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Abstract The Boltzmann–Bhatnagar-Gross-Krook (BGK)
model is investigated for its validity regarding the collision
term approximation through relaxation evaluation. The eval-
uation is based on theoretical analysis and numerical com-
parison between the BGK and direct simulation Monte Carlo
(DSMC) results for three specifically designed relaxation
problems. In these problems, one or half component of the
velocity distribution is characterized by another Maxwellian
distribution with a different temperature. It is analyzed that
the relaxation time in the BGK model is unequal to the
molecular mean collision time. Relaxation of component
distribution fails to involve enough contribution from other
component distributions, which makes the BGK model un-
able to capture details of velocity distribution, especially
when discontinuity exists in distribution. The BGK model,
however, predicts satisfactory results including fluxes during
relaxation when the temperature difference is small. Partic-
ularly, the model-induced error in the BGK model increases
with the temperature difference, thus the model is more reli-
able for low-speed rarefied flows than for hypersonic flows.
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1 Introduction

The Boltzmann equation describes the fundamental and gen-
eral microscopic behavior of a dilute gas, which forms the
basis of the kinetic theory of gases [1]. The nonlinear mul-
tidimensional integral collision term in the equation makes
the full Boltzmann equation difficult to be solved. Thus,
simple expressions have been proposed to replace the col-
lision integral [2–6], and the resulting equation is called a
model equation or kinetic model. A kinetic model enables
the macroscopic laws to be derived from elementary princi-
ples and allows to deduce transport coefficients, which has
arose renewed interests in the solution of model equations in
recent years [7–11].

The most popular and widely used kinetic model is the
Bhatnagar-Gross-Krook (BGK) model in which the colli-
sion term is replaced with a simple relaxation expression [2].
It is assumed that the net effect of collisions makes the
velocity distribution function relax toward a local equilib-
rium distribution over a characteristic time. This treatment
greatly simplifies the Boltzmann equation but produces an
inaccurate Prandtl number (it is unity rather than 2/3 for
monatomic gases). To fix the Prandtl number in the BGK
model, many modified models have been proposed, includ-
ing the ellipsoidal-statistical (ES)–BGK model [3] and the
Shakhov model [4].

However, it is hard to validate the BGK-type model the-
oretically. Studies have been focused on numerical evalua-
tion on test problems. For instance, Kumar et al. [12] as-
sessed the BGK approaches for near continuum nozzle flows,
and the solutions of the BGK equations were found to be
in good agreement with the direct simulation Monte Carlo
(DSMC) results. Andries et al. [13] showed that the ES–
BGK solutions agreed well with the DSMC results for pla-
nar Couette flow and for supersonic flow over a flat plate
when the Knudsen (Kn) number is less than 0.01. For large
Knudsen number flows, however, the accuracy of BGK mod-
els was found to be poor. Mieussens and Struchtrup [14]
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compared several BGK-type models for Couette flow and
stationary shock wave problems. They concluded that all
BGK models with proper Prandtl number were accurate in
the continuum regime, qualitatively good in the transitional
regime and inaccurate at large Knudsen numbers and for
shock structures. This observation can be applied to nearly
all test problems in the literature until recently when Xu et
al. [15] developed a unified gas-kinetic scheme and showed
that the unified scheme was a reliable and accurate solver
for low speed non-equilibrium flows [16]. Their observation
seems to be inconsistent with previous findings.

Up to now, BGK models have been evaluated using spe-
cific test problems with different numerical schemes. Be-
cause schemes will more or less cause numerical error when
the model equation is solved, it is hard to tell whether any
error in a numerical solution comes from the approximation
of the BGK model or from the numerical scheme or from
both. In this paper, validity of BGK model will be evaluated
by comparing its exact solution to Boltzmann result for sev-
eral designed relaxation problems. Detailed evaluation will
pay attention to velocity distribution function, macroscopic
properties, and fluxes. Effects of the extent of deviation from
equilibrium on the model validity will also be investigated.

2 Theoretical analysis

2.1 BGK model

The BGK model is a kinetic model proposed by Bhatnagar
et al. [2] as an approximation to the Boltzmann equation

∂ f
∂t
+VVV · ∂ f

∂rrr
+

FFF
m
· ∂ f
∂VVV
= ν( fM − f ), (1)

where f is the molecular velocity distribution function, a
function of time t, position rrr and velocity VVV . FFF is the ex-
ternal force. The right hand side is the collision term, which
is modeled as a relaxation process with an equilibrium dis-
tribution fM and a relaxation rate ν. This expression is much
simpler than its Boltzmann counterpart

[
∂ f
∂t

]
coll
=

∫ ∞
−∞

∫ 4π

0
( f ∗ f ∗1 − f f1)|v − v1|σdΩdv1. (2)

Here, distribution function f and f ∗ are evaluated at
molecule’s pre-collision velocity v and post-collision veloc-
ity v∗, whereas f1 and f ∗1 are evaluated at collision partner’s
pre-collision velocity v1 and post-collision velocity v∗1, re-
spectively. In addition, σ is the collision cross section of
collision pair and Ω is the solid angle.

It is well known that the collision term approximation
is accurate when the relaxation rate is infinite or zero be-
cause the collision term vanishes in both cases. For gen-
eral flow description, the BGK model is approximate since
details of two-body interactions are ignored in the collision
term. The relaxation rate is determined as ν = p/μ in order
to satisfy the Navier–Stokes equation when it is derived from
the BGK model using the Chapman–Enskog expansion [17].

However, the BGK model has only one free parameter, it is
impossible to simulate all physical properties such as ther-
mal conductivity and self-diffusion. Therefore, additional
parameters are required for extended BGK models to sim-
ulate correctly the physical properties of a gas flow. For in-
stance, the ES–BGK model includes a Prandtl number as a
free parameter to capture the heat flux.

It should be noticed that the relaxation rate in the BGK
model is not the same as the collision rate. The collision rate
can be evaluated using kinetic theory [11, 18]. It is veloc-
ity independent for Maxwell molecule (μ ∝ T ) and has the
general expression

νc =
(α + 1)(α + 2)p

3αμ
, (3)

where α is the angular scattering exponent. For isotropic
scattering (α = 1.0), νc = 2ν. For monatomic gas (α = 2.14),
νc ≈ 2ν. Clearly, the collision rate is generally larger than the
relaxation rate though molecular model will slightly affect
the value of the collision rate.

It is interesting to note that Vincenti and Kruger [11] re-
lated ν f to the depleted term f f1 and ν fM to the replenished
term f ∗ f ∗1 by comparing the physical form of the BGK and
Boltzmann collision terms. They argued that the assump-
tion for the replenished term to be equal to ν fM could be
considered equivalent to this approximation: The molecules
after a collision were instantaneously accommodated to a lo-
cal Maxwellian distribution. Since a pair of collide particles
are not aware of the local macroscopic temperature, such ap-
proximation is questionable. In fact, the depleted term in
the Boltzmann equation can be easily evaluated for Maxwell
molecules (σ ∝ |v − v1|−1)
∫ ∞
−∞

∫ 4π

0
f f1 |v − v1|σdΩdv1 = νc f . (4)

This means that the depleted term f f1 corresponds
to νc f instead of ν f . Then the replenished term f ∗ f ∗1
corresponds to (νc − ν) f + ν fM if the BGK model is fol-
lowed. Namely, the replenished term f ∗ f ∗1 corresponds to
νc( fM + f )/2. This approximation of the replenished term
indicates that molecules after a collision are accommodated
to the average of own pre-collision and local equilibrium dis-
tribution instead of fully local Maxwellian distribution. This
sounds more reasonable than the original interpretation [17].

However, it is difficult to establish a precise relationship
between the Boltzmann collision integral and BGK collision
model. Theoretical validation of BGK models is usually per-
formed in the frame of the Navier–Stokes equation. General
requirements are the conservation law, H-theorem, correct
viscosity and thermal conductivity, and positive distribution.
These requirements, however, can not cover features of the
Boltzmann collision integral in the entire flow regime. Al-
though BGK models have the potential to predict correct val-
ues for macroscopic quantities, they may not produce exact
microscopic velocity distribution.
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2.2 Relaxation solution

BGK models replace the Boltzmann collision term with a
simple relaxation expression. This relaxation expression
then determines the validity of BGK model. Analyzing the
relaxation process of the distribution function is probably the
best approach to validate the model.

The relaxation process in the BGK model is governed
by

∂ f

∂t
= ν( fM − f ), (5)

where the convection and acceleration terms are neglected.
This equation can be integrated explicitly [19]

f (t) = g + e−νt( f (0) − g), (6)

where g = fM is the Maxwellian distribution. Thus given
the initial condition of distribution, its time evolution can be
exactly calculated for the BGK equation.

With the velocity distribution function, it is conve-
nient to calculate moments of the distribution. In particular,
the component velocity distribution function can be derived
from Eq. (6) by integrating the other two velocity spaces. For
instance

fx(t) =
∫ ∞
−∞

∫ ∞
−∞

f dVydVz =gx + e−νt( fx(0) − gx). (7)

This expression shows that the x-component veloc-
ity distribution depends only on the initial and final x-
component velocity distribution as time proceeds. Clearly,
details of the other components have no impact on the x-
component velocity distribution other than effects through
the equilibrium distribution. This obviously causes error be-
cause many different initial distributions can lead to the same
equilibrium distribution. The error is difficult to be quanti-
fied theoretically, however. An alternative way is to compare
numerical solutions of BGK model and Boltzmann equation.

2.3 DSMC method

Although the Boltzmann equation is difficult to solve, nu-
merical solution of the Boltzmann equation can be eas-
ily obtained for the relaxation problem using the DSMC
method [18].

The DSMC method is a particle simulation ap-
proach that tracks the motion and collisions of microscopic
molecules. It follows the statistical physics of binary colli-
sions and assumes that motion and collisions can be decou-
pled during a very short time. The solution obtained using
the DSMC method has been proved by Wagner [20] to be
consistent with the solution of the Boltzmann equation for a
monatomic gas.

A valid DSMC simulation has strict computational re-
quirement because its numerical error mainly comes from
the time step, cell size, number of particles per cell, and the
sample size. For instance, Rader et al. [21] showed that the
numerical error in thermal conductivity for Fourier heat flow
of hard sphere gas was about 0.040 5 (Δx/λ)2 due to the cell

size, 0.028 7 (Δt/τ)2 due to the time step, and 0.083/Nc due
to the number of particles per cell, where λ is the mean free
path and τ is the mean collision time. The statistical error due
to a limited sample size is proportional to 1/

√
Ns for flow

properties such as velocity, density, and temperature [22],
where Ns can be enlarged using ensemble average.

In this paper, the standard DSMC algorithm is im-
plemented [18]. For instance, the no-time-counter (NTC)
method is used to select particles for collisions. Because
the relaxation rate in the BGK model is independent of the
molecular velocity, the Maxwell molecular model is em-
ployed for DSMC simulations. In addition, DSMC simula-
tions use isotropic scattering for post-collisions as the BGK
model has no specification for self-diffusion. For relaxation
problems, simulated gas is argon. Its molecular diameter is
0.459 nm at 273 K to match the viscosity of 21.17μPa·s. The
time step is fixed at 0.01τ and totally 8 × 106 particles are
simulated. With this specification, the numerical error from
a DSMC simulation is negligible, and the obtained DSMC
results can be treated as Boltzmann solution.

3 Numerical comparison of nonequilibrium relaxation

In order to illustrate the validity of the BGK model, three
kinds of relaxation problems are designed. The first is an
anisotropic Maxwellian distribution. Specifically, the dis-
tribution for each velocity component is Maxwellian, but
has different temperature value. The second is double half-
normal distribution. That is, a full distribution is comprised
of two half-normal distributions in one velocity space, and
the distributions in the other velocity spaces are Maxwellian.
This test case is used to show the development of discontinu-
ity in the distribution. The third is a tailored half-Maxwellian
distribution. This is similar to the second case except that the
discontinuity is removed by adjusting the amplitude of half
distributions. It is a rather general case in which the distribu-
tion is continuous and asymmetric.

For the sake of easy comparison, the default
Maxwellian distribution is specified at a temperature of
273 K with a mean velocity of zero. The initial differ-
ence for relaxation is realized by setting one-component or
half Maxwellian distribution using a temperature other than
273 K. The extent of deviation from the equilibrium depends
on the temperature difference. For this purpose, four values
(373 K, 546 K, 1 365 K, and 2 730 K) are used as the other
temperature.

3.1 Relaxation of anisotropic Maxwellian distribution

The anisotropic Maxwellian distribution is specified as fol-
lows

f (0) =
β1√
π

exp(−β2
1u2)

β2√
π

exp(−β2
2v2)
β2√
π

exp(−β2
2w2), (8)

where βi =
√

m/(2kTi). The macroscopic temperature is the
average of component temperatures, which is constant dur-
ing the relaxation.
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Figure 1 shows the x-component velocity distribution
functions at several time moments where the BGK solution
and DSMC results are compared. During the relaxation pro-
cess, the maximum probability density increases and the dis-
tribution width decreases with the time, because the initial
temperature T1 is larger than 273 K. It seems that an equilib-
rium state is nearly reached at t = 5τ. In general, the agree-

ment between BGK and DSMC results is satisfactory dur-
ing the entire relaxation process. Slight difference, however,
is observed when T1 is increased from 546 K to higher val-
ues during the nonequilibrium stage. Particularly, the BGK
model overpredicts the maximum probability density, and
the error is proportional to the inital temperature difference.

Fig. 1 Comparison of x-component velocity distributions during relaxation of anisotropic Maxwellian distribution for T2 = 273 K with
T1 = 373 K, 546 K, 1 365 K, or 2 730 K. Solid lines are exact BGK solution and symbols represent DSMC results. a t/τ = 0; b t/τ = 0.2;
c t/τ = 1.0; d t/τ = 5.0

3.2 Relaxation of double half-normal distribution

The double half-normal distribution is designed as

f (0) =
[
β1√
π

exp(−β2
1u2)
∣∣∣∣∣
u<0
+
β2√
π

exp(−β2
2u2)
∣∣∣∣∣
u�0

]

× β2√
π

exp(−β2
2v2)
β2√
π

exp(−β2
2w2). (9)

Here the x-component distribution is comprised of two half-
normal distributions. This is a distribution having a dis-
continuity in the velocity space. Similar discontinuity can
be found in collisionless flow between two parallel plates
with different temperatures and collisionless jet impinge-
ment problems [23]. It can be derived that the x-component

mean velocity is

U =

√
k

2πm

(√
T2 − √T1

)
, (10)

and the macroscopic temperature is

T =
1
3

[T1 + T2

2

(
1 − 1
π

)
+

√
T1T2

π
+ 2T2

]
. (11)

Figure 2 shows the probability density for the x-
component velocity at several time moments. Again, the
DSMC and BGK results are plotted for four values of initial
temperature T1. Because of initial discontinuity, the proba-
bility density shows different profile on the two sides. When
Vx > 0, the BGK results generally agree with DSMC re-
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sults except for some difference near the discontinuity. When
Vx < 0, however, there is significant difference during the re-
laxation process. For instance, when t = 1.0τ, the probabil-
ity density monotonically increases with the velocity in the
DSMC results whereas the BGK profile depends on the ini-

tial temperature. When T1 = 373 K, the BGK result agrees
well with the DSMC result. But when T1 = 1 365 K or
2 730 K, the BGK profile has a sharp decrease near the dis-
continuity. This behavior of BGK results is not surprising as
the relaxation in BGK follows Eq. (7).

Fig. 2 Comparison of x-component velocity distributions during relaxation of double half-normal distribution for T2 = 273 K with
T1 = 373 K, 546 K, 1 365 K, or 2 730 K. Solid lines are exact BGK solution and symbols represent DSMC results. a t/τ = 0; b t/τ = 0.2;
c t/τ = 1.0; d t/τ = 5.0

Figure 3 illustrates the evaluation of BGK results at
t = 1.0τ. Using Eq. (7), the instantaneous distribution (solid
cyan line) from BGK model is the combination of the initial
(dashed red line) and final (dash-dot blue line) distributions.
The local minimum near the discontinuity in BGK solution
is actually unreasonable. The DSMC results (black symbol)
show that the y- and z-component distributions (dashed green
line) have obvious contribution to the x-component, which
indicates the failure of BGK in this aspect.

3.3 Relaxation of tailored half-Maxwellian distribution

The tailored half-Maxwellian distribution is designed as fol-
lows

f (0) =
2√
π

β1β2

β1 + β2

[
exp(−β2

1u2)
∣∣∣
u<0
+ exp(−β2

2u2)
∣∣∣
u�0

]

× β2√
π

exp(−β2
2v2)
β2√
π

exp(−β2
2w2). (12)

Fig. 3 Comparison of velocity distributions between BGK and
DSMC results at t = 1.0τ with initial component distributions and
final equilibrium distribution for the double-half distribution case
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This is a smooth distribution for the x-component veloc-
ity but the semi-width of each half is different. The x-
component mean velocity is

U =

√
2k
πm

(√
T2 − √T1

)
, (13)

and the macroscopic temperature is

T =
1
3

[(
1 − 2
π

)
(T1 + T2) +

( 4
π
− 1
)√

T1T2 + 2T2

]
. (14)

Figure 4 shows the probability density for the x-
component velocity at several time moments. Clearly, the
initial distribution is asymmetric, especially when T1 is
larger than 1 000 K. The general agreement between BGK
and DSMC results is satisfactory during the entire relax-
ation process. However, slight difference is observed during
the non-equilibrium state, which is similar to the anisotropic
case. In addition, this difference increases with the initial
temperature disparity.

Fig. 4 Comparison of x-component velocity distributions during relaxation of tailored half-Maxwellian distribution for T2 = 273 K with
T1 = 373 K, 546 K, 1 365 K, or 2 730 K. Solid lines are exact BGK solution and symbols represent DSMC results. a t/τ = 0; b t/τ = 0.2;
c t/τ = 1.0; d t/τ = 5.0

3.4 Discussions

Since the BGK model is an approximate model, it is not
surprising to have error in the velocity distribution func-
tion. The current comparison between BGK and DSMC re-
sults, however, shows that the BGK model predicts unex-
pected good relaxation history for the anisotropic distribu-
tion and tailored half-Maxwellian distribution cases. In fact,
the model-induced error is negligible when the difference in
initial distribution is small (say T1 < 2T2), and the error in-
creases when the initial difference is enlarged. For the dou-
ble half-normal distribution case, the model-induced error is
relatively large because there is discontinuity in the initial

distribution. The general behavior of model-induced error
for this case is the same as the other two cases. Based on
this fact, it is reasonable to argue that the BGK model works
well for near-equilibrium distributions and shows a model-
induced error that increases with the extent of deviation from
equilibrium. This means that the BGK model can work well
for low speed flows even when the flow Knudsen number is
larger than 1, and it may fail to predict hypersonic flow even
when Kn is less than 0.1, because the distribution function
deviates more from local Maxwellian for hypersonic flow
than for low-speed flow at the same Knudsen number.

The current comparison focuses only on Maxwell
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molecular model. For other molecular model such as vari-
able hard sphere (VHS) model, the BGK model needs only
to adjust its relaxation rate. The model-induced error, how-
ever displays the same general behavior though small dis-
parity is observed in DSMC results when molecular model
changes. Particularly, the scattering exponent in molecular
collision model has little effect on the distribution function
in the current cases.

4 Validity analysis of BGK results

Comparison of velocity distribution function can provide
overall difference between BGK and DSMC results. Since
the shape of distributions can be quantified using central mo-
ments, it is useful to show the error in shape factors. In addi-
tion, macroscopic information may be more useful for engi-
neering purpose. Therefore, distribution functions are inte-
grated to make further comparison. The case of tailored half-
Maxwellian distribution is employed to analyze the BGK va-
lidity because the general behavior is similar in all test cases.

4.1 Shape of the velocity distribution function

A velocity distribution function can be characterized by its
central moments. Knowing the first few moments of the
function gives a rough idea of the shape. The complete set of

moments is equivalent to knowing the function. The central
moments are defined as

(u′)n =

∫ ∞
−∞

(u′)n f (u′)du′, (15)

where u′ = u − u. Thus the first moment (u′)1 = 0. The
second moment (u′)2 = σ2 is called the variance of u and
σ is called the standard deviation or the root mean square
fluctuation value of u. This moment gives indication of the
relative width of the distribution function. The third moment
is usually expressed in the form of skewness S = (u′)3/σ3.
Physically, S gives an indication of the degree of asymmetry
for a distribution. The fourth moment is given in the form of
kurtosis or flatness of the function K = (u′)4/σ4. K gives an
indication of how much of the area is the tails of the distri-
bution function. For a Maxwellian or Gaussian distribution,
σ = 1/(

√
2β) and is the half-width at the e−0.5 (∼ 0.607)

point, S = 0, and K = 3.
For relaxation problems, explicit expressions can be de-

rived for distribution moments in BGK (see Appendix). Fig-
ure 5 shows the central moments (second, third, and fourth)
of the velocity distribution as a function of time. Clearly, the
agreement between BGK and DSMC results of the second
central moment is satisfactory, whereas the skewness and
kurtosis show some disparity. This shows that the BGK dis-

Fig. 5 Comparison of central moments (second, third, and fourth) of velocity distribution as a function of time between BGK and DSMC
results for tailored half-Maxwellian distribution case. a Second central moment; b Third central moment; c Fourth central moment
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tribution relaxes to symmetric state faster and has larger kur-
tosis than DSMC during the relaxation process. This dispar-
ity increases with the initial temperature difference. Namely,
the disparity is negligible when T1 = 373 K and becomes sig-
nificant when T1 > 1 000 K. It is concluded that BGK model
can predict precisely the second moment of the velocity dis-
tribution, but may not predict properly the higher moments,
especially for strong non-equilibrium cases.

4.2 Macroscopic temperature

During the relaxation process, mass, momentum and energy
are conserved. The component temperature changes with
time due to collisions. In the BGK model, the component
temperature can be evaluated using Eq. (7) as follows

Ti(t) = T + e−νt(Ti(0) − T ). (16)

Figure 6 shows the history of component temperatures
during the relaxation. Clearly, the agreement is excellent be-
tween BGK and DSMC results regardless of the temperature
difference.

4.3 Fluxes

For many numerical schemes in computational simulation,
flux evaluation is critical to the accuracy of a simulation.
For this reason, results of fluxes in the x-direction are evalu-
ated. In addition, half fluxes are compared between BGK
and DSMC results since this information is important for
non-uniform flows.

Figure 7 shows the relaxation of x-component momen-
tum and energy fluxes along the x-direction. The mass flux

is not plotted since it is time independent. It shows that mo-
mentum fluxes are well captured by the BGK model. The
overall agreement in energy flux is also good except that
the BGK relaxation is slightly faster. Unlike disparity in
other comparisons, it seems that difference in the energy flux
does not depend on initial temperature difference (or non-
equilibrium degree). Because the BGK model predicts a
larger Prandtl number (1 > 2/3), the fast relaxation behavior
in BGK should not be the problem due to the Prandtl number
difference. Figure 8 shows the relaxation of half fluxes along
the positive x-direction. Unlike the full flux situation, there
is disparity between BGK and DSMC for mass, momentum,
and energy half fluxes. Again, this disparity depends on ini-
tial temperature difference.

Fig. 6 Relaxation of Tx and Ty predicted using the BGK model and
DSMC simulation for tailored half-Maxwellian distribution case

Fig. 7 Relaxation of momentum and energy fluxes in the x-direction predicted using BGK model and DSMC simulation for tailored
half-Maxwellian distribution case. a x-component momentum flux; b x-part energy flux

4.4 Discussions

This section has compared several integrations of veloc-
ity distribution function between BGK and DSMC. Among
these integrals, the second central moment, the component
temperature, and the moment flux, are all related to integra-

tion of second moments. Thus their behavior is the same
and is well captured by the BGK model. The energy flux
is nearly captured by BGK. Its error is relatively small and
comes from the third moments. This indicates that BGK has
challenge to model correctly higher moments as shown in
skewness and kurtosis.
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Fig. 8 Relaxation of half fluxes (mass, x-component momentum, energy) in the positive x-direction predicted using BGK model and
DSMC simulation for tailored half-Maxwellian distribution case. a Positive x-half mass flux; b Positive x-half x-component momentum
flux; c Positive x-half x-part energy flux

The half flux evaluation is critical for application of the
BGK model. It turns out that BGK results are good when
degree of nonequilibrium (initial temperature difference) is
weak and become worse for stronger nonequlibrium cases.
Notice that velocity distribution function can be far from
Maxwellian as within strong shock wave [18]. This indicates
that the BGK model is more reliable for low-speed flows than
for hypersonic flows.

5 Concluding remarks

In this paper, the validity of the BGK model has been ana-
lyzed and investigated using three relaxation problems. The
BGK solution is accurate and the numerical error in DSMC
results is negligible. Thus the difference between BGK and
DSMC can be regarded as pure model-induced error in BGK.

The BGK model approximates the collision term in
Boltzmann equation with a relaxation expression, which
greatly simplifies the Boltzmann equation. The relaxation
time can be determined using macroscopic properties. It is
related but unequal to the molecular mean collision time, and
the equilibrium part in the BGK model does not correspond
to the replenished part in the Boltzmann collision integral.
It is found that the component distribution function only de-

pends on its initial and final distributions in BGK for relax-
ation problems. Namely, it ignores detailed information of
other component distributions, which makes the BGK model
unable to capture the details of the velocity distribution func-
tion.

However, the BGK model predicts satisfactory results,
including fluxes during relaxation in some situations. For the
present relaxation examples, one or half component of the
velocity distribution is characterized by another Maxwellian
distribution with a different temperature. When the tem-
perature difference is small, the BGK model predicts good
distribution and macroscopic properties. As the relaxation
problem has no direct connection with a particular Knud-
sen number, the BGK model can be applied to rarefied flows
where the velocity distribution is not far from a Maxwellian.
It should be mentioned that the velocity distribution in high
Knudsen number flows such as low-speed rarefied flows may
not have significant difference from a Maxwelian distribu-
tion. Because the model-induced error increases with the
temperature difference in the distribution, the BGK model
is more reliable for low-speed rarefied flows than for hyper-
sonic flows.

The present study is limited to the standard BGK
model. It is expected that modified BGK models with proper
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Prandtl number may have less model-induced error. For
instance, for models with velocity dependent collision fre-
quency, the relaxation of the component distribution function
depends on other component distributions through the re-
laxation time where three velocity components are involved.
The model-induced error, however, will not disappear since
a relaxation approximation can not fully replace the collision
integral.

For engineering applications, velocity distribution
function varies in the flow field and the average deviation
from Maxwellian distributions may be small. In addition,
the convection term also plays an important role in full BGK
equation. It is unclear how model-induced error will develop
in a nonlinear system, and thus how to evaluate effects of this
error in a general BGK simulation is still an open question.
Overall, it should be careful to apply BGK model to rarefied
gas flow simulations.
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Appendix Mathematic expressions integrating velocity dis-
tribution function derived with the BGK model for relaxation
problems

When velocity distribution function is known, the macroscopic
quantities can be integrated over the distribution function. For in-
stance, the average of a physical quantity Q is calculated as

Q =
∫ ∞

−∞
Q f (u)du, (A1)

and the flux of Q is

F(Q) =
∫ ∞

−∞
Qu f (u)du, (A2)

or F+(Q) =
∫ ∞

0
Qu f (u)du. (A3)

For the BGK model, we have explicit expressions for the test
problems, thus we can derive expressions for desired macroscopic
quantities. Here, we give the expressions for the first moment, stan-
dard derivation, third central moment, fourth central moment, flux
and half flux in the x-direction of mass, x-component momentum,
and x-part energy for the tailored half-Maxwellian distribution case

U = u =
1√
π

( 1
β2
− 1
β1

)
, (A4)

σ2 = e−t/τ
[(1

2
− 1
π

)( 1

β2
1

+
1

β2
2

)
+

( 2
π
− 1

2

) 1
β1β2

]

+(1 − e−t/τ)
1

2β2
, (A5)

∫ ∞

−∞
(u − U)3 f du = e−t/τ 1√

π

( 1
β2
− 1
β1

)[( 2
π
− 1

2

)( 1

β2
1

+
1

β2
2

)

−
( 4
π
− 3

2

) 1
β1β2

]
, (A6)

∫ ∞

−∞
(u − U)4 f du =

e−t/τ

4π2

[
(3π2 − 4π − 12)

( 1

β4
1

+
1

β4
2

)

+
48 − 4π − 3π2

β1β2

( 1

β2
1

+
1

β2
2

)

+
3π2 + 16π − 72

β2
1β

2
2

]
+

3(1 − e−t/τ)
4β4

, (A7)

F+ρ
ρ
=

1 − e−t/τ

2

[
U(1 + erf (βU)) +

1

β
√
π

e−β
2U2
]

+
e−t/τβ1

β2(β1 + β2)
√
π
, (A8)

F+ρu
ρ
=

1 − e−t/τ

2

[(
U2 +

1
2β2

)
(1 + erf (βU))

+
U

β
√
π

e−β
2U2
]
+

e−t/τβ1

2β2
2(β1 + β2)

, (A9)

F+
0.5ρu2

ρ
=

1 − e−t/τ

4

[( 3U
2β2
+ U3

)
(1 + erf (βU))

+
1 + β2U2

β3
√
π

e−β
2U2
]
+

e−t/τβ1

2β3
2(β1 + β2)

√
π
, (A10)

Fρ
ρ
= e−t/τ 1

(β1 + β2)
√
π

(
β1

β2
− β2

β1

)
+ (1 − e−t/τ)U, (A11)

Fρu
ρ
=

e−t/τ

2(β1 + β2)

(
β1

β2
2

+
β2

β2
1

)
+ (1 − e−t/τ)

(
U2 +

1
2β2

)
, (A12)

F0.5ρu2

ρ
=

e−t/τ

2(β1 + β2)
√
π

(
β1

β3
2

− β2

β3
1

)
+

1 − e−t/τ

2

( 3U
2β2
+ U3

)
. (A13)
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