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GENERAL SOLUTIONS FOR THREE-DIMENSIONAL
THERMOELASTICITY OF TWO-DIMENSIONAL
HEXAGONAL QUASICRYSTALS AND AN APPLICATION

Lianzhi Yang1�2, Liangliang Zhang1�2, Fan Song3, and Yang Gao1
1College of Science, China Agricultural University, Beijing, China
2College of Engineering, China Agricultural University, Beijing, China
3State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese
Academy of Sciences, Beijing, China

By introducing four displacement functions, the governing equations of the three-
dimensional thermoelasticity of two-dimensional hexagonal quasicrystals are decoupled
into two uncorrelated problems. Two higher-order displacement functions are introduced
to represent the general solutions, which are eighth-order and fourth-order, respectively,
for the two problems. By taking a decomposition and superposition procedure, the
general solutions are further simplified in seven cases in terms of six quasi-harmonic
displacement functions. To show the application of the general solutions obtained, a
closed form solution is obtained for an infinite space containing a penny-shaped crack,
subjected to a uniformly distributed temperature at the crack surface.

Keywords: General solutions; Thermoelasticity; Two-dimensional quasicrystals

INTRODUCTION

Since the first observation of icosahedral quasicrystals (QCs) in Al-Mn alloys
around 1984 [1], the mechanical and thermal properties of QCs have been intensively
investigated in experimental and theoretical analyses [2, 3], which show their
complex structures and unusual properties. Unlike crystals and glassy solids, QCs
have a long-range quasi-periodic translational order and a long-range orientational
order, and process noncrystallo-graphic rational symmetry, e.g., fivefold, eightfold,
tenfold, or twelvefold symmetry axes [4]. All QCs are spatial and of three-
dimensional (3D) bodies [5].

According to the quasi-periodic directions of QCs, there are three kinds
of QCs, which respectively are one-, two-, and three-dimensional QCs. The one-
dimensional (1D) QCs are the ones in which the atom arrangement is quasi-periodic
in one direction and periodic in the other two directions. The two-dimensional
(2D) QCs belong to ones in which the atom arrangement is quasi-periodic in two
directions and periodic in the other one. The 3D QCs behave in such a manner that
the arrangement presents quasi-periodicity in all three directions.
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364 L. YANG ET AL.

Elasticity is one of the most important properties of QCs. Within the
framework of the Landau–Lifshitz phenomenological theory of elementary
excitation of condensed matter, Bak [6, 7] and Levine et al. [8] formulated the elastic
energy theory of the QCs, in which the elastic fields of QCs include the phonon
field and phason field. Phonons are related to translations of atoms (standard
elasticity), while phasons are related to rearrangements of atomic configurations.
Both phonons and phasons are considered as continuous medium filed variables
within the elastic theory of QCs. Ding et al. [9] established the generalized linear
elastic theory of QCs, which provides us with a fundamental theory based on
the notion of a continuum model to describe the elastic behavior of QCs. For
comprehensive and detailed presentation for the linear elasticity of QCs, the review
by Hu et al. [10] and a monograph by Fan [11] are recommended.

General solutions play an important role in the analysis of the initial-boundary
value problems of elasticity, because not only do they have theoretical merits
themselves, they can also be benchmarks to clarify various numerical methods such
as the finite element method and the boundary element method. A review about
the progress in the study of general solutions of elasticity and their application is
presented by Wang et al. [12]. Due to the introduction of phason field, the equations
of QC elasticity are much more complicated than those of classical elasticity
for crystals, and the analytical solutions are difficult to obtain. In recent years,
some mathematical physics methods and function theories, such as the cylindrical
coordinate system, Fourier representations, Hankel transform and operator matrix,
have been used to seek the general solutions of some QCs [13, 14].

An increasing number of QCs with good thermal stability make thermoelasticity
analyses for QCs become increasingly more important. Furthermore, in view of the
fact that the QCs have a potential to be used as the components in drilling and
nuclear storage facilities, it is very necessary to study the influence of temperature on
QCs. For the general solutions of QCs, thermal effort is always beyond the scope of
the studies. Recently, Wang and Zhang [15] have derived the general solutions for
plane-strain thermoelasticity of 2D decagonal QCs; Li and Li [16] have deduced the
general solutions for 3D thermoelasticity of 1D hexagonal QCs.

The general solutions for 3D thermoelasticity of more complicated
configurations of QCs have not been attempted. The purpose of this article is to
develop our previous work for 3D elasticity of 2D hexagonal QCs [14], and to
obtain the general solutions of 3D thermoelasticity for the 2D QCs. To illustrate
the application of the general solutions obtained, a closed form solution is derived
for an infinite thermoelastic space containing a penny-shaped crack with radius a0,
subjected to a uniformly distributed temperature T0 at the crack surface.

BASIC EQUATIONS

A 2D QC is defined as a 3D body of whose atom arrangement is periodic
direction in the x3-axis and quasi-periodic in the x1 − x2 plane referred to a
coordinate system �x1� x2� x3�. There are 10 systems, i.e., triclinic, monoclinic,
orthorhombic, tetragonal, trigonal, hexagonal, pentagonal, decagonal, octagonal
systems and 57 point groups [17]. Among them, six systems and 31 point groups are
of crystal rotational symmetry; four systems and 26 point groups are of non-crystal
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 365

rotational symmetry. The hexagonal system is of crystal rotational symmetry and
consists of two Laue classes, specifically, Laue class 9 and Laue class 10.

The deformed state of the QCs requires a combined consideration of
interrelated phonon and phason fields. In 2D QCs, a phason displacement field
wn �n= 1� 2� exists in addition to a phonon displacement ui �i= 1� 2� 3�. According
to 2D QC linear elastic theory established by Ding et al. [9] , the strain-displacement
relations for 2D QCs are given by

�ij =
(
�jui + �iuj

)
/2� wnj = �jwn (1)

where j= 1� 2� 3, repeated indices imply summation and �j = �/�xj� �ij and wnj

denote the phonon strain and phason strain, respectively.
In the absence of body force, the balance laws require

�j�ij = 0� �jHnj = 0 (2)

where �ij and Hnj , respectively, denote the phonon and phason stresses.
For 2D hexagonal QCs, the point groups 6mm� 622� 6̄m2� 6/mmm belong to

Laue class 10. The linear constitutive equations of the QCs take the following form
[10, 11]:

�11 = C11�11 + C12�22 + C13�33 + R1w11 + R2w22 − �1T

�22 = C12�11 + C11�22 + C13�33 + R2w11 + R1w22 − �1T

�33 = C13�11 + C13�22 + C33�33 + R3w11 + R3w22 − �3T

�23 = �32 = 2C44�23 + R4w23

�31 = �13 = 2C44�13 + R4w13

�12 = �21 = 2C66�12 + R6w12 + R6w21

H11 = R1�11 + R2�22 + R3�33 + K1w11 + K2w22

H22 = R2�11 + R1�22 + R3�33 + K2w11 + K1w22

H23 = 2R4�23 + K4w23

H12 = 2R6�12 + K3w12 + K6w21

H13 = 2R4�13 + K4w13

H21 = 2R6�12 + K6w12 + K3w21

(3)

where C11� C12� C13� C33� C44 represent the elastic constants in phonon field,
K1� K2� K3� K4 are the elastic constants in phason field, R1� R2� R3� R4 are the
phonon-phason coupling elastic constants, �1� �3 are the thermal constants, T is the
variation of the temperature, and 2C66 =C11 −C12� K6 =K1−K2 −K3� 2R6 =R1−R2.
It is noted that the phonon elastic constants in QCs can be measured by some
experimental methods such as X-ray diffractions, neutron scattering and so on
[18–21]. However, the experiments testing the elastic constants of QCs are mainly
concentrated on the decagonal and icosahedral QCs. Up to now, the relevant data
such as phason constants and phonon-phason coupling constants for 2D hexagonal
QCs are still lacking.
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366 L. YANG ET AL.

According to the Fourier law, the relation between the thermal flux vector q
and the temperature T is

q1 = −k11�1T� q2 = −k11�2T� q3 = −k33�3T (4)

where k11 and k33 are coefficients of thermal conductivity.
Assuming that the thermoelastic loading changes slowly with time and without

consideration of the rate of entropy, the uncoupled thermoelastic theory of QCs
is adopted in the following analysis. Consequently, in a steady-state, the heat
conductivity equation is

�1q1 + �2q2 + �3q3 = 0 (5)

Substituting Eq. (4) into Eq. (5), it can be seen that

(
k11�+ k33�

2
3

)
T = 0 (6)

where �= �21 + �22 is the planar Laplacian.
Substituting Eqs. (1) and (3) into Eq. (2), the equilibrium equations expressed

by phonon displacement ui and phason displacement wn can be written as follows:(
C11�

2
1 + C66�

2
2 + C44�

2
3

)
u1 + �C12 + C66� �1�2u2 + �C13 + C44� �1�3u3

+ (
R1�

2
1 + R6�

2
2 + R4�

2
3

)
w1 + �R2 + R6� �1�2w2 − �1�1T = 0(

C11�
2
2 + C66�

2
1 + C44�

2
3

)
u2 + �C12 + C66� �1�2u1 + �C13 + C44� �2�3u3

+ (
R1�

2
2 + R6�

2
1 + R4�

2
3

)
w2 + �R2 + R6� �1�2w1 − �1�2T = 0

�C13 + C44� �1�3u1 + �C13 + C44� �2�3u2 +
(
C44�+ C33�

2
3

)
u3 + �R3 + R4� �1�3w1

+ �R3 + R4� �2�3w2 − �3�3T = 0(
R1�

2
1 + R6�

2
2 + R4�

2
3

)
u1 + �R2 + R6� �1�3u2 + �R3 + R4� �1�3u3

+ (
K1�

2
1 + K3�

2
2 + K4�

2
3

)
w1 + �K2 + K6� �1�2w2 = 0(

R1�
2
2 + R6�

2
1 + R4�

2
3

)
u2 + �R2 + R6� �1�3u1 + �R3 + R4� �2�3u3

+ (
K1�

2
2 + K3�

2
1 + K4�

2
3

)
w2 + �K2 + K6� �1�2w1 = 0

(7)

Introduce displacement functions F , f , G and g to represent the displacement
components in Eq. (7) as

u1 = �1F + �2f� u2 = �2F − �1f

w1 = �1G+ �2g� w2 = �2G− �1g
(8)

The use of the displacement functions in Eq. (8) and temperature T allows us to
reduce the balance Eq. (7) and heat conductivity Eq. (6) to two uncoupled problems,
namely, problem I:

AU = 0 (9)

and problem II:

�A�U = 0 (10)
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 367

where the vectors U = 	F�G� u3� T 

T��U = 	f� g
T (the superscript “T” denotes the

transpose), A and �A are 4× 4 and 2× 2 differential operator matrices, respectively,
such as

A =




C11�+ C44�
2
3 R1�+ R4�

2
3 �C13 + C44� �3 −�1

R1�+ R4�
2
3 K1�+ K4�

2
3 �R3 + R4� �3 0

�C13 + C44���3 �R3 + R4���3 C44�+ C33�
2
3 −�3�3

0 0 0 k11�+ k33�
2
3


 (11)

�A =
[
C66�+ C44�

2
3 R6�+ R4�

2
3

R6�+ R4�
2
3 K3�+ K4�

2
3

]
(12)

In terms of the matrix Eqs. (9) and (10), the equilibrium Eq. (7) and heat
conductivity Eq. (6) are decoupled into two uncorrelated problems: problem I,
associated with displacement functions F�G� u3 and temperature T , and problem II,
associated with displacement functions f and g. It seems to be extremely difficult
to find the solution by means of direct integration due to the complexity of the
equations. Next, we will introduce two displacement functions to simplify the above
complicated equations of the two problems. Furthermore, a decomposition and
superposition procedure is manipulated on the complicated governing equation
expressed by the two displacement functions.

General Solutions of Problem I

By means of the operator method [12, 22], the general solutions of problem
I will be developed. To find out the general solutions of problem I, we introduce
a 4× 4 differential operator matrix B, components Bij of which are “algebraic
complement minors” of A in Eq. (9), i.e.,

AB = BA = A0I (13)

where A0 is the “determinant” of the differential operator A and I is the unit matrix.
Then the general solution of Eq. (9) can be expressed as

U = B�

where the displacement function vector � satisfies the following equation:

A0� = 0 (14)

The “determinant” A0 of A yields

A0 =
(
k11�+ k33�

2
3

) (
a�63 + b��43 + c�2�23 + d�3

)
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368 L. YANG ET AL.

with the coefficient a� b� c, and d given by

a = C33

(
C44K4 − R2

4

)
b = C44

(
K4C44 − R2

4

)+ C33 �C44K1 + C11K4 − 2R1R4�+ 2R4 �C13 + C44� �R3 + R4�

−C44 �R3 + R4�
2 − K4 �C13 + C44�

2

c = C33

(
C11K1 − R2

1

)+ C44 �C44K1 + C11K4 − 2R1R4�+ 2R1 �C13 + C44� �R3 + R4�

−C11 �R3 + R4�
2 − K1 �C13 + C44�

2

d = C44

(
C11K1 − R2

1

)
Now introduce a displacement function H , which satisfies the following equation:

�2
1�

2
2�

2
3�

2
4H = 0 (15)

in which the quasi-harmonic differential operators �2
q are expressed as

�2
q = �+ 1

s2q
�23 (16)

q= 1� 2� 3� 4� s24 = k11/k33� s
2
1� s

2
2 and s23 are the three characteristic roots (or

eigenvalues) of the following cubic algebra equation:

as6 − bs4 + cs2 − d = 0 (17)

By virtue of the operator analysis technique [12, 22], the four general solutions of
problem I can be obtained as

F = Bq1H�G = Bq2H� u3 = Bq3H�T = Bq4H (18)

where components of the matrix B are in detail

B11 =
(
k11�+ k33�

2
3

) [(
K1�+ K4�

2
3

) (
C44�+ C33�

2
3

)− �R3 + R4�
2 ��23

]
B12 = B21 =

(
k11�+ k33�

2
3

) [
�C13 + C44� �R3 + R4���23

− (
C44�+ C33�

2
3

) (
R1�+ R4�

2
3

)]
B13 =

(
k11�+ k33�

2
3

)
��3

[
�R3 + R4�

(
R1�+ R4�

2
3

)− �C13 + C44�
(
K1�+ K4�

2
3

)]
B14 = B24 = B34 = 0

B22 =
(
k11�+ k33�

2
3

) [(
C11�+ C44�

2
3

) (
C44�+ C33�

2
3

)− �C13 + C44�
2 ��23

]
B23 =

(
k11�+ k33�

2
3

)
��3

[
�C13 + C44�

(
R1�+ R4�

2
3

)− �R3 + R4�
(
C11�+ C44�

2
3

)]
B31 =

(
k11�+ k33�

2
3

)
�3

[
�R3 + R4�

(
R1�+ R4�

2
3

)− �C13 + C44�
(
K1�+ K4�

2
3

)]
B32 =

(
k11�+ k33�

2
3

)
�3

[
�C13 + C44�

(
R1�+ R4�

2
3

)− �R3 + R4�
(
C11�+ C44�

2
3

)]
B33 =

(
k11�+ k33�

2
3

) [(
C11�+ C44�

2
3

) (
K1�+ K4�

2
3

)− (
R1�+ R4�

2
3

)2]
(19)
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 369

B41 = �3

(
R1�+ R4�

2
3

)
�R3 + R4� �

2
3 − �3 �C13 + C44�

(
K1�+ K4�

2
3

)
�23

+�1

[(
K1�+ K4�

2
3

) (
C44�+ C33�

2
3

)− �R3 + R4�
2 ��23

]
B42 = −�3

(
C11�+ C44�

2
3

)
�R3 + R4� �

2
3 + �3 �C13 + C44�

(
R1�+ R4�

2
3

)
�23

−�1

[(
R1�+ R4�

2
3

) (
C44�+ C33�

2
3

)− �C13 + C44� �R3 + R4���23
]

B43 = �3�3
(
C11�+ C44�

2
3

) (
K1�+ K4�

2
3

)− �3�3
(
R1�+ R4�

2
3

)2
+�1��3

[
�R3 + R4�

(
R1�+ R4�

2
3

)− �C13 + C44�
(
K1�+ K4�

2
3

)]
B44 =

(
C11�+ C44�

2
3

) [(
K1�+ K4�

2
3

) (
C44�+ C33�

2
3

)− �R3 + R4�
2 ��23

]
− (

R1�+ R4�
2
3

) [(
R1�+ R4�

2
3

) (
C44�+ C33�

2
3

)− �R3 + R4� �C13 + C44���23
]

+ �C13 + C44���23
[(
R1�+ R4�

2
3

)
�R3 + R4�−

(
K1�+ K4�

2
3

)
�C13 + C44�

]
If the subscript q is taken to be 1, 2 or 3, it can be seen that in Eq. (19) Bq4 =
0. Accordingly, three sets of general solutions with T=0 will be obtained, which
are actually the elastic general solutions of 2D hexagonal QCs without thermal
effect. Taking q= 4 and writing out the algebraic cofactors, the general solution of
problem I can be expressed as

F = B41H� G = B42H� u3 = B43H� T = B44H (20)

or

F = (
a1�

4
3 + b1��23 + c1�

2
)
H� G = (

a2�
4
3 + b2��23 + c2�

2
)
H

u3 =
(
a3�

4
3 + b3��23 + c3�

2
)
�3H� T = (

a�63 + b��43 + c�2�23 + d�3
)
H

(21)

where

a1 = �3 	R4 �R3 + R4�− �C13 + C44�K4
+ �1K4C33

b1 = �3 	R1 �R3 + R4�− �C13 + C44�K1
+ �1

[
K1C33 + C44K4 − �R3 + R4�

2
]

c1 = �1K1C44

a2 = �3 	R4 �C13 + C44�− C44 �R3 + R4�
− �1R4C33

b2 = �3 	�C13 + C44� R1 − �R3 + R4� C11
+ �1 	�C13 + C44� �R3 + R4�− R1C33 − R4C44


c2 = −�1R1C44

a3 = �3

(
C44K4 − R2

4

)
b3 = �3 �C11K4 + K1C44 − 2R1R4�+ �1 	�R3 + R4� R4 − �C13 + C44�K4


c3 = �3

(
C11K1 − R2

1

)+ �1 	R1 �R3 + R4�− �C13 + C44�K1


Since the displacement function H satisfies the eighth-order differential Eq. (15), it
is not easy to obtain rigorous analytic solutions directly. By utilizing the generalized
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Almansi’s theorem [23], the displacement function H can be expressed by four quasi-
harmonic equations Hq in five distinct forms as

Case 1:

H = H1 +H2 +H3 +H4� when s21 �= s22 �= s23 �= s24 �= s21 (22)

Case 2:

H = H1 +H2 +H3 + x3H4� when s21 �= s22 �= s23 = s24 �= s21 (23)

Case 3:

H = H1 + x3H2 +H3 + x3H4� when s21 = s22 �= s23 = s24 (24)

Case 4:

H = H1 +H2 + x3H3 + x23H4� when s21 �= s22 = s23 = s24 (25)

Case 5:

H = H1 + x3H2 + x23H3 + x33H4� when s21 = s22 = s23 = s24 (26)

where Hq satisfy the following second-order equations:

�2
QHq = 0 �q = 1� 2� 3� 4� (27)

in which the upper case subscript Q takes the same number as the corresponding
lower case q, but with no summation convention.

Therefore, the eighth-order Eq. (15) has been replaced with four quasi-
harmonic equations. Considering different cases of four characteristic roots, the
general solution of Eq. (20) shall take five forms. Next, the five cases of the general
solutions for problem I are deduced individually.

Case 1:

s21 �= s22 �= s23 �= s24 �= s21

In the case of four distinct characteristic roots, the solution of the eighth-order
partial differential Eq. (15) can be represented according to Eq. (22). Substituting
Eq. (22) into Eq. (21), and by using Eq. (27), the general solution of Eq. (20) can be
written as

F = 
q�
4
3Hq� G = �q�

4
3Hq� u3 = �q�

5
3Hq� T = �q�

6
3Hq (28)

where

q = a1 − b1

1
s2q

+ c1
1
s4q
� �q = a2 − b2

1
s2q

+ c2
1
s4q
�

�q = a3 − b3
1
s2q

+ c3
1
s4q
� �q = a− b

1
s2q

+ c
1
s4q

− d
1
s6q
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 371

For further simplification, by assuming

�q = 
Q�
4
3Hq (29)

Eq. (28) becomes

F = �Qq�q� G = m1q�q� u3 = m2q�3�q� T = m3q�
2
3�q (30)

where �Qq is the Kronecker delta symbol, m1q = �q/
Q� m2q = �q/
Q� m3q = �q/
Q.
When q = 1� 2� 3� m3q = 0� From Eqs. (27) and (29), it can be seen that �q satisfy
the following equations:

�2
Q�q = 0�q = 1� 2� 3� 4� (31)

Case 2:

s21 �= s22 �= s23 = s24 �= s21

After the same manipulation as case 1, by using the expression of H in Eq. (23), and
by introducing

�1 = 
1�
4
3H1 +

(
4a1 − 2b1

1
s23

)
�33H4� �2 = 
2�

4
3H2

�3 = 
3�
4
3H3� �4 = 
3�

3
3H4

(32)

the general solution in case 2 can be researched as follows:

F = �1 + �2 + �3 + x3�3�4� G = m11�1 +m12�2 +m13 ��3 + x3�3�4�+m15�4

u3 = m21�3�1 +m22�3�2 +m23

(
�3�3 + x3�

2
3�4

)+m25�3�4

T = m31�
2
3�1 +m32�

2
3�2 +m33

(
�23�3 + x3�

3
3�4

)+m35�
2
3�4

(33)

where

m15 =
1

3

[(
4a2 − 2b2

1

s23

)
−m11

(
4a1 − 2b1

1

s23

)]

m25 =
1

3

[(
5a3 − 3b3

1

s23
+ c3

1

s43

)
−m21

(
4a1 − 2b1

1

s23

)]

m35 =
1

3

[(
6a− 4b

1

s23
+ 2c

1

s43

)
−m31

(
4a1 − 2b1

1

s23

)]

In view of Eqs. (27) and (32), it is seen that �q satisfy Eq. (31).

Case 3:
s21 = s22 �= s23 = s24 �= s21

Based on the expression of H of case 3 in Eq. (24), and by introducing

�1 = 
1�
4
3H1 +

(
4a1 − 2b1

1

s21

)
�33H2 +

(
4a1 − 2b1

1

s23

)
�33H4� �2 = 
2�

3
3H2

�3 = 
3�
4
3H3� �4 = 
3�

3
3H4 (34)
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372 L. YANG ET AL.

the general solution in case 3 can be derived as follows:

F = �1 + x3�3�2 + �3 + x3�3�4

G = m11 ��1 + x3�3�2�+m16�2 +m13 ��3 + x3�3�4�+m15�4

u3 = m21

(
�3�1 + x3�

2
3�2

)+m26�3�2 +m23

(
�3�3 + x3�

2
3�4

)+m25�3�4

T = m31

(
�23�1 + x3�

3
3�2

)+m36�
2
3�2 +m33

(
�23�3 + x3�

3
3�4

)+m35�
2
3�4

(35)

where

m16 = 1

1

[(
4a2 − 2b2

1
s21

)
−m11

(
4a1 − 2b1

1
s21

)]
m26 = 1


1

[(
5a3 − 3b3

1
s21
+ c3

1
s41

)
−m21

(
4a1 − 2b1

1
s21

)]
m36 = 1


1

[(
6a− 4b 1

s21
+ 2c 1

s41

)
−m31

(
4a1 − 2b1

1
s21

)]
From Eqs. (27) and (34), it is seen that �q also satisfy Eq. (31).

Case 4:

s21 �= s22 = s23 = s24

Based on the expression of H of case 4 in Eq. (25), and by introducing

�1 = 
1�
4
3H1 +

(
4a1 − 2b1

1
s22

)
�33H3 +

(
12a1 − 2b1

1
s22

)
�23H4� �2 = 
2�

4
3H2

�3 = 
2�
3
3H3 +

(
8a1 − 4b1

1
s22

)
�23H4� �4 = 
2�

2
3H4

(36)

the general solution in case 4 can be obtained as follows:

F = �1 + �2 + x3�3�3 + x23�
2
3�4

G = m11�1 +m12

(
�2 + x3�3�3 + x23�

2
3�4

)+m15�3 + x3m17�3�4 +m18�4

u3 = m21�3�1 +m22

(
�3�2 + x3�

2
3�3 + x23�

3
3�4

)+m25�3�3 + x3m27�
2
3�4 +m28�3�4

T = m31�
2
3�1 +m32

(
�23�2 + x3�

3
3�3 + x23�

4
3�4

)+m35�
2
3�3 + x3m37�

3
3�4 +m38�

2
3�4

(37)

where

m17 = 1

2

[(
8a2 − 4b2

1
s22

)
−m12

(
8a1 − 4b1

1
s22

)]
m18 = 1


2

[(
12a2 − 2b2

1
s22

)
−m11

(
12a1 − 2b1

1
s22

)
−m15

(
8a1 − 4b1

1
s22

)]
m27 = 1


2

[(
10a3 − 6b3

1
s22
+ 2c3

1
s42

)
−m22

(
8a1 − 4b1

1
s22

)]
m28 = 1


2

[(
20a3 − 6b3

1
s22

)
−m21

(
12a1 − 2b1

1
s22

)
−m25

(
8a1 − 4b1

1
s22

)]
m37 = 1


2

[(
12a− 8b 1

s22
+ 4c3

1
s42

)
−m32

(
8a1 − 4b1

1
s22

)]
m38 = 1


2

[(
30a− 12b 1

s22
+ 2c3

1
s42

)
−m31

(
12a1 − 2b1

1
s22

)
−m35

(
8a1 − 4b1

1
s22

)]
�q also satisfy Eq. (31).
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 373

Case 5:
s21 = s22 = s23 = s24

Based on the expression of H of case 5 in Eq. (26), and by introducing

�1 = 
1�
4
3H1 +

(
4a1 − 2b1

1
s21

)
�33H2 +

(
12a1 − 2b1

1
s21

)
�23H3 + 24a1�3H4

�2 = 
1�
3
3H2 +

(
8a1 − 4b1

1
s21

)
�23H3 +

(
36a1 − 6b1

1
s21

)
�3H4

�3 = 
1�
2
3H3 +

(
12a1 − 6b1

1
s21

)
�3H4� �4 = 
1�3H4

(38)

the general solution in case 5 can be developed as follows:

F = �1 + x3�3�2 + x23�
2
3�3 + x33�

3
3�4

G = m11

(
�1 + x3�3�2 + x23�

2
3�3 + x33�

3
3�4

)+m15

(
�2 + 2x3�3�3+3x

2
3�

2
3�4

)
+ m18 ��3 + 3x3�3�4�+m19�4

u3 = m21

(
�3�1 + x3�

2
3�2 + x23�

3
3�3 + x33�

4
3�4

)
+ m25

(
�3�2 + 2x3�

2
3�3 + 3x23�

3
3�4

)+ m28

(
�3�3 + 3x3�

2
3�4

)+m29�3�4

T = m31

(
�23�1 + x3�

3
3�2 + x23�

4
3�3 + x33�

5
3�4

)+m35

(
�23�2 + 2x3�

3
3�3 + 3x23�

4
3�4

)
+ m38

(
�23�3 + 3x3�

3
3�4

)+m39�
2
3�

(39)

where

m19 = 1

1

[
�24a2 − 24m11a1�−m18

(
12a1 − 6b1

1
s21

)
−m15

(
36a1 − 6b1

1
s21

)]
m29 = 1


1

[(
60a3 − 6b3

1
s21
− 24m21a1

)
−m28

(
12a1 − 6b1

1
s21

)
−m25

(
36a1 − 6b1

1
s21

)]
m39 = 1


1

[(
120a3 − 24b3

1
s21
− 24m21a1

)
−m38

(
12a1 − 6b1

1
s21

)
−m35

(
36a1 − 6b1

1
s21

)]
�q again satisfy Eq. (31).

Therefore, problem I of 2D hexagonal QCs is governed by the four quasi-
harmonic governing equations in Eq. (31).

General Solutions of Problem II

Problem II for the thermoelasticity in 2D hexagonal QCs is the same as
problem II of the pure elasticity in our previous work [14]. For the sake of
descriptive integrality, the general solutions for problem II are presented briefly
here.

Introduce a displacement function �H , which satisfies the following fourth-
order partial differential equation:

��2
1
��2
2
�H = 0 (40)

where the quasi-harmonic differential operators ��2
n are expressed as ��2

n = �+ 1
s̄2n
�23,

s̄21 and s̄22 are the two characteristic roots of the following equation:

(
C44K4 − R2

4

)
s̄4 − �C66K4 + C44K3 − 2R4R6�s̄

2 + (
C66K3 − R2

6

) = 0
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374 L. YANG ET AL.

One group of general solutions of problem II [14] is

f = (
K3�+ K4�

2
3

)�H� g = − (
R6�+ R4�

2
3

)�H
According to Almansi’s theorem, there exists displacement function �H in the
following two forms:

Case 6:
�H = �H1 + �H2� when s̄21 �= s̄22

Case 7:
�H = �H1 + x3�H� when s̄21 = s̄22

�Hn satisfy the following quasi-harmonic governing equations

��2
N
�Hn = 0 (41)

in which the upper case subscript N takes the same number as the corresponding
lower case n, but with no summation convention.

Considering different cases of the two characteristic roots, the general solution
of problem II shall take two forms individually.

Case 6:
s̄21 �= s̄22

Introducing

�̄n =
(
−K3

1

s̄2N
+ K4

)
�23�Hn

the general solution of case 6 is

f = �Nn�̄n� g = m4n�̄n (42)

where m4n =
(
R6

1
s̄2n
− R4

)/(
−K3

1
s̄2N

+ K4

)
. �̄n satisfy the following equations

��2
N �̄n = 0 (43)

Case 7:
s̄21 = s̄22

Introducing

�̄1 =
(
−K3

1

s̄21
+ K4

)
�23�H1� �̄2 =

(
−K3

1

s̄21
+ K4

)
�3�H2

the general solution of case 7 is

f = �̄1 + x3�3�̄2 +m43�̄2� g = m41�̄1 +m42x3�3�̄2 +m44�̄2 (44)
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 375

where m43 = 2K4

/(
−K3

1
s̄21
+ K4

)
�m44 = −2R4

/(
−K3

1
s̄21
+ K4

)
. �̄n also satisfy the

Eq. (43).
As a result, problem II of 2D hexagonal QCs is governed by the two quasi-

harmonic governing equations in Eq. (43).
The general solutions of the thermoelasticity of 2D hexagonal QCs can be

expressed in terms of the six quasi-harmonic functions �q and �̄n, which are very
simple and useful. In consideration of different cases in which the six characteristic
roots s2q and s̄2n are distinct or possibly equal to each other, the general solutions
possess different forms. If the six characteristic roots are distinct, the general
solutions are

u1 = �Qq�1�q + �Nn�2�̄n� u2 = �Qq�2�q − �Nn�1�̄n� u3 = m2q�3�q

w1 = m1q�1�q +m4n�2�̄n� w2 = m1q�2�q −m4n�1�̄n� T = m3q�
2
3�q

(45)

In cylindrical coordinates, the general solutions are

ur = �Qq�r�q + 1
r
�Nn���̄n� u� = 1

r
�Qq���q − �Nn�r�̄n� u3 = m2q�3�q

wr = m1q�r�q + 1
r
m4n���̄n� w� = 1

r
m1q���q −m4n�r�̄n� T = m3q�

2
3�q

(46)

Eq. (45) and Eq. (46) are the general solutions for 3D thermoelasticity of 2D
hexagonal QCs in terms of displacement function �q and �̄n. Under given boundary
conditions, the analytic solutions can be obtained by solving Eqs. (45) or (46), (31)
and (43).

An Infinite Thermoelastic Space Containing a Penny-Shaped Crack

Consider a 2D hexagonal QC space weakened by a flat crack S located in the
plane x3 = 0, which is parallel to the quasi-periodic plane. The center of the crack
is located at the origin of the coordinate system. Assume that the upper and lower
surfaces of the crack have the same temperature distribution T0 �x1� x2�. Thus the
problem can be turned into a mixed boundary value problem of the half-space x3 ≥
0, with the following mixed boundary conditions on the plane x3 = 0:

�33 = 0� T = T0 �x1� x2� � for x3 = 0� �x1� x2� ∈ S (47)

u3 =
�T

�x3
= 0� for x3 = 0� �x1� x2� � S (48)

�23 = �31 = 0� H23 = H13 = 0� for x3 = 0� −� < �x1� x2� < � (49)

where S denotes the crack surface. It is noted that in Eqs. (47)–(49), the boundary
conditions are not relative with the phason displacements in the fact that the x3-axis
is the periodic direction.

The same boundary problem in a thermoelastic transversely isotropic solid [24]
was solved by means of potential functions and Fourier–Hankel transformation.
The potential functions of 2D hexagonal QCs are assumed as the same formulation
with those of the transversely isotropic solid, i.e.,

�q = hq1�1 + hq2�2� �̄n = 0� �q = 1� 2� 3� 4� n = 1� 2� (50)
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376 L. YANG ET AL.

where hq1 and hq2 are constants to be determined, and

�1 �x1� x2� x3� =
∫∫
S

� �N0�

L �M�N0�
dS

�2 �x1� x2� x3� =
∫∫
S

� �N0� �x3 ln 	L �M�N0�+ x3
− L �M�N0�� dS
(51)

where � and � are respectively the crack surface displacement u3 �x1� x2� 0� and
temperature gradient �3T �x1� x2� x3��x3=0, and L �M�N0� is the distance between
point M �x1� x2� x3� and N0

(
x01� x

0
2� 0

) ∈ S. By virtue of the potential of a simple layer
[24], we obtain

�3�1�x3=0 = 0� �33�2

∣∣
x3=0

= 0� for �x1� x2� � S

�3�1�x3=0 = −2�� = −2�u3 �x1� x2� 0� � for �x1� x2� ∈ S

�33�2

∣∣
x3=0

= −2�� = −2� �3T �x3=0 � for �x1� x2� ∈ S

(52)

Substituting Eq. (50) into Eq. (45), and into the linear constitutive Eq. (3), there are

�33 = �1q�
2
3�q� �23 = �32 = �2q�2�3�q� �31 = �13 = �2q�1�3�q

H23 = �3q�2�3�q� H13 = �3q�1�3�q

(53)

where

�1q = C33m2q −
(
C13 + R3m1q

) 1

s2Q
− �3m3q �2q = C44

(
�Qq +m2q

)+ R4m1q

�3q = R4

(
�Qq +m2q

)+ K4m1q (54)

Making use of Eq. (52) and boundary condition Eq. (48), the following equations
can be obtained {

m2qhq1 = − 1
2� � m2qhq2 = 0

m3qhq2 = − 1
2� � m3qhq1 = 0

(55)

To satisfy the boundary condition Eq. (49), it is assumed that

�2qhqn = 0� �3qhqn = 0� �n = 1� 2� (56)

Eqs. (55) and (56) give



h1n

h2n

h3n

h4n


 = − 1

2�



�21�22�23�24
�31�32�33�34
m21m22m23m24

m31m32m33m34




−1 


0
0
�1n
�2n


 � �n = 1� 2� (57)

hq1 and hq2 can be obtained from Eq. (57).
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3D THERMOELASTICITY OF 2D HEXAGONAL QUASICRYSTALS 377

Substituting Eq. (50) into Eq. (47), we get

�1qhq1�
2
3�1 + �1qhq2�

2
3�2 = 0

m3qhq1�
2
3�1 +m3qhq2�

2
3�2 = T0

(58)

By virtue of Eqs. (55) and (16), Eq. (58) can be transformed to

�1qhq1s
2
Q�

∫∫
S

� �N0�

L �N�N0�
dS − �1qhq2

∫∫
S

� �N0�

L �N�N0�
dS = 0

m3qhq2

∫∫
S

� �N0�

L �N�N0�
dS = T0 �N�

(59)

where L �N�N0� is the distance between two points N �x1� x2� 0� and N0

(
x01� x

0
2� 0

)
,

both on the crack surface. By virtue of Eq. (55), we can derive

∫∫
S

� �N0�

L �N�N0�
dS = −2�T0 �N� � �

∫∫
S

� �N0�

L �N�N0�
dS = −2��1qhq2T0 �N�

�1qhq1s
2
Q

(60)

For a penny-shaped crack, with the radius a0, exact solutions can be obtained
by using Fabrikant’s results [25]. In the case when the temperature is uniformly
distributed, i.e. T = T0 �N� = const�, in cylinder coordinates, the solutions of Eq.
(60) are derived as

� �r� �� = − 2T0

�
√
a2
0 − r2

� � �r� �� = 2�1qhq2T0

��1qhq1s
2
Q

√
a2
0 − r2 (61)

Equations (60) and (61) are very similar to those presented in transversely isotropic
thermoelasticity [24] and piezoelasticity [26], so the corresponding solution can
be derived immediately. For brevity, the exact expressions of �1 and �2 for this
problem are omitted. Only the stress �33 around the penny crack is presented as

�33�x3=0� r>a0
= − 4�1qhq2√

r2 − a2
0

a0T0 (62)

CONCLUSIONS

On the basis of the operator method and the introduction of the two
displacement functions H and H , the general solutions of 3D thermoelasticity of
2D hexagonal QCs are first presented. The introduced displacement functions H
and �H have to satisfy eighth-order and fourth-order partial differential equations,
respectively. Owing to complexity of the two higher-order equations, it is difficult
to obtain rigorous analytic solutions directly. Based on Almansi’s theorem, and by
virtue of a decomposition and superposition procedure, the general solution are
further simplified in terms of six quasi-harmonic functions �q and �̄n. Considering
that the characteristic roots s2q and s̄2n may be distinct or equal to each other, the
obtained general solutions of 2D QCs involve different forms, but all are in simple
forms which are conveniently applied.
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To illustrate the application of the general solutions obtained, the closed
form solution for infinite thermoelastic 2D hexagonal QCs containing a penny-
shaped crack is derived, with the assumption that all characteristic roots are distinct.
The general solutions are very convenient to study the inhomogeneity and defect
problems of 2D hexagonal QCs. These also provide basis to judge the rationality
of the solutions by the finite element method or the boundary element method.
The analysis method in this article can also be used to solve the more complicated
thermoelastic problems of 3D QCs.
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