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As the Poisson effect formulates, lateral strains in a material can be caused by a uniaxial stress in the
perpendicular direction, but no net lateral strain should be induced in a thin homogeneous elastic plate
subjected to a pure bending load. Here, we demonstrated by ab initio simulations that significant exotic
lateral strains can be induced by pure bending in two-dimensional crystals, in which the lateral components
of chemical bonds can respond to bending curvature directly. The bending Poisson ratio, defined as the
ratio of lateral strain to the curvature, is a function of curvature depending on chemical constitution,
bonding structure, and atomic interaction of the crystal, and is anisotropic.
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The Poisson effect as schematically shown in Fig. 1(a) is
an essential behavior of material. When subjected to a
uniaxial tension or compression load, a solid material
usually shrinks or expands laterally due to its resistance
to alter in volume [1,2]. The Poisson ratio, namely the
negative ratio of the induced lateral strain to the strain
parallel to the uniaxial stress, is found to be dependent on
the atomic packing density and valance electron density of
the material [3,4]. Since the 1980s, it has been reported that
materials of reentrant structures can possess an exotic
negative Poisson ratio [5–8]. In practical situations, mate-
rials are always in complicated stress states. In a thin
homogeneous elastic plate subjected to pure bending load,
tensile and compressive stresses will antisymmetrically
distribute in the two sides of the middle neutral plane,
as illustrated in Fig. 1(b). In this perspective, the lateral
contractive and expansive strains aroused owing to the
Poisson effect in the plate are aligned antisymmetrically,
and should counteract each other, leading to a zero net
strain in the lateral direction. In this Letter, we reveal by
comprehensive ab initio simulations that single-layered
two-dimensional (2D) crystals, such as transition metal
dichalcogenides (TMDs), fluorinated graphene, and hex-
agonal boron nitride (h-BN), and even pristine h-BN, can
experience exotic lateral strains under pure bending, termed
bending Poisson effect here. The underlying physical
mechanisms are systematically studied.
To mimic the bending deformation in single-layered

materials, the single-layered sheets are rolled into the corre-
sponding tubes with the tube radii assigned as the radii of
curvature. The strategyhas beenwidely adopted to investigate
the bending rigidity of graphene [9,10] and has a specific
advantage here in that the curvature of bending and the
curvature-induced lateral strain are homogeneous around the
circumference. Thegeometry relaxations are carried out using
density functional theory (DFT) as implemented in the VASP

code [11,12], with the projector augmented wave method for
the core region and the generalized gradient approximation
of the Perdew-Burke-Ernzerhof functional for the exchange-
correlation potential [13–15]. High accuracy settings are
adopted in simulations [16].
For briefness of discussion, the crystal orientations

parallel and perpendicular to the moment of force are
assigned as the lateral and the bending directions, respec-
tively. Based on DFT results, the lateral strain is calculated
as εL ¼ ðcb − c0Þ=c0, where c0 and cb are the lateral lattice
constants in the strain-free and the bent states. Since the
lateral strainmay be constrained by boundary conditions in a
practical bending deformation, an equivalent lateral stress
canbe inducedbybending andwritten asσL ¼ YεL,whereY
is the in-plane Young’s modulus. A power law εL ¼ Ckλ

is suitable to describe the lateral strains as a function of
curvature k, with the coefficient C and exponent λ deter-
mined by fitting theDFTresults. Following the εL-k relation,
the bending Poisson ratio μ, defined as the ratio of the lateral

FIG. 1 (color online). (a) Poisson effect in a homogeneous
elastic plate under a uniaxial load. (b) A homogeneous elastic
plate under a pure bending load. The plates with and without
mechanical load are depicted by the red dashed and blue solid
lines, respectively. The blue dashed arrows represent the defor-
mation-induced lateral strain. The lower panels illustrate the
stress conditions at the cross sections.
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strain to the curvature, can be explicitly expressed as
μ ¼ Ckλ−1. As εL is a dimensionless quantity, it is more
precise to rewrite the power law as εL ¼ Ckλ ¼ cðhkÞλ,
whereh is the thickness of the sheet.Under the samebending
curvature, thicker crystal has a larger maximum of bending
strain andhigher elastic energyaccording to the conventional
plate theory. Then it is reasonable to assume that εL can be in
positive proportion to the thickness, when all other param-
eters are fixed. The constant c shall reflect the influence by
other factors of the material.
We first focus on finite-thickness 2D crystals, namely,

single-layered materials with more than one chemically
bonded atomic layer in thickness, as they stand for most
common layered systems [17–20]. Without loss of general-
ity, the bending Poisson effect in the single layer of TMD is
systematically investigated as a prototype. Based on the
εL-k and σL-k relations illustrated in Fig. 2 as well as the

fitted coefficient C and exponent λ of the power law in
Table I, four typical features of the bending Poisson effect
in single-layered TMDs are observed.
(1) The bending Poisson ratio is a function of curvature.

As the fitted exponents λ in the power law for TMD bent
along the zigzag direction is close to being 2, the lateral
strain εLzig follows a quadratic scaling with the curvature,
while the bending Poisson ratio is linearly scaling to the
curvature, in stark contrast to the constant Poisson ratio.
More complicatedly, when being bent along the armchair
direction, the exponent λ can vary from 1.435 to 1.891 for
the four TMDs.
(2) The bending Poisson effect is highly anisotropic.

The lateral lattice expands when bent along the armchair
direction, but shrinks when bent along the zigzag direction.
What is more, the magnitude of the bending Poisson ratio at
fixed curvature is much higher for bending along the zigzag
direction (Table I). When the bending is along an arbitrary
chiral direction, the bending-induced lateral strain should
vary continuously between the armchair and zigzag cases.
(3) The bending-induced lateral strain can be significant.

With the radius of curvature down to ∼5.5 Å, εLzig in
MoSe2 is up to −4.1%, while εLarm in WSe2 is up to 1.3%.
For the largest radii of curvature considered in the ab initio
simulations, εLzig in MoSe2 (7.9 Å in radius of curvature)
and εLarm in WSe2 (11.0 Å in radius of curvature) can still
have a value of −1.8% and 0.5%, respectively. Based on the
power law approximation, even in bent MoSe2 with a much
larger radius of curvature of 30 Å, εLzig is estimated to be
−0.1%, easy to be detected experimentally.
(4) Chemical constituents of the single-layered TMD

have influences on the bending Poisson effect. While εLarm
is larger with heavier chalcogen and heavier metal atoms,
εLzig is larger with heavier chalcogen but lighter metal
atoms. The more significant bending Poisson effect in
TMD with heavier chalcogen is understandable as they
have larger thicknesses.
The responses of chemical bonds in single-layered MoS2

to curvature are shown in Figs. 3(b), 3(c), 3(e), and 3(f).
The bonds, with their major components aligned along the
bending and lateral directions, are denoted as d1 and d2,

FIG. 2 (color online). Bending Poisson effect in single-layered
TMDs. (a),(b) Bending induced lateral strain and equivalent
lateral stress as a function of curvature for bending along the
armchair (a) and the zigzag (b) directions in single-layered MoS2,
MoSe2, WS2, and WSe2.

TABLE I. The fitted coefficients C, c, and λ in the power law approximation for bending-induced lateral strains in the 2D crystals. The
first row illustrates the thicknesses of the strain-free 2D crystals. The last row presents the in-plane Young’s modulus. The strain-
curvature and the bending Poisson ratio-curvature relations are described as εL ¼ Ckλ ¼ cðhkÞλ and μ ¼ Ckλ−1, respectively.

2D crystals MoS2 MoSe2 WS2 WSe2 F-GR F-BN Graphene h-BN

h=Å 3.13 3.34 3.14 3.35 3.25 3.30 � � � � � �
Armchair C=Åλ 0.206 0.133 0.173 0.173 0.674 0.494 � � � � � �

λ 1.811 1.435 1.633 1.480 1.891 1.888 � � � � � �
c 0.026 0.024 0.027 0.029 0.073 0.052 � � � � � �

Zigzag C=Åλ −0.855 −1.215 −0.656 −0.934 � � � −0.155 � � � −0.038
λ 2.011 2.028 1.926 1.971 � � � 1.427 � � � 2.254
c −0.086 −0.105 −0.072 −0.086 � � � −0.028 � � � � � �

YðeVÅ2Þ 7.7 6.8 8.2 7.0 13.1 10.3 20.4 17.3
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respectively [Figs. 3(a) and 3(d)]. When bent along the
armchair direction, the bonds elongate in the tensile outer
side (d1out, d2out, d20out) while shorten in the compressive
inner side (d2in, d2in, d2in0), as expected by the conventional
plate theory (note d2 has a minor component along the
bending direction). Although the elongation of d2out is
almost equal in magnitude to the shrinkage of d2in, the
shrinkage in d1in is much less than the elongation in d1out,
going against the conventional theory. Meanwhile, the
S-Mo-S angle θout between the bonds d2out and d2out0
slightly decreases with curvature, while the S-Mo-S angle
θin between the bonds d2in and d2in0 remarkably increases.
As the lateral lattice constant can be written as cL ¼
2d2in sinðθin=2Þ or cL ¼ 2d2out sinðθout=2Þ, such joint

responses of bond lengths and angles result in the overall
expansion of lateral lattice. When bent along the zigzag
direction, d1out elongates remarkably but d1in slightly
shortens, similar to the armchair case. Both d2in and
d2out perpendicular to the direction of bending are short-
ened, contradicting the conventional theory. The asymme-
try between the elongation in the tensile side and shrinkage
in the compressive side can be, at least partially, explained
by charge transfer along the thickness direction, as the
Mo atoms provide more electrons to the S atoms at the
compressive side. (see Fig. S1 in the Supplemental Material
for the deformation electron density [21]).
The bending Poisson effect is also identified in other

types of finite-thickness 2D crystals, such as fluorinated
graphene and fluorinated hexagonal boron nitride (F-GR
and F-BN) [22,23]. As shown in Figs. 4(a) and 4(b), the
bending-induced lateral strains in the fluorinated atomic
layers are significant, with the same order of magnitude and
similar anisotropy as that in single-layered TMDs. The
power law can well describe the εLarm-k relations in both
F-GR and F-BN, with an exponent around 1.89. However,
the εLzig-k relation is abnormal in the fluorinated atomic
layers bent along the zigzag direction: εLzig in the F-GR
converges to a constant value as the radius decreases to 6 Å,

FIG. 3 (color online). Responses of chemical bonds in the
single-layered MoS2 under pure bending. (a) A single-layered
MoS2 bent along the armchair direction. (b), (c) The bond lengths
and bond angles as a function of curvature. The bond lengths and
bond angles are labeled in (a). Corresponding results for the
bending along the zigzag direction are presented in (d), (e), and
(f). The dashed lines in (b), (c), (e), and (f) show the bond length
or bond angle in strain-free MoS2.

FIG. 4 (color online). Bending Poisson effect in single-layered
fluorinated graphene and fluorinated h-BN. Bending induced
lateral strain as a function of curvature for bending along the
armchair (a) and the zigzag (b) directions. The change of the
separation between neighboring F atoms in the compression side
is illustrated for bending along (c) the armchair and (d) the zigzag
directions.
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whereas in the F-BN the exponent λ of the power law has a
lowest value of 1.427.
The C-F bonds in the F-GR are perpendicular to the

in-plane directions and, thus, cannot respond to bending
directly. Instead, both the in-plane C-C and the
perpendicular C-F bonds are influenced indirectly through
the Coulomb interaction between the highly electronegative
surface fluorine atoms. For illustration, the interaction
between the fluorine atoms on the compressive side is
depicted in Figs. 4(c) and 4(d). When a F-GR is bent along
the armchair direction, the distance between the nearest
neighboring fluorine a and b is shortened remarkably as the
vector ab only cuts a 30° angle with the bending direction.
Then the fluorine atoms in the compressive side experience
a strong interactive repulsive force, leading to the elonga-
tion in the C-C bonds along the lateral direction [24]. When
bent along the zigzag direction, the distance between the
nearest neighboring fluorine a and b is slightly shortened as
the vector ab cuts a 60° angle with the direction of bending,
but the distance between the nearest neighboring fluorine a
and a0 is shortened remarkably since the vector aa0 is
parallel to bending, resulting in strong repulsive forces
merely along the bending direction. Then the compressive
εLzig is aroused by the internal tensile stress along the
bending direction due to the conventional Poisson effect.
The above mentioned abnormal and smaller εLzig in F-GR
is due to its lower conventional Poisson ratio than that
of F-BN.
Nevertheless, the reduced dimensionality of a single-

layered material is not a sufficient condition for the
generation of the bending Poisson effect. Though the
conventional plate theory of bending is broken down in
the monolayer graphene due to its ultrathin nature [25],
we observe no obvious bending-induced lateral strain in
graphene (see Fig. S2 of the Supplemental Material [21]),
consistent with previous reports [9,25]. Regardless of the
curvature, εLarm is approximately zero even when the radius
is down to ∼5.0 Å, while εLzig is always lower than 0.06%
and rather random. In the monolayer h-BN, no lateral strain
appears either when bent along the armchair direction.
However, when bent along the zigzag direction, a tiny but
evident lateral strain is observed, with a magnitude 1 order
lower than that in TMDs. The power law still works for
εLzig in h-BN with an exponent λ higher than 2 (Table I).
The essential difference between graphene and h-BN relies
on the polarity of h-BN. The bond angles B-N-B are
relatively flexible so that one of them can be distorted from
120° to 116.35° when the sheet is bent to a radius of ∼4.0 Å
along the zigzag direction (Fig. S2 in the Supplemental
Material [21]). In contrast, the stiffer bond angles N-B-N
remain nearly undistorted. The divergence between the two
bond angles leads to an out-of-plane buckling and resultant
shrinkage of the lateral lattice.
The mechanisms for the bending Poisson effect revealed

above can be reproduced in other single-layered materials,

such as gallium selenide, hydrogenated graphene [26], and
hypothetical hexagonal aluminum nitride [27] (see Table SI
of the Supplemental Material [21]). The common existence
of the bending Poisson effect reflects a major difference
between a 2D crystal and a bulk plate: the local lateral strain
in a bulk plate is related to the local strain along the
direction of bending due to the Poisson effect; in a finite-
thickness 2D crystal, the lateral strain responds to the
curvature directly although the tensile and compressive
features are still observed in its outer and inner sides; in a
monolayer, such as h-BN without of tensile and compres-
sive features, the lateral lattice constant reacts to bending
as well.
With the insight into the basic constitutive relation of

bending Poisson effect, we further incorporate the effect
into the plate theory of large deflection [28]. In our revised
theory [29], the strain-stress relation is modified to be

σx ¼
E

1 − ν2
ðεx þ νεyÞ − σxl;

σy ¼
E

1 − ν2
ðεy þ νεxÞ − σyl;

σxy ¼ Gεxy;

σxl ¼ Eεxl ¼ ECykλy;

σyl ¼ Eεyl ¼ ECxkλx: (1)

The lateral stress and strain induced by the curvature ky (kx)
due to the bending Poisson effect are denoted as σxl (σyl)
and εxl (εyl), respectively. Defining a stress function F as

∂2F
∂x2 ¼ σy;

∂2F
∂y2 ¼ σx;

∂2F
∂x∂y ¼ −σxy; (2)

the equilibrium equation and deformation compatibility
equation can be written, respectively, as

D
h
∇4w ¼ q

h
þ ∂2F

∂y2
∂2w
∂x2 þ

∂2F
∂x2

∂2w
∂y2 − 2

∂2F
∂x∂y

∂2w
∂x∂y ; (3)
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∂2

∂y2
�
Cy

�∂2w
∂x2

�
λ

− νCx

�∂2w
∂y2

�
λ
�

−
∂2

∂x2
�
Cx

�∂2w
∂y2

�
λ

− νCy

�∂2w
∂x2

�
λ
�

¼ E

�� ∂2w
∂x∂y

�
2

−
∂2w
∂x2

∂2w
∂y2

�
; (4)

where D is the bending stiffness and q is the external force.
Equations (3) and (4) jointly serve as the governing
equations of the system. For the specific cases studied
by the DFT simulations with the tube axis aligned along the
x direction, we obtain the solution from Eqs. (3) and (4) as
εy ¼ εyl ¼ Cxkλx. (See the complete mathematical formu-
lations in the Supplemental Material [21].)
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In conclusion, we have demonstrated that bending defor-
mations in a variety of 2D crystals can induce lateral strains,
termed as the bending Poisson effect. The novel effect is
dimension dependent, chemical constitution and bonding
structure sensitive, and highly anisotropic. The bending
Poisson ratio μ, defined as the ratio of the lateral strain to
the curvature k, scales with the curvature in a power law as
μ ¼ Ckλ−1 in most situations. Moreover, a revised plate
theory is established to incorporate the bending Poisson
effect in 2D crystals into the continuum theory.
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