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In this article, we analyze the fifth-order weighted essentially non-oscillatory (WENO-5) scheme and
show that, at a transition point from smooth region to a discontinuity point or vice versa, the accuracy
order of WENO-5 is decreased to third order. A new method is proposed to overcome this drawback
by introducing fourth-order fluxes combined with high order smoothness indicator. Numerical examples
show that the new method is more accurate near discontinuities with accuracy improved to fourth order.
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1. Introduction

The WENO scheme concept was first proposed by Liu et al. [1]
and then improved by Jiang and Shu [2]. WENO schemes are based
on ENO (essentially non-oscillatory) schemes [3,4], but use a con-
vex combination of all candidate stencils instead of the smoothest
one as in the ENO schemes. The WENO schemes achieve high order
accuracy in smooth regions with more compact stencil and have
better convergence due to the smoother numerical flux used.

Jiang and Shu [2] analyze and modify the fifth order WENO
scheme proposed by Liu et al. [1] and suggest a new way of mea-
suring the smoothness of a numerical solution. Thus a WENO
scheme with the optimal ð2r � 1Þth order accuracy rather than
ðr þ 1Þth order is obtained. Henrick et al. [5] point out that the ori-
ginal smoothness indicators of Jiang and Shu fail to improving the
accuracy order of WENO scheme at critical points, where the first
derivatives are zero. A mapping function is proposed by Henrick
et al. [5] to obtain the optimal order near critical points. Borges
et al. [6] devise a new set of WENO weights that satisfies the nec-
essary and sufficient conditions for fifth-order convergence given
by Henrick et al. [5] and enhances the accuracy at critical points.
A class of higher than fifth order weighted essentially non-oscilla-
tory schemes are designed by Balsara and Shu in [7]. Wang and
Chen [8] propose optimized WENO schemes for linear waves with
discontinuity. Martin et al. [9] suggest a symmetric WENO method
by means of a new candidate stencil, which is 2rth-order accurate
and symmetric, and less dissipative than Jiang and Shu’s scheme.

The above mentioned WENO schemes are constructed to have
ð2r � 1Þth or 2rth [9] order of accuracy in the smooth regions di-
rectly from rth order ENO schemes. For a solution containing discon-
tinuities, these methods can not obtain the optimal accuracy near
the discontinuity points. Shen et al. [10] indicate that the smooth-
ness indicator ISk of Jiang and Shu’s WENO scheme does not satisfy
the condition bk ¼ Dð1þ OðDx2ÞÞ at a critical point f 0i ¼ 0

� �
, and pro-

pose a step-by-step reconstruction to avoid the strict condition.
In this article, the analysis of the fifth-order WENO (WENO-5)

scheme indicates that, at a transition point from smooth region
to a discontinuity point or vice versa, the accuracy order of fifth or-
der WENO scheme is decreased. Two fourth order fluxes are sug-
gested and combined with the higher order smoothness
indicators to overcome this drawback. Numerical examples show
that this new method is more accurate and achieves higher resolu-
tion near discontinuities.

2. Weighted essentially non-oscillatory schemes

For the hyperbolic conservation law in the form

@u
@t
þ @f
@x
¼ 0 ð1Þ

the semi-discretization form can be written as

duiðtÞ
dt

¼ � 1
Dx

hiþ1
2
� hi�1

2

� �
ð2Þ
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Table 1
Coefficients ckj and dk .

ckj dk

k j = 0 j = 1 j = 2

0 1/3 �7/6 11/6 1/10
1 �1/6 5/6 1/3 6/10
2 1/3 5/6 �1/6 3/10
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The flux hiþ1
2

of the classical fifth-order WENO scheme [2,6] is built

through the convex combination of interpolated values

f̂ k xiþ1
2

� �
ðk ¼ 0;1;2Þ, in which f̂ kðxÞ is the third degree interpolation

polynomial on stencil S3
k ¼ ðxiþk�2; xiþk�1; xiþkÞ,

hiþ1
2
¼
X2

k¼0

xk f̂ k xiþ1
2

� �
ð3Þ

where

f̂ k xiþ1
2

� �
¼ f̂ k

iþ1
2
¼
X2

j¼0

ckj f i�kþj; i ¼ 0; � � � ;N ð4Þ

The weights xk are defined as

xk ¼
akP2
l¼0al

; ak ¼
dk

ðbk þ eÞp
ð5Þ

The smoothness indicators bk are given by [2]

bk ¼
X2

l¼1

Dx2l�1
Z x

iþ1
2

x
i�1

2

dl

dxl
f̂ kðxÞ

 !2

dx ð6Þ

For r ¼ 3, Eq. (6) gives

b0 ¼ 13
12 ðfi�2 � 2f i�1 þ fiÞ2 þ 1

4 ðfi�2 � 4f i�1 þ 3f iÞ
2

b1 ¼ 13
12 ðfi�1 � 2f i þ fiþ1Þ2 þ 1

4 ðfi�1 � fiþ1Þ2

b2 ¼ 13
12 ðfi � 2f iþ1 þ fiþ2Þ2 þ 1

4 ð3f i � 4f iþ1 þ fiþ2Þ2

8>><>>: ð7Þ

Henrick et al. [5] show that if bk satisfy bk ¼ Dð1þ OðDxsÞÞ, the
weights xk then satisfy xk ¼ dk þ OðDxsÞ, where D is some non-zero
quantity independent of k. The necessary and sufficient conditions
for fifth-order convergence in (2) are given as [5]:X2

k¼0

Akðxþ �x�Þ ¼ OðDx3Þ ð8Þ

x�k � dk ¼ OðDx2Þ ð9Þ

A sufficient condition for fifth-order of convergence is given by Bor-
ges et al. in [6]:

x�k � dk ¼ OðDx3Þ ð10Þ

If f 0i ¼ 0, Eq. (7) gives bk ¼ Dð1þ OðDxÞÞ and xk ¼ dk þ OðDxÞ, which
degrades the convergence accuracy of the scheme. Shen et al. [10]
suggest a step-by-step reconstruction method, in which two fourth
order weighted fluxes obtained from 3rd ENO fluxes are used to
construct fifth order WENO scheme. Henrick et al. [5] propose a
mapping function to increase the approximation of xk to the ideal
weights dk.

Borges et al. [6] introduce the absolute difference between b0

and b2 to devise a new set of WENO weights that satisfy the neces-
sary and sufficient conditions for fifth-order convergence. The
smoothness indicators bz

k defined by Borges et al. [6] are

bz
k ¼

bk þ e
bk þ s5 þ e

; k ¼ 0;1;2 ð11Þ

and the WENO weights xz
k of Borges et al. [6] are

xz
k ¼

az
kP2

l¼0az
l

; az
k ¼

dk

bz
k

¼ dk 1þ s5

bk þ e

� �q� �
; k ¼ 0;1;2 ð12Þ

where

s5 ¼ jb0 � b2j ð13Þ

The coefficients ckj and dk are listed in Table 1. The parameter e is
used to avoid the division by zero (e ¼ 10�6 is used in [2] and
e ¼ 10�40 is used in [6]), p and q are chosen to increase the differ-
ence of scales of distinct weights at non-smooth parts of the solu-
tion. As pointed out by Borges et al. [6], for a smooth function,
increasing the value of q in Eq. (12) decreases the correction of
the WENO-Z weights to the ideal weights dk, making the scheme
closer to the optimal central scheme. On the other hand, increasing
q also decreases the relative importance of the discontinuous sub-
stencil and makes the scheme more dissipative.

If f 0i – 0, Eq. (12) with q ¼ 1 gives xk � dk ¼ OðDx3Þ; if f 0i ¼ 0,
(12) with q ¼ 2 gives xk � dk ¼ OðDx2Þ. The numerical example of
Borges et al. [6] shows that, at the first-order critical point
f 0i ¼ 0
� �

, with e ¼ 10�40, WENO-JS scheme has third-order accu-
racy, and WENO-Z scheme with q ¼ 1 and q ¼ 2 has fourth- and
fifth-order accuracy, respectively.

Fifth-order WENO schemes can capture shock waves and have
fifth-order accuracy in smooth regions. However, because a WENO
scheme is constructed directly from rth-order interpolation to
achieve ð2r � 1Þth-order, the accuracy is reduced at the transition
point from smooth region to discontinuous point and vice versa.
In order to illustrate this problem, Fig. 1 is used as an example.

At point ði� 1Þ, the stencil S5
ði�1Þ�1=2 is

Sði�1Þ5�1=2 ¼ fxi�4; xi�3; xi�2; xi�1; xig ð14Þ

and it is a smooth stencil, hði�1Þ�1=2 is obtained by the process of
WENO-Z or WENO-JS as a fifth-order flux.

However, for

S5
ði�1Þþ1=2 ¼ fxi�3; xi�2; xi�1; xi; xiþ1g ð15Þ

there is a discontinuity at stencil S3
2 ¼ fxi�1; xi; xiþ1g, so

b2 � b0;b1 ð16Þ

no matter whether WENO-Z or WENO-JS is used. To calculate the
flux hði�1Þþ1=2 from either Eq. (5) or (12), it is easy to find

x0 !
1
7
; x1 !

6
7
; x2 ! 0 ð17Þ

The situation at point ðiþ 3Þ is similar to at the point i� 1. S5
ðiþ3Þ�1=2

contains a discontinuity at stencil S3
0 ¼ fxi; xiþ1; xiþ2g, whereas

S5
ðiþ3Þþ1=2 ¼ fxiþ1; xiþ2; xiþ3; xiþ4; xiþ5g is a smooth stencil. For the flux

hðiþ3Þ�1=2,

x0 ! 0; x1 !
2
3
; x2 !

1
3

ð18Þ

Let us have a look at a numerical example of a discontinuous func-
tion [6]

uð0; xÞ ¼ f ðxÞ ¼
�sinðpxÞ � 1

2 x3; �1 < x 6 0;
�sinðpxÞ � 1

2 x3 þ 1; 0 < x 6 1;

(
ð19Þ

consisting of a piecewise Sine function with a jump discontinuity at
xi ¼ 0. The weights calculated by WENO-Z scheme (Eq. (12)) is
shown in Fig. 2, it demonstrates the accuracy degrading problem.
For the flux hði�1Þþ1=2;x0 � 1

7 (point A), x1 � 6
7 (point B). For

hðiþ3Þ�1=2;x1 � 2
3 (point D), x1 � 1

3 (point C).
Under the condition of Dx! 0, there are

hði�1Þ�1
2
¼ 1

30
fi�4 �

13
60

fi�3 þ
47
60

fi�2 þ
9

20
fi�1 �

1
20

fi ð20Þ



u

0

0.5

1

ii-1i-2i-3 i+1 i+2 i+3 i+4i-4

i-1/2i-3/2

i-1

Fig. 1. The sketch of transition point.
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Fig. 2. The distribution of weights of WENO-Z scheme.
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and

hði�1Þþ1
2
¼ 1

20
fi�3 �

13
42

fi�2 þ
41
42

fi�1 þ
2
7

fi ð21Þ

Applying Taylor series expansion, we obtain

1
Dx

hði�1Þþ1
2
� hði�1Þ�1

2

� �
¼ f 0i�1 þ OðDx3Þ ð22Þ

The accuracy at the downstream point ðiþ 3Þ can be analyzed
similarly.

That is, at the points (continuous point) immediately upstream
or downstream of a discontinuity, all the current fifth-order WENO
schemes only give third-order accuracy.
S4
1

S5

τ4
1

τ5

Fig. 3. The sketch of reconstruction process.
3. The new method

In this section, a new method is proposed to overcome the
drawback of the fifth order WENO schemes mentioned above.
The method combines the idea of the step-by-step construction
of a higher order WENO scheme [10] and the properties of s5 intro-
duced by Borges et al. [6]. For completeness, two important prop-
erties of s5 are listed here:

(1) If the stencil S5 does not contain discontinuities, then
s5 � bk for k ¼ 0;1;2;

(2) if the solution is continuous at some of the stencil S3
i , but dis-

continuous in the whole stencil S5, then bi � s5.
The new method can be described using the sketch of Fig. 3.
First, the stencils S4

0 and S4
1 are defined as.

S4
0 ¼ S3

0 [ S3
1 ¼ fxi�2; xi�1; xi; xiþ1g;

S4
1 ¼ S3

1 [ S3
2 ¼ fxi�1; xi; xiþ1; xiþ2g

(
ð23Þ

and s0
4 and s1

4 are defined as,

s0
4 ¼ jb0 � b1j;

s1
4 ¼ jb1 � b2j

(
ð24Þ

Here, s0
4 and s1

4 have the same property (2) as s5, i.e., if the solution
is continuous at some of the stencil S3

lþi, but discontinuous in the
whole S4

l , then blþi � sl
4.

Next, we will analyze the relationship between sl
4 and bk with

the case of

(1) the solution is smooth on stencil S4
0;

(2) the solution is discontinuous on S4
1, i.e., the discontinuity is

on ðxiþ1; xiþ2Þ.
With condition (1), there are Taylor expansions of b0 and b1

as following

b0 ¼ f 02i Dx2þ 13
12 f 002i � 2

3 f 0i f 000i

� �
Dx4� 13

6 f 00i f 000i � 1
2 f 0i f ð4Þi

� �
Dx5þ 43

36 f 0002i þ 91
72 f 00i f ð4Þi � 7

30 f 0i f ð5Þi

� �
Dx6þOðDx7Þ

b1 ¼ f 02i Dx2þ 13
12 f 002i þ 1

3 f 0i f 000i

� �
Dx4þ 1

36 f 0002i þ 13
72 fi 00f ð4Þi þ 1

120 f 0i f ð5Þi

� �
Dx6þOðDx8Þ

8><>:
ð25Þ

Hence, if f 0i – 0
� �

or f 0i ¼ 0 and f 0i – 0
� �

, there is

s0
4 ¼ jb0 � b1j 6 minðb0;b1Þ ð26Þ

With condition (2), there are

b2 � b1; s1
4 ¼ jb1 � b2j � b1

Hence, under the conditions (1) and (2), and if f 0i – 0
� �

or
f 0i ¼ 0 and f 0i – 0
� �

, there is
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s0
4 6 minðb0;b1;b2Þ;

s1
4 > minðb0;b1;b2Þ

(
ð27Þ

The same conclusion can be drawn for the case with

(1) the solution is smooth on stencil S4
1;

(2) the solution is discontinuous on S4
0, i.e., the discontinuity is

on ðxi�2; xi�1Þ.

Hence, the new method is constructed as

hiþ1
2
¼

h4
0; if s0

4 6 minðb0; b1; b2Þ and s1
4 > minðb0;b1;b2Þ;

h4
1; if s0

4 > minðb0;b1;b2Þ and s1
4 6 minðb0;b1;b2Þ;

hWENO�Z
; otherwise

8>><>>:
ð28Þ

where

h4
0 ¼ C4;0

0 f̂ 0
iþ1=2 þ C4;0

1 f̂ 1
iþ1=2; h4

1 ¼ C4;1
0 f̂ 1

iþ1=2 þ C4;1
1 f̂ 2

iþ1=2 ð29Þ

and

C4;0
0 ¼

1
4
; C4;0

1 ¼
3
4

; C4;1
0 ¼

1
2
; C4;1

1 ¼
1
2

That is

h4
0 ¼ 1

12 fi�2 � 5
12 fi�1 þ 13

12 fi þ 1
4 fiþ1

h4
1 ¼ � 1

12 fi�1 þ 7
12 fi þ 7

12 fiþ1 � 1
12 fiþ2

(

For a smooth solution with three or more vanishing derivatives, the
new scheme Eq. (28) switches to the fifth-order WENO-Z scheme.

Again, the point ði� 1Þ in Fig. 1 is taken as an example,
S4

0ji�1=2 ¼ fxi�3; xi�2; xi�1; xig is a smooth stencil, according to the
properties of sl

4, there is

s0
4 < minðb0;b1;b2Þ and s1

4 � minðb0; b1; b2Þ

so
Table 2
Results and errors.

Point xi f 0ðxiÞ f 0i(WENO-Z)

N = 40 �0.2000 �.26016E+01 �.26016E+01
�0.1500 �.28329E+01 �.28329E+01
�0.1000 �.30028E+01 �.30028E+01
�0.0500 �.31067E+01 �.31048E+01
0.0000 �.31416E+01 �.31343E+01
0.0500 �.31067E+01 0.16883E+02
0.1000 �.30028E+01 �.29997E+01
0.1500 �.28329E+01 �.28346E+01
0.2000 �.26016E+01 �.26016E+01

N = 80 �0.1000 �.30028E+01 �.30028E+01
�0.0750 �.30632E+01 �.30632E+01
�0.0500 �.31067E+01 �.31067E+01
�0.0250 �.31328E+01 �.31323E+01
0.0000 �.31416E+01 �.31436E+01
0.0250 �.31328E+01 0.36868E+02
0.0500 �.31067E+01 �.31052E+01
0.0750 �.30632E+01 �.30637E+01
0.1000 �.30028E+01 �.30028E+01

N = 160 �0.0500 �.31067E+01 �.31067E+01
�0.0375 �.31219E+01 �.31219E+01
�0.0250 �.31328E+01 �.31328E+01
�0.0125 �.31394E+01 �.31393E+01
0.0000 �.31416E+01 �.31425E+01
0.0125 �.31394E+01 0.76861E+02
0.0250 �.31328E+01 �.31324E+01
0.0375 �.31219E+01 �.31220E+01
0.0500 �.31067E+01 �.31067E+01
hði�1Þþ1=2 ¼ h4
0 ¼

1
12

fi�3 �
5

12
fi�2 þ

13
12

fi�1 þ
1
4

fi

Meanwhile, S5
i�3=2 is a smooth stencil, hði�1Þ�1=2 keeps the fifth-order

flux hWENO�Z
ði�1Þ�1=2 (Eq. (20)). Hence, applying Taylor series expansion,

there is

1
Dx

hði�1Þþ1
2
� hði�1Þ�1

2

� �
¼ f 0i�1 þ OðDx4Þ ð30Þ

Compared with the accuracy of the original WENO-Z or WENO-JS
scheme (Eq. (22)), the new method improves one accuracy order
at the point right next to the discontinuity ði� 1Þ.

Table 2 gives the comparison of values and errors of WENO-Z
scheme and the present method of first-order derivative of f ðxÞ
given by Eq. (19) near the discontinuity points. For this case,
xi ¼ 0 and the next point xiþ1 are the discontinuity points. At points
xi�1 and xiþ3, the present method is clearly more accurate than
WENO-Z scheme.

It should be pointed out that the transition point is actually still
a smooth point. Hence theoretically, the finite difference approxi-
mation of the first order derivative can reach up to fourth order
accuracy by using five smooth (continuous) points. However, the
accuracy at the transition point is influenced greatly by the accu-
racy of its neighboring points, especially at the discontinuity
points. As claimed by Engquist and Sjogreen [11], the accuracy of
high order difference schemes is reduced to first order at a shock.
For this reason, even a small improvement of the accuracy at the
transition point is very desirable for simulation of the flows with
shock wave/complex flow structures interaction.
3.1. Numerical examples

In this paper, the fourth order Runge–Kutta-type method [12] is
used for the time marching.
f 0i(present) error (WENO-Z) error (present)

�.26016E+01 0.31953E�05 0.31953E�05
�.28329E+01 0.25566E�05 0.25566E�05
�.30028E+01 0.18554E�05 0.18554E�05
�.31066E+01 0.19045E�02 0.95956E�04
�.31325E+01 0.72982E�02 0.91067E�02
0.16883E+02 0.19989E+02 0.19989E+02
�.30012E+01 0.31294E�02 0.15856E�02
�.28331E+01 0.16706E�02 0.12686E�03
�.26016E+01 0.26522E�05 0.26522E�05

�.30028E+01 0.53282E�07 0.53282E�07
�.30632E+01 0.41587E�07 0.41587E�07
�.31067E+01 0.29636E�07 0.29636E�07
�.31328E+01 0.52653E�03 0.59822E�05
�.31431E+01 0.20075E�02 0.14870E�02
0.36868E+02 0.40000E+02 0.40000E+02
�.31057E+01 0.14201E�02 0.99143E�03
�.30632E+01 0.43659E�03 0.79597E�05
�.30028E+01 0.43276E�07 0.43276E�07

�.31067E+01 0.84590E�09 0.84590E�09
�.31219E+01 0.65623E�09 0.65623E�09
�.31328E+01 0.46551E�09 0.46551E�09
�.31394E+01 0.14246E�03 0.37364E�06
�.31423E+01 0.89829E�03 0.75621E�03
0.76861E+02 0.80000E+02 0.80000E+02
�.31325E+01 0.42399E�03 0.31005E�03
�.31219E+01 0.11444E�03 0.49793E�06
�.31067E+01 0.68340E�09 0.68340E�09



Table 3
Accuracy on ut þ ux ¼ 0 with u0ðxÞ ¼ sinð2pxÞ, t = 1.

Scheme N L1 error L1 order L1 error L1 order

WENO-Z 40 0.315356E�03 —- 0.198512E�03 —-
80 0.994903E�05 4.986 0.628679E�05 4.981
160 0.312476E�06 4.993 0.197921E�06 4.989
320 0.977606E�08 4.998 0.620618E�08 4.995
640 0.305593E�09 5.000 0.194260E�09 4.998

present 40 0.315356E�03 —- 0.198512E�03 —-
80 0.994903E�05 4.986 0.628679E�05 4.981
160 0.312476E�06 4.993 0.197921E�06 4.989
320 0.977606E�08 4.998 0.620618E�08 4.995
640 0.305593E�09 5.000 0.194260E�09 4.998

u 0.5

0.6

0.7

0.8

0.9

1 exact
WENO-Z
present
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3.1.1. Linear transport equation
The linear transport equation is used to test the accuracy of

WENO schemes.

@u
@t
þ @u
@x
¼ 0; �1 < x < 1 ð31Þ

uðx;0Þ ¼ u0ðxÞ; periodic

(1) We start with the advection of a smooth profile

0.4
u0ðxÞ ¼ sinð2pxÞ;
0.1

0.2

0.3

Table 3 gives the errors and accuracy order. It can be seen that for
this smooth solution, the present scheme obtains the same results
and accuracy order as the WENO-Z scheme.

(2) A solution with an initial discontinuity [6] is calculated
x
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0

uð0; xÞ ¼ f ðxÞ ¼
�sinðpxÞ � 1

2 x3; �1 < x 6 0;
�sinðpxÞ � 1

2 x3 þ 1; 0 < x 6 1;

(
ð32Þ
Fig. 4. Numerical results of linear transport equation, initial condition (32). t ¼ 10.
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Figs. 4 and 5 show the numerical solutions and errors at t ¼ 10.
Near the discontinuity (x ¼ 0), the range of error is about
ð10�2;1Þ, and the present method improves the accuracy obviously.
While in the other smooth regions, the errors are relatively small,
and the difference of two schemes is also negligible.

(3) A more complex initial solution is tested
-4

10-3

10 present

10-2
u0ðxÞ ¼
�xsinð3px2=2Þ; �1 6 x < �1=3
jsinð2pxÞj; �1=3 6 x � 1=3
2x� 1� sinð3pxÞ=6; otherwise
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Figs. 6 and 5 show the numerical solutions and errors at t ¼ 6.
Again, it can be seen that the present method is more accurate.
(see Fig. 7).

(4) Finally, a more challenging test case that contains a smooth
combination of Gaussians, a square wave, a sharp triangle
wave, and a half ellipse is calculated.
x
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10-8
u0ðxÞ¼

1
6ðGðx;b;z�dÞþGðx;b;zþdÞþ4Gðx;b;zÞÞ; �0:86 x6�0:6;
1; �0:46 x6�0:2;
1�j10ðx�0:1Þj; 06 x60:2;
1
6ðFðx;a;a�dÞþFðx;a;aþdÞþ4Fðx;a;aÞÞ; 0:46 x60:6;
0; otherwise
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Fig. 5. Absolute pointwise error, initial condition (32). t ¼ 10.
As in Ref. [2], the constants for this case are taken as
a ¼ 0:5; z ¼ �0:7; d ¼ 0:005;a ¼ 10, and b ¼ log2=36d2.
The results at t ¼ 8 with 200 grid points are shown in Figs. 8 and 9.
From the zoomed plots in Fig. 10, it can be seen that the present
method improves the accuracy not only near the discontinuities,
but also for the peak of the half ellipse wave.

3.1.2. Nonlinear transport equation
The nonlinear transport equation can be written as
@u
@t
þ u

@u
@x
¼ 0; 0 6 x 6 2p

with initial and boundary conditions

u0ðxÞ ¼ 0:3þ 0:7sinðxÞ; 0 6 x 6 2p; periodic
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Fig. 6. Numerical results of linear transport equation, initial condition (33). t ¼ 6.
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Fig. 8. Numerical results of linear transport equation, initial condition (34). t ¼ 8.
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Fig. 9. Absolute pointwise error, initial condition (34). t ¼ 8.
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The Lax-Friedrichs splitting method is used, in which
f� ¼ 1

2 ðf ðuÞ � auÞ; f ðuÞ ¼ 1
2 u2, and a ¼ maxujf 0ðuÞj. Fig. 11 shows the

results at t ¼ 2 with grid number of N ¼ 80. It can be seen that, near
the shock, the solution calculated by the present scheme is closer to
the discontinuous points than those of WENO-Z scheme.

3.1.3. 1D Shock Wave Tube, Sod Problem
To examine the new scheme for nonlinear equations, the one-

dimensional Euler equations are solved for the 1D shock tube
problem.

1D Euler equations:

@U
@t
þ @F
@x
¼ 0 ð35Þ

where

U ¼
q
qu

qe

264
375 F ¼

qu

qu2 þ p

uðqeþ pÞ

264
375;p ¼ ðc� 1Þðqe� qu2=2Þ; c ¼ 1:4:

The initial condition is
ðq;u;pÞ ¼
ð1:0;0:0;1:0Þ; x 6 7:5;
ð0:125;0:0;0:1Þ; x > 7:5:

�
ð36Þ

In this case, the Roe’s Riemann solver is used. The grid points is
N ¼ 200. Fig. 12 give the density distribution. Both the WENO-Z
and present schemes capture the shock very well. The present
scheme improves the resolution near the discontinuities.

3.1.4. 1D Shock Wave Tube, Shu-Osher Problem
This problem is governed by the one-dimensional Euler Eq. (35)

with following initial condition:

ðq;u;pÞ ¼
ð3:857143;2:629369;10:3333Þ; when x < �4;
ð1þ esinð5xÞ;0:0;1:0Þ; when x P �4:

�
ð37Þ

where, e ¼ 0:2. This case represents a Mach 3 shock wave interact-
ing with a Sine entropy wave [4]. The results at time t ¼ 1:8 with
mesh size of 200 are plotted in Fig. 13. The ‘‘exact’’ solutions are
the numerical solutions of the original WENO-5 scheme with grid
points of N ¼ 8000. For this case, it can be seen that the present
WENO scheme resolves the profile better than the WENO-Z scheme.
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Fig. 10. Locally enlarged plot of Fig. 8.
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Fig. 11. Numerical results of nonlinear transport equation, t = 2.
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3.1.5. Two-dimensional Linear Conservation Equation with Variable
Coefficients

To test the multidimensional problems, the 2D linear conserva-
tion equation with variable coefficients is solved. The governing
equation is
0.5 U

0Y
@u
@t
þ @ð�yuÞ

@x
þ @ðxuÞ

@y
¼ 0; �1 6 x; y 6 1: ð38Þ
0
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Fig. 14. The initial distribution, the 2D variable coefficients problem.
and the periodic boundary conditions are used. The initial condition
is chosen as the characteristic function of a circle with radius 0:5 as
shown in Fig. 14. The problem represents a solid body rotation
[13,14]. The results at t ¼ 2 in a 100	 100 points grid are shown
in Fig. 15. Note that in Fig. 15, the exact solution at x ¼ �0:52 is
uð�0:52; yÞ ¼ 0. It can be seen that the present scheme obtains
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more accurate solution than the WENO-Z scheme, especially at the
location x ¼ �0:48 and x ¼ �0:52.

3.1.6. Two-dimensional Shock Vortex Interaction
A two-dimensional shock vortex interaction problem is solved

to further demonstrate the high resolution of the present scheme.
The two-dimensional Euler equations are solved for this problem:

@U
@t
þ @E
@x
þ @F
@y
¼ 0 ð39Þ

where

U ¼

q
qu

qv
qe

26664
37775;E ¼

qu

qu2 þ p

quv
uðqeþ pÞ

26664
37775;F ¼

qv
quv

qv2 þ p

vðqeþ pÞ

26664
37775;

p ¼ ðc� 1Þðqe� qðu2 þ v2Þ=2Þ; c ¼ 1:4:

The problem is taken from Jiang and Shu [2]. It describes the inter-
action between a stationary shock and a vortex. The computational
domain is taken to be ½0;2
 	 ½0;1
. A stationary Mach 1:1 shock is
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Fig. 15. Comparison of results on lines, the 2D variable coefficients problem. 1:
x ¼ �0:02; 2: x ¼ �0:48; and 3: x ¼ �0:52.
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Fig. 16. The pressure contours of present scheme, the 2D shock vortex interaction
flow. t ¼ 0:60.
positioned at x ¼ 0:5 and normal to the x-axis. Its left state is
ðq;u;v ;pÞ ¼ ð1;1:1 ffiffifficp ;0;1Þ. A small vortex is superimposed to the
flow on the left of the shock and is centered at
ðxc; ycÞ ¼ ð0:25; 0:5Þ. The vortex is described as a perturbation to
the velocity ðu;vÞ, temperature ðT ¼ p=qÞ, and entropy
ðS ¼ lnðp=qcÞÞ of the mean flow and denoted by the tilde values:

~u ¼ eseað1�s2Þsinh

~v ¼ �eseað1�s2Þcosh

eT ¼ �ðc� 1Þe2e2að1�c2Þ

4aceS ¼ 0

where s ¼ r=rc and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
q

; e indicates the
strength of the vortex, a controls the decay rate of the vortex, and
rc is the critical radius for which the vortex has the maximum
strength. As in the Refs. [2,15], e ¼ 0:3; rc ¼ 0:05, and a ¼ 0:204
are adopted in this paper. The time step is taken as follows [16]:
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Fig. 17. Comparison of pressure at the central line downstream the shock, the 2D
shock vortex interaction flow. t ¼ 0:60.
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Fig. 18. Comparison of pressure at the central line cross the vortex, t ¼ 0:60.
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Dt ¼ d
DtxDty

Dtx þ Dty
; with Dtx ¼

Dx
maxi;jðjui;jj þ ci;jÞ

;

Dty ¼
Dy

maxi;jðjv i;jj þ ci;jÞ
ð40Þ

where d ¼ 0:5 is the CFL number.
Fig. 16 is the pressure contours at t ¼ 0:60. Figs. 17 and 18 are

the comparisons of the pressure between the present and the ori-
ginal scheme along the center line at y ¼ 0:5. In order to show the
accuracy of the new scheme, the results obtained by the WENO-Z
scheme with a refined mesh of 1001	 401 is also given. With
the same coarse mesh density of 251	 101, the new scheme
obtains more accurate results than the original scheme. Fig. 17 also
shows that the new scheme has the sharper shock profile. Fig. 18
indicates that the new scheme achieves lower vortex core pressure
due to lower numerical dissipation.

4. Conclusions

The analysis of this paper indicates that all the current WENO
schemes reduce their order of accuracy at the transition points
near discontinuities to third order. A new method combining the
forth-order fluxes with higher order smoothness indicators is
suggested and overcomes this drawback. The order of accuracy
immediately next to a discontinuity is improved to fourth order,
whereas the order of accuracy in smooth regions is maintained
as fifth order. Numerical examples with 1D linear and nonliner
Euler equations, 2D Euler equations, all show that the new scheme
is more accurate to resolve the flow solutions near discontinuities.
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