIG. 8. (Color online) Moments of the normalized helicity flux
of order p/3 as function of the filter scale §/¢: (a) JCD3TM, (b)
DMHM, and (c) DSM. The model-predicted moments are denoted
by dashed lines, and the real moments by solid lines. The inertial
range of energy flux is located in the range 65 < §/¢ < 115. u’ is the
r.m.s. velocity.

spectrum in the low-wave-number range and underestimating
the spectrum close to the grid scale. Therefore, the inclusion of
the helical term in the dynamic two-term model makes subtle
changes to the energy spectrum as compared with traditional
DSM.

Shown in Fig. 10 are the helicity spectra from LESs using
various SGS models in comparison with that from DNS. It
is obvious that the spectrum predicted by JCD3TM coincides
well with the DNS data tightly in most of the wave numbers.
Within the low-wave-number range (i.e., k & 3-9), the helicity
spectra given by DMHM and DSM are higher than that
from DNS, and, near the grid scale, DMHM overestimates
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FIG. 9. (Color online) Energy spectra from LESs using different
SGS models: JCD3TM (dashed line), DMHM (line with squares),
and DSM (line with triangles). The energy spectrum from DNS (bold
solid line) is plotted for comparison.

seriously the SGS dissipation, resulting in low spectral helicity
distribution. Hence, DMHM is more dissipative than DSM in
the case of a helical isotropic turbulence.

From Figs. 9 and 10, we acknowledge that the single
Smagorinsky model tends to overrate the SGS energy dis-
sipation, but underrate the SGS helicity dissipation, and that
the two-term helical model would tend to overrate both the
SGS energy dissipation and the SGS helicity dissipation. The
introduction of the nonlinear term and the joint constraint of
the SGS dissipation rates of energy and helicity remedies these
deficiencies effectively.

Kurien et al. [25] suggested that helicity should have an
effect on the long-term dynamics because the time scale for
helicity transfer (ty; ~ [4|H (k)|k*]~'/?) can remain compara-
ble to the time scale for energy transfer (tz ~ [E(k)k®]~'/?)
even for small eddies of size 7 /k. The ratio of tg to Ty is
measured by the square root of the spectral relative helicity
[|H(k)|/2kE(k)]1/2. In Fig. 11, we display the distribution of
time-averaged spectral relative helicity (H (k)/2k E(k)) with
respect to the wave number k calculated using the LES and
DNS data. For the joint cascade of energy and helicity, the

10’ 10?
k

10°

FIG. 10. (Color online) Helicity spectra from LESs using differ-
ent SGS models: JCD3TM (dashed line) DMHM (line with squares),
and DSM (line with triangles). The helicity spectrum from DNS (bold
solid line) is shown for comparison.
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FIG. 11. (Color online) Distribution of time-averaged spectral
relative helicity (H(k)/2kE(k)) as function of the wave number k
from LESs using different SGS models: JCD3TM (dashed line),
DMHM (line with squares), and DSM (line with triangles). The
result from DNS (bold solid line) is plotted for comparison. The
dashed-double dotted line represents a power law (~ k~') scaling
behavior.

spectral relative helicity is expected to scale as k~! in the
inertial subrange [7,25]. It seems that DSM overestimates the
relative helicity in the high-wave-number range, while both
JCD3TM and DMHM underestimate it in the range close
to the grid scale. The small-scale behavior of the relative
helicity is highly associated with the spectral distributions of
kinetic energy and helicity in the vicinity of the grid scale.
However, the improvement in energy and helicity spectra does
not necessarily imply the corresponding improvement in the
spectral relative helicity, and vice versa. For example, both
the energy and helicity spectra are underpredicted in the small
scales by use of the DMHM. In the LES using the JCD3TM, the
energy spectrum is identical to the DNS spectrum, while the
helicity spectrum is a little bit underrated near the grid scale.
Nevertheless, the relative helicity distributions given by these
two models almost coincide with each other in the vicinity of
the grid scale. It can also be seen that the result from JCD3TM
displays a clear k~! scaling law range (5 < k < 15) and is
much closer to the DNS result in comparison with the other
two models.

The most commonly invoked high-order statistics, which
pertain to the turbulent motions of inertial-range scales, are
the so-called longitudinal velocity structure functions SX(r) =
([u1(x; + eyr,t) — uy(x;,1)"), where r is the separation dis-
tance and e is the unit vector in the x; direction. In order to test
the performance of the proposed and evaluated SGS models in
predicting high-order statistics, the moments of longitudinal
velocity difference for various separation distances r are
calculated using the LES data and filtered DNS data. Shown
in Figs. 12(a), 12(b), and 12(c) are the longitudinal velocity
structure functions of order 4, 6, and 8, respectively, as
functions of the separation distance. It is noted that, when
r > 3A, the curves predicted by JCD3TM almost coincide
with the DNS data, while both DMHM and DSM show a
tendency to underpredict slightly the DNS values, especially
for large separation distances. When the separation distance
approaches the grid scale, all three models fail to capture
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FIG. 12. (Color online) High-order moments of longitudinal ve-
locity difference (SE) as functions of the separation distance r: (a)
n =4, (b)n = 6, and (c) n = 8. The horizontal axes are normalized
by the LES grid scale A, and the vertical axes by (S)"/2.

the high-order statistics, seriously underrating the structure
functions in comparison with the DNS values.

High-order central moments provide us with statistical
information on the spatial (or temporal) distribution of
turbulent fluctuations about the mean value in the corre-
sponding PDF. The most widely studied are the normal-
ized moments of the longitudinal velocity derivative M, =
((Qu1/0x1)")/{(du1/dx1)*)"/%. The skewness factor S = M;
measures the production rate of vorticity by the vortex-

PHYSICAL REVIEW E 89, 043021 (2014)

stretching process and the degree of irregularity of the turbulent
fluctuations. The kurtosis (or flatness) factor K = My is
another dimensionless metric for quantifying the degree of
non-Gaussianity (or intermittency) of turbulence in the flow.
For a symmetric Gaussian distribution, S = 0 and = 3. A
nonzero S and a value of U more than 3 are attributed to
peaky signals associated with intermittent turbulent events.
Homogeneous isotropic turbulence is characterized by a nega-
tive skewness factor (S < —0.3) and a positive flatness factor
(K 2 4) [61]. Although Kolmogorov’s hypotheses suggest
that S and K are universal constants, numerical simulations
and experimental measurements reveal that both S and X
are Reynolds number dependent [61-63]. In order to assess
the properties of the flow fields predicted by different SGS
models, the skewness and flatness factors are calculated based
on the velocity fields of driven helical isotropic turbulence
obtained in LESs using JCD3TM, DMHM, and DSM. Listed
in Table I are the skewness and flatness factors for different
simulations. For comparison purpose, the results based on the
DNS and filtered DNS fields are also presented. It is found
that the skewness factor calculated based on the DNS data is
about —0.53, which is consistent with the result of Ishihara
et al. [61] with S ~ —(0.32 F 0.02)Re) "' *=*%! at the present
Reynolds number (Re; = 172). Similarly, the flatness factor
is about 6.33 and is also in good accordance with the fitted
formula K ~ (1.14 F 0.19)Re)-***%_ All the models under
consideration fail to capture these two high-order moments.
This result is not surprising because the velocity-derivative
moments pertain to the dissipative range of turbulence. The
velocity derivative fields of LES are much less intermittent
than those of DNS. This argument is supported by the
corresponding skewness and flatness factors of the filtered
DNS fields. It can also be seen that the JCD3TM is superior
over the other two models in capturing the statistical property
of the turbulent fluctuations, and the predicted values of S and
IC are closest to those of the filtered DNS fields.

The performance of the new SGS model is further evaluated
in LES of freely decaying helical isotropic turbulence. For
this purpose, the initial condition is obtained by truncating
a statistically steady DNS velocity field (in Fourier space)
at the LES grid scale, and the large-scale forcing term in
Eq. (2) is turned off. The results for JCD3TM are compared
with those from the other two models and DNS. We show
in Figs. 13(a), 13(b), and 13(c) the energy spectra at three
successive times t =0, 679, and 127y (with 7y being the
initial large-eddy turnover time) predicted by LESs using
JCD3TM, DMHM, and DSM, respectively. The corresponding
results from DNS are also plotted in each panel. As can
be seen, JCD3TM predicts the evolution of energy spectra
more accurately than DMHM and DSM. As in the case of

TABLE 1. The skewness and flatness factors of the longitudinal velocity derivative obtained in DNS and LES by use of different SGS

models.

Simulation method

DNS Filtered DNS LES-JICD3TM LES-DMHM LES-DSM
Skewness factor S —0.53 —0.44 —0.36 —0.31 —0.31
Flatness factor K 6.33 3.90 3.78 3.55 3.52
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FIG. 13. (Color online) Evolution of energy spectra for freely
decaying helical isotropic turbulence at three successive times t = 0,
6719, and 127, (dashed lines): (a) JCD3TM, (b) DMHM, and (c) DSM.
The DNS results (solid lines) are also plotted as reference. 1y is the
initial large-eddy turnover time.

forced helical turbulence, DMHM and DSM are likely to
overestimate the energy spectra in the low-wave-number range
and underestimate them near the grid scale. Similarly, we
display in Figs. 14(a), 14(b), and 14(c) the development of
helicity spectra obtained in LESs utilizing the three SGS
models. The DNS results are also presented for reference.
The oscillations in the small-scale range of helicity spectra are
caused by the pseudoscalar property of the local helicity. It is
obvious that JCD3TM behaves much better than DMHM and
DSM in predicting the helicity spectra as the turbulence decays
progress. Therefore, it is inferred that the joint-constraint
dynamic model can preserve its superiority in studying
decaying helical turbulence as long as the scale-invariance of
the models coefficients is approximately satisfied at the LES
grid scale.
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FIG. 14. (Color online) Evolution of helicity spectra for freely
decaying helical isotropic turbulence at three successive times ¢ = 0,
679, and 127, (dashed lines): (a) JCD3TM, (b) DMHM, and (c) DSM.
The DNS results (solid lines) are also plotted as reference. 1 is the
initial large-eddy turnover time.

IV. CONCLUSION AND DISCUSSION

In this paper, a joint-constraint dynamic three-term model
(JCD3TM) is presented for large-eddy simulation (LES) of
helical turbulent flows. In the light of previously reported SGS
models, the new model is designed to include a Smagorinsky-
Lilly term, a nonlinear (velocity gradient) term, and a helical
(symmetric vorticity gradient) term in order to incorporate
the advantages from the three types of models, such as the
properties of sufficient SGS dissipation and high correlation.
Encouraged by the pioneer works of Shi er al. [46] and of
Yu and Xiao [54], we introduce a joint constraint of the SGS
energy and helicity fluxes to optimize the dynamic process for
determining the model coefficients, according to the argument
that helicity cascades linearly with energy in the inertial
subrange of helical turbulence [21,22].
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The inertial-range scale invariance of the model coefficients
is validated a priori through investigating the fractional contri-
bution of each term to the total SGS dissipations of energy and
helicity. The performance of the proposed JCD3TM is tested
both a priori and a posteriori in helical isotropic turbulence.
The results are compared with those given by the dynamic
mixed helical model (DMHM) introduced by Li et al. [53] and
the traditional dynamic Smagorinsky model (DSM). In a priori
tests, JCD3TM shows evident improvements in predicting
probability density functions (PDFs) of the SGS stresses,
energy and helicity fluxes, the spatial structures of energy
and helicity fluxes, etc., in contrast with DMHM and DSM.
In a posteriori tests, the LES using JCD3TM can predict the
energy and helicity spectra more accurately than those using
DMHM and DSM for both forced and freely decaying helical
turbulence. JCD3TM also exhibits expected superiority over
DMHM and DSM in calculating the high-order statistics of the
two-point velocity difference, the energy and helicity fluxes,
etc. It is noted that the dynamic three-term model (D3TM)
without constraints achieves small improvement as compared
with DMHM and DSM. The success of JCD3TM is ascribed to
the comprehensive effects of the joint physical constraints and
the proper combination of the celebrated model formulations.
This work further manifests that the inclusion of physical
constraint in the SGS modeling is of crucial importance for
LES of turbulent flows.

It should be mentioned that the proposed model is still
preliminary as it is, and the application of the model to
numerical simulation of helical flows with complex geometry
and engineering background is subject to further study. For
example, the contribution of the nonlinear term in JCD3TM

PHYSICAL REVIEW E 89, 043021 (2014)

can be different when the proposed model is applied to
simulating flows in different frames of reference. The present
form of the model is not expected to perform better than
other previously reported models when employed to simulate
rotating turbulence. To account for the rotation effect induced
by the Coriolis force, the velocity gradient tensor needs to be
modified according to the angular velocity of the reference
frame. Another issue may arise when the current model
is applied to simulating turbulent flows at low Reynolds
numbers or subject to wall boundary confinement, in which the
scale-invariance assumption of the joint constraint (as well as
the model coefficients) will usually be broken in the near-wall
region or the whole flow domain. A scale-dependent (or a mesh
Reynolds number-dependent) constraint for the SGS modeling
needs to be raised in order for the present model to be able to
mimic the low Reynolds number effect. This subject is worthy
of further and more detailed research.
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