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A global shallow-water model on an icosahedral–hexagonal grid
by a multi-moment constrained finite-volume scheme
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A third-order global shallow-water model was developed on an icosahe-
dral–hexagonal grid with the application of the multi-moment constrained
finite-volume (MCV) method. Using the hexagonal grid, the sphere is divided
into quasi-uniform elements and free of polar problems. The MCV model defines
seven degrees of freedom (DOFs) as the prognostic variables which are the point
values at the six vertices and the centre for each hexagonal element to construct a
third-order scheme. The time evolution equations to update the DOFs are derived
through the constraint conditions on different moments, i.e. the point value and the
volume-integrated average (VIA) moments. Rigorous conservation is guaranteed
by the constraint on the VIA through a flux form. The MCV formulation is very
simple and easy to implement. We evaluated the model with benchmark tests, and
the competitive results reveal the proposed model to be an accurate and practical
framework for developing general circulation models.
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1. Introduction

High-quality quasi-uniform grids play an important role in
improving the performance of general circulation models
(GCMs). Being a quasi-uniform grid, the icosahedral
geodesic grid was first proposed by Sadourny et al.
(1968) and Williamson (1968) and projected an inscribed
icosahedron onto the spherical surface to avoid the polar
problems of the traditional latitude–longitude (lat–long)
grid. In the past few decades, the icosahedral geodesic
grid has been extensively used among the atmospheric and
oceanic modelling community as one of the most preferred
grids. Efforts have been made to develop global models using

the icosahedral geodesic grid. Some representative studies
include Lipscomb and Ringler et al. (2005), Miura (2007)
and Skamarock and Menchaca (2010) for transport models,
Tomita et al. (2001), Lee and MacDonald (2008), Ii and Xiao
(2010) and Ringler et al. (2010) for shallow-water models
and Majewski et al. (2002) and Satoh et al. (2008) for the
non-hydrostatic dynamic core. A more complete survey can
be found in the review paper by Staniforth and Thuburn
(2012).

Both triangular and hexagonal elements can be generated
from an icosahedron with quasi-uniform areas over the
whole spherical surface which is highly desirable for
global computations. Compared to the triangular Delaunay
tessellation, the hexagonal Voronoi tessellation is more
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attractive in global grid uniformity, for the arrangement of
local degrees of freedom (DOFs) for reconstruction, and
for accuracy and robustness in flux computation. Weller
et al. (2008) compared spherical shallow-water models using
different grids, and demonstrated the favorable performance
of the hexagonal grid.

One of the major drawbacks of an icosahedral grid is
the unstructured connections among the mesh elements
(St-Cyr et al., 2008; Ringler et al., 2008). As a result,
researchers have met difficulties in developing high-order
global models, which usually require considerably large
stencils for spatial reconstructions. Moreover, selection
and optimization of reconstruction stencils for high-order
schemes on unstructured grids essentially affect the quality
of the Vandermonde matrix, and are known to present a
challenging task to the computational fluid dynamics (CFD)
community. To our knowledge, most existing global models
on an icosahedral grid possess second-order accuracy or less.

Another trend recently seen is the use of high-order
methods with more local DOFs, such as the discontinuous
Galerkin (DG) method (Cockburn and Shu, 1998) and the
spectral element (SE) method (Patera, 1984), to construct
more accurate dynamic cores on spherical grids. Some
prototypes of this kind are found in Giraldo (2006),
Nair et al. (2009), Dennis et al. (2005) and Dennis et al.
(2012), among others. With more DOFs defined locally
within each computational element, high-order spatial
reconstructions can be built on a compact stencil (over
a single cell in most cases). These high-order schemes
are very beneficial for unstructured grids because they
avoid spatial reconstructions over the large stencils.
Nevertheless, applications of the DG and SE methods
in global atmospheric and oceanic modelling, including
the aforementioned studies, are mainly limited to the
quadrilateral elements which are generated from either a
cubed-sphere grid or a kite grid that first partitions an
icosahedron into small triangles and then further divides
the triangles into quadrilaterals (Staniforth and Thuburn,
2012). However, these high-order models are more
computationally intensive compared to the conventional
finite-volume method, and usually meet a more restrictive
CFL condition for computational stability.

A more intuitive and efficient method, the so-called multi-
moment constrained finite volume (MCV) method, was
proposed by Ii and Xiao (2009). As a high-order scheme
with increased local DOFs, solution points are located within
each mesh cell (control volume) where the point values
(PVs) are updated as the prognostic variables. Given more
local DOFs, cell-wise high-order reconstruction can be built.
The point values are updated by time evolution equations
which are derived from the constraint conditions on multi-
moments which are the PV and the volume-integrated
average (VIA). The MCV method shows advantages in
algorithmic simplicity, computational efficiency and a less
restrictive CFL condition in comparison with other existing
high-order schemes with local reconstructions. The MCV
scheme is robust and well suited for constructing high-order
models on unstructured grids (Akoh et al., 2010; Ii and Xiao,
2010). Ii and Xiao (2010) developed third- and fourth-order
shallow-water models using the MCV scheme and triangular
elements on an icosahedral grid.

In this article, instead of using triangular elements,
we implement a MCV scheme for the shallow-water
model on hexagonal mesh elements of an icosahedral

grid. The hexagonal element, which has more boundary
edges and larger angles between two intersecting edges,
provides another more favorable mesh configuration to
develop MCV high-order global models. Using the MCV
scheme, we have already developed a global model on an
icosahedral–hexagonal grid for scalar transport (Chen et al.,
2012). By defining seven local DOFs over each hexagonal
element, our model achieves third-order accuracy.

In this article, we extend our MCV model to the system of
conservation laws and propose a global shallow-water model
on an icosahedral–hexagonal grid. In our implementation,
we define the water depth and momentum vector at the
same location, which we have called the M-grid (described
in Xiao et al., 2006). Since we always adopt at least two kinds
of moments, the dispersion relation of the multi-moment
scheme is different from the Arakawa A-grid. For example,
the dispersion relation of a multi-moment model for the
linearized shallow-water equations combines the advantages
of both the A- and C-grids, and gives a reasonably accurate
numerical dispersion for all deformation radii with respect to
grid resolution. As other high-order schemes which use more
than one DOF for local reconstructions, the multi-moment
constraint scheme has computational modes. However, the
computational modes are exponentially damped out due
to the properly embedded numerical dissipation via the
solutions of Riemann problems of the hyperbolic system.

The rest of this article is organized as follows. In section 2,
the configuration of DOFs and the numerical formulations
to discretise the shallow-water equations using the third-
order MCV scheme on an icosahedral–hexagonal grid are
described. Several benchmark tests for the shallow-water
model on the sphere are computed and presented in section 3
to verify the convergence rate and performance of the present
model. Finally, a short conclusion is given in section 4 to
summarize this study.

2. Global shallow-water model by a third- order MCV
scheme

2.1. Governing equations

To develop the global shallow-water model on the
icosahedral–hexagonal grid, we adopted the governing
equations in three-dimensional Cartesian coordinates
(Williamson et al., 1992), instead of those in lat-long
coordinates to get around the polar singularity. Governing
equations of flux-form are written as

∂tQ + ∂xE + ∂yF + ∂zG = S , (1)

where dependent variables Q = [h, hu, hv, hw]T are water
depth and momentum components in the x, y and z
directions, and the flux functions are

E =
[

hu, hu2 + 1

2
gh2

t , huv, huw

]T

, (2)

F =
[

hv, huv, hv2 + 1

2
gh2

t , hvw

]T

, (3)

G =
[

hw, huw, hvw, hw2 + 1

2
gh2

t

]T

. (4)
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The source terms include Coriolis force and topographic
effect as

S =


0

f
R

(
zhv − yhw

) + ghs∂xht

f
R (xhw − zhu) + ghs∂yht

f
R

(
yhu − xhv

) + ghs∂zht

 , (5)

where
(
x, y, z

)
is the location in Cartesian coordinates, hs the

height of bottom mountain, ht = h + hs the total height of
water surface and f = 2�z/R the Coriolis parameter. R =
6371220 m, � = 7.292 × 10−5s−1 and g = 9.80616 m s−1

are the radius, angular velocity and gravity acceleration of
the Earth, respectively.

Total height is adopted for the height gradient part of
the flux terms (2)–(4). Solving governing equations of this
form makes the numerical model automatically satisfy the
‘C-property’ (Xing and Shu et al., 2005), which means that
an exact still solution should be always guaranteed when
water is still and the total height is constant. Our previous
study (Chen and Xiao, 2008) shows that a numerical scheme
satisfying the ‘C-property’ can remove the non-physical
oscillations in numerical solutions when topography is
included.

Using the three-dimensional governing equations (1) to
construct the shallow-water model on the sphere, which
actually describes the two-dimensional flows in lat–long
coordinates, requires a velocity (or momentum) correction
to assure that the velocity (or momentum) vector is restricted
in the tangential direction of the spherical surface. In this
study, the predicted momentum vector [hu, hv, hw]T at
each Runge–Kutta substep is multiplied by the projection
matrix (Williamson et al., 1992) as

P = 1

R2

 R2 − x2 −xy −xz

−xy R2 − y2 −yz

−xz −yz R2 − z2

 . (6)

2.2. Configuration of DOFs and spatial reconstruction

The computational grid is generated as in our previous study
(Chen et al., 2012). The spherical icosahedron is generated
by projecting an inscribed icosahedron onto the sphere. The
spherical triangular grid is then constructed on each piece of
the spherical icosahedron by equidistantly dividing the edges
of the icosahedron into N arcs and N is adopted to represent
the grid resolution. The details of the above procedure can
be found in the Appendix of Ii and Xiao (2010). Finally, the
spherical hexagonal–pentagonal grid is obtained by simply
connecting the centre of six or five (around twelve vertices
of icosahedron) triangles sharing the same grid point.

Though no special technique is used in the present study
to improve the quality of grid, our global MCV model gives
uniform third-order convergence rate (shown in section 4
for benchmark tests), which reveals that the present model
is robust for computational grids. This is one of the major
merits of using ‘localized’ schemes on spherical hexagonal
grids. Various techniques have been investigated to further
improve the quality of the hexagonal grid, such as the
strategy of using spring dynamics proposed by Tomita et al.
(2001). These techniques can be easily transplanted into the
present model and may well further improve the accuracy
of the global model.

(a)

(b)

Figure 1. Configuration of DOFs for (a) hexagonal and (b) pentagonal
elements.

Using the multi-moment concept, multiple DOFs within
each element are defined and updated to build the local
high-order spatial reconstruction. This has been proven in
our previous work (Ii et al., 2005; Akoh et al., 2010; Ii and
Xiao, 2010) to be a practical way to construct accurate,
robust and efficient high-order schemes on unstructured
grids. For the computational element Ci, configuration of
DOFs is shown in Figure 1. Within a hexagonal element
(Figure 1(a)), seven local DOFs are defined as point values
at six vertices (Pi1 to Pi6 denoted by solid circles) and
the centre of the element (Pi7 denoted by solid triangle).
Similarly, within a pentagonal element (Figure 1(b)), six
DOFs are defined including point-wise values at five vertices
(Pi1 to Pi5 denoted by solid circles) and the centre of the
element (Pi6 denoted by solid triangle). The DOFs defined
at vertices are shared by three adjacent elements. As a result,
the total number of the DOFs adopted by the present model
on grid N is 30N2 + 2, including 20N2 DOFs at the vertices
and 10N2 + 2 at the cell centres.

Using DOFs within each element, a single-cell-based
quadratic spatial reconstruction for any physical field ψ can
be obtained. For control volume Ci, it is written as

ψ̂i
(
λ(i), θ(i)

) = c00 + c10λ
(i) + c01θ

(i)

+ c11λ
(i)θ (i)+ c20

(
λ(i)

)2+ c02
(
θ(i)

)2

+ c12

[(
λ(i)

)2
θ(i)+ λ(i)

(
θ(i)

)2
]

(7)

for a hexagonal element and

ψ̂i
(
λ(i), θ(i)

) = c00 + c10λ
(i)+ c01θ

(i)

+ c11λ
(i)θ (i)+ c20

(
λ(i)

)2+ c02
(
θ(i)

)2
(8)

for a pentagonal element, where
(
λ(i), θ(i)

)
is a rotated

lat–long grid with origin at the centre of elements Ci.
The coefficients are determined by solving the equation set

provided by seven (hexagonal element) or six (pentagonal
element) DOFs. The numerical procedure is the same as that
adopted in the advection model (Chen et al., 2012).
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2.3. Numerical formulations

2.3.1. Multi-moment constraints

We define two kinds of moments (constraints) to derive
the formulations for updating the DOFs defined above, i.e.
the PV moment and VIA moment. They are defined for the
physical field ψ as follows.

• The PV moment is defined at the vertices of a control
volume. At point Pim (m = 1 to M − 1) shown in
Figure 1, it is written as

Pψ im (t) = ψ
(
xim, yim, zim, t

)
, (9)

where M = 7 for a hexagonal element and M = 6 for
a pentagonal element.

• The VIA moment is defined over each control volume.
For control volume Ci, it is written as

Vψ i (t) = 1

|Ai|
∫
Ci

ψ
(
x, y, z, t

)
ds, (10)

where |Ai| is the area of control volume Ci.

Shown above, we have M local DOFs and can use spatial
reconstruction (7) or (8) to connect the local DOFs and
the multi-moment constraints by the following constraint
relations:

ψim = Pψ im (m = 1 to M − 1) (11)

at the vertices and

ψiM =
M−1∑
m=1

(
αim

Pψ im

)
+ αiM

Vψ i (12)

at the centre, where coefficients αim (m = 1 to M) are
obtained by integrating the spatial reconstruction over the
spherical hexagonal or pentagonal element. The quadrature
formulations were given in Appendix B of Chen et al. (2012).

Equations (11) and (12) connect the unknown DOFs with
the moments. So, once the time evolution equations for the
moments PV and VIA are obtained, we can immediately
get the time evolution equations to update the DOFs,
which can be solved by a Runge–Kutta scheme. The time
evolution equations in a semi-discretized form of PV and
VIA moments are described as follows.

2.3.2. Updating the PV moment

Differential-form governing equations are adopted to update
the PV moment. As shown in Figure 2, for example, the PV
moment defined at point Pi1 is updated using

∂t

(
PQi1

)
=− (∂xE)i1−

(
∂yF

)
i1
− (∂zG)i1+ Si1. (13)

The derivatives of the flux components, i.e. the derivatives
of E, F, G with respect to x, y, and z respectively, are
computed at cell vertex Pi1. The source term is calculated at
Pi1 using local values of dependent variables and coordinates
for the Coriolis force, as well as the derivatives of total height
with respect to x, y, and z for the topographic term. The
derivatives of total height are first evaluated within the

Figure 2. Derivative Riemann problem for updating the PV moment.

three elements sharing Pi1 separately. Generally, these three
values might be different, and an averaging is adopted to get
derivatives in the topographic source term.

To construct the upwind scheme, a derivative (or general)
Riemann problem is solved at Pi1. For the sake of brevity,
we only describe the discretization conducted in the x
direction. Formulations in the other two directions can be
simply obtained by a similar procedure.

At point Pi1, the derivative Riemann solver in the x
direction is written as (Ii and Xiao, 2009)

(∂xE)i1 = 1

2

[
(∂xE)+i1 +(∂xE)−i1

]+ a
[
(∂xE)+i1 −(∂xE)−i1

]
(14)

where

a = 1

2
R sgn (�) R−1, (15)

and matrixes� and R consist of eigenvalues and eigenvectors
of the Jacobian matrix A of flux component E, i.e.
A = ∂E/∂Q.

Since the point values of all the physical variables are
available at the vertices where the DOFs are updated, the
corresponding matrixes � and R can be directly calculated.

The derivatives of flux component E with respect to
x are evaluated within upstream and downstream cells
respectively, i.e. (∂xE)+i1 and (∂xE)−i1 in (14). The formulations
developed in Chen et al. (2012) for a global transport model
on the same grid are used straightforwardly to evaluate these
derivatives. As shown in Figure 2, we consider the calculation
of (∂xE)−i1 within the downstream cell in the x direction, i.e.
control volume Ci. The numerical procedure is summarized
as follows.

A local coordinate system (ξ , η, r) is constructed along
two sides li6 (ξ) and li1 (η), which intersect at point Pi1, as
well as the sphere radius r. The locations of points Pi1, Pi13,
Pi8, Pi6 and Pi2 are (0, 0, R), (0.5, 0, R), (0, 0.5, R), (1, 0, R)

and (0, 1, R) in the local coordinate system, where points
Pi8 and Pi13 are the centres of the arcs l1 and l6. Given the
point-wise values of flux component E at these five points,
we can easily calculate the derivatives of E with respect to ξ

and η at point Pi1 by(
∂ξ E

)
i1

= −3Ei1 + 4Ei13 − Ei6 ,(
∂ηE

)
i1

= −3Ei1 + 4Ei8 − Ei2 .

}
(16)

Using the chain rule, we can get (∂xE)−i1. The details can
be found in (32) and (33) of Chen et al. (2012).
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At three vertices of Ci, Ei1, Ei2 and Ei6 are calculated using
DOFs defined there directly. In order to determine Ei8 and
Ei13, the point-wise values of dependent variables at the
centre of these two sides, i.e. Qi8 and Qi13, are evaluated as
follows.

We first evaluate them within two adjacent cells
respectively as

Q(i)
i8 = Q̂i

(
λ

(i)
i8 , θ(i)

i8

)
, Q

(j)
i8 = Q̂j

(
λ
(j)
i8 , θ

(j)
i8

)
, (17)

and

Q(i)
i13 =Q̂i

(
λ

(i)
i13, θ(i)

i13

)
, Q(k)

i13 =Q̂k

(
λ

(k)
i13, θ(k)

i13

)
, (18)

where Q̂i
(
λ(i), θ(i)

)
, Q̂j

(
λ(j), θ(j)

)
and Q̂k

(
λ(k), θ(k)

)
denote

the cell-wise interpolation functions (7) or (8) over cell
elements Ci, Cj and Ck respectively.

In general, Q(i)
i8 �= Q

(j)
i8 and Q(i)

i13 �= Q(k)
i13. The numerical

flux E at these points is then computed by averaged

values of dependent variables, i.e. Qi8 = (Q(i)
i8 + Q

(j)
i8 )/2

and Qi13 = (Q(i)
i13 + Q(k)

i13)/2.

2.3.3. Updating the VIA moment

As in our previous studies, VIA constraints are updated
through the flux-form formulation to guarantee mass
conservation in the numerical model. For any dependent
variable Q(β) (β = 1 to 4, denoting the water height and
the components of momentum in three directions), the
governing equation in flux-form for the VIA moment over

the control volume Ci, i.e. V Q(β)
i, is written as

∂t

(
V Q(β)

i

)
=− 1

|Ai|
∫
Ci

(∇ · H(β)
)

ds + 1

|Ai|
∫
Ci

S(β)ds, (19)

where H(β) = (
E(β), F(β), G(β)

)
denotes the flux vector.

The second term on the right-hand side of (19) is
calculated through seven- or six-point quadrature within
a hexagonal or pentagonal element, respectively. The
coefficients are found in (12).

The first term on the right-hand side of (19) is the surface
integral of divergence of the flux vector over the spherical
element. Using Gauss’s theorem, it is rewritten as

∫
Ci

(∇ · H(β)
)

ds =
M−1∑
m=1

∫
lim

(
H(β) · nlim

)
dl

+ 2

R

∫
Ci

(
H(β) · nCi

)
ds, (20)

where nlim is the outward unit normal direction of side lim
(tangent to the spherical surface), R is radius of the sphere
and nCi is the outward unit normal of spherical element Ci.

The first term on the right-hand side of (20) is the line
integral along the edges of the control volume. It is calculated
through a three-point Simpson’s rule. For example, we
consider the flux computation along the side li1 of control
volume Ci as shown in Figure 3,∫

li1

(
H(β) ·nli1

)
dl = |li1|

6

(
H(β)

i1 + 4H(β)
i8 + H(β)

i2

)
·nli1 , (21)

Figure 3. Evaluation of numerical flux across the cell’s boundary.

where |li1| is the length of arc li1.
As we have discussed above, point values at two vertices

H(β)
i1 and H(β)

i2 are calculated by DOFs defined there directly.

Here we determine H(β)
i8 by solving a Riemann problem at

the centre of the arc li1, which is shared by control volumes
Ci and Cj. The point-wise value of the flux vector in the
normal direction is computed by Fn = nx

li1
E + n

y
li1

F + nz
li1

G,

and nx
li1

, n
y
li1

and nz
li1

are components of the unit outward
normal vector nli1 in different directions.

At the centre of each side, recall that we have obtained two
different values for the dependent variables from the spatial

reconstructions of two adjacent cells, i.e. Q(i)
i8 and Q

(j)
i8 at

point Pi8. First, two discontinuous values of the flux vector
are obtained at this point as

Fn
i8

+ = Fn
(

Q(i)
i8

)
and Fn

i8
− = Fn

(
Q

(j)
i8

)
, (22)

where superscript ‘+’ denotes the upstream cell Ci according
to the outward normal direction nli1 and ‘−’ denotes the
downstream cell Cj.

Second, we solve the Riemann problem in the normal
direction to determine the numerical flux at the centre of
edge li1. We get

Fn
i8 = 1

2

(
Fn

i8
+ + Fn

i8
−) + an

(
Fn

i8
+ − Fn

i8
−)

, (23)

where

an = 1

2
Rnsgn

(
�n

) (
Rn

)−1
, (24)

�n and Rn are the diagonal matrix of the eigenvalues and the
matrix of corresponding eigenvectors of the Jacobian matrix
An = ∂Fn/∂Q, which are evaluated through averaging

Qi8 = (Q(i)
i8 + Q

(j)
i8 )/2.

Finally, at point Pi8 we get the flux vector as

H(β)
i8 · nli1 = Fn

i8
(β)

. (25)

The second term on the right-hand side of (20) is a surface
integral over the spherical cell for a correction due to the
fact that the flux vector H(β) (β = 2 to 4) is not tangential
to the spherical surface. Considering the expressions of flux
components shown in (2), (3), (4), this term is written for
different variables separately as∫

Ci

(
H(1) · nCi

)
ds = 0 (26)
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Table 1. Normalized errors and convergence rate of case 2 at day 5 on refined grids with γ = 0.

Grid l1 l2 l∞

error order error order error order

N = 9 6.633e–4 – 7.172e–4 – 1.023e–3 –
N = 18 8.272e–5 3.00 9.008e–5 2.99 1.276e–4 3.00
N = 36 1.034e–5 3.00 1.128e–5 3.00 1.597e–5 2.99
N = 72 1.293e–6 3.00 1.410e–6 3.00 1.997e–6 3.00

for the continuity equation and∫
Ci

(
H(2) · nCi

)
ds = 1

2
g

∫
Ci

(
nx
Ci

h2
t

)
ds, (27)∫

Ci

(
H(3) · nCi

)
ds = 1

2
g

∫
Ci

(
n

y
Ci

h2
t

)
ds, (28)∫

Ci

(
H(4) · nCi

)
ds = 1

2
g

∫
Ci

(
nz
Ci

h2
t

)
ds, (29)

for the momentum equations in different directions, where
nx
Ci

, n
y
Ci

and nz
Ci

are the x, y and z components of unit
vector nCi , the surface integral is accomplished by 7-point
(within hexagonal cell) or 6-point (within pentagonal cell)
quadrature formulation and the coefficients are derived
from (12) as the second term on the right-hand side of (19).

After the discretization of spatial differential terms,
we obtain a set of semi-discretised equations, and a
Runge–Kutta scheme for ordinary differential equation
is then used for time updating. To achieve third-order
accuracy, the third-order TVD Runge–Kutta scheme (Shu,
1988) is adopted. The numerical procedure is same as the
time integration in our transport model (Chen et al., 2012).

We have presented in this section the third-order
MCV model for global shallow-water equations on the
icosahedral–hexagonal grid. Using local DOFs, this model
builds high-order reconstructions over a single-cell stencil
and is very suited for global models on an icosahedral
spherical grid. Implementing the MCV scheme on a
hexagonal tessellation results in a concise and easy-to-use
discretization formulation which has rigorous numerical
conservation and third-order accuracy, as will be shown
next.

3. Numerical tests

3.1. Williamson’s test case 2: Steady-state geostrophic flow

The height field is written in lat–long coordinates as

gh = gh0− u0

2
(2R� + u0)(sin θ cos γ −cos λ cos θ sin γ )2,

(30)

where u0 = 2πR/
(
12 days

)
, gh0 = 2.94 × 104m2/s2, and γ

represents the angle between rotation axis and the Earth’s
axis.

The velocity field (uλ, uθ ) in lat–long coordinates is
specified as

uλ = u0 (cos θ cos γ + sin θ cos λ sin γ ) ,
uθ = −u0 sin λ sin γ.

}
(31)

The initial conditions generate a balanced geostrophic
flow, so the height and velocity fields should keep their

Table 2. Normalized errors of case 2 at day 5 on grid N = 18 in different
rotation directions.

Direction l1 error l2 error l∞ error

γ = 0 8.272e–5 9.008e–5 1.276e–4
γ = π/4 7.155e–5 8.222e–5 1.778e–4
γ = π/2 7.988e–5 9.052e–5 9.052e–5

initial distribution during computation. Since the height
field is considerably smooth and the exact solution is known
to be same as the initial condition, we run this test on a series
of refined grids to numerically check third-order accuracy
of the proposed shallow-water model.

We integrate for 5 days on grids of different refining levels
and show in Table 1 the normalized errors l1, l2 and l∞
(defined following Williamson et al., 1992) of the height
field for eastward rotation. Uniformly third-order accuracy
is verified in this test. Our MCV model achieves third-order
accuracy for the system of conservation laws, as did our
previous study for scalar advection (Chen et al., 2012). In
other rotation directions, the same convergence rates are
observed and are not given for the sake of brevity. We show
the normalized errors for tests on grid N = 18 with different
rotation directions in Table 2. The l1 and l2 errors are almost
independent of the rotation direction. l∞ error shows a
slightly larger value for the γ = π/4 case. This is probably
because the flow path in this case contains more pentagonal
cells.

This test case was also reported by Tomita et al. (2001)
and Ringler et al. (2010) on an icosahedral–hexagonal grid.
At day 5, our results (Table 1) are better than those of Tomita
et al. (2001) (their Figure 10), where their grids of level 4, 5,
6, 7 adopt 2 562, 10 242, 40 962, 163 842 DOFs, a little more
than our grids N = 9, N = 18, N = 36 and N = 72 with
2 432, 9 722, 38 882, 155 522 DOFs, respectively. In Ringler
et al. (2010), this was integrated to day 12 and numerical
errors are shown in their Figure 7. Normalized errors of
the present model on refined grids are similarly depicted
in Figure 4. Although our model gives larger errors on
the coarsest grid, it converges much faster with refining
resolutions and the present MCV model is more accurate
on fine grids. Compared with the MCV model on an
icosahedral–triangular grid (Ii and Xiao, 2010), a more
uniform convergence rate is observed in the present study.

Figure 5 in Ringler et al. (2010) shows the normalized
l2 and l∞ errors after integrating case 2 for one year by
the TRiSK∗ model. Since the TRiSK model pays particular
attention to the balance and conservation, the numerical
result arrived at a balanced state and errors did not increase

∗so called after Thuburn et al. (2009).
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Figure 4. Convergence of the height field of case 2 after integrating for
12 days on refined grids.

with time in their result for case 2. Figure 5 gives the
normalized l2 and l∞ errors after integrating case 2 for one
year by the present model. The present model has numerical
dissipation and therefore does not conserve the total energy.
As a result, the two normalized errors linearly increase with
time during the integration.

The numerical solution and absolute error of the height
field for eastward rotation on grid N = 9 after integrating
the MCV model for 5 days are shown in Figure 6. The
distribution of absolute error shows a five-wave pattern
due to the patch boundaries on the spherical icosahedron.
To compare with the multi-moment model on the cubed-
sphere grid shown in Figure 10 in Chen and Xiao (2008),
we depict the numerical result on grid N = 72 for northeast
rotation in Figure 7. The normalized errors on grid N = 72
by the present model have the similar magnitude (of order
10−6) as those shown in Figure 10 in Chen and Xiao (2008)
on the cubed-sphere grid. However, much larger noise is
found around the patch boundaries on the cubed sphere.
This explains why we obtain a very uniform convergence rate
by the present model. It can be expected that we can obtain
a more uniform convergence rate on the icosahedral grid
than the cubed-sphere grid with high resolutions because
the excessive errors generated by patch boundaries usually
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Figure 5. Normalized l2 and l∞ errors of the height field of case 2 after
integrating for one year on grid N = 36.

converge more slowly than the truncation errors of the
spatial discretizations within each patch.

3.2. Williamson’s test case 5: Zonal flow over an isolated
mountain

Balanced height and velocity fields are given as in the
previous test, except the computational parameters are
chosen as h0 = 5960 m and u0 = 20 m s−1. Additionally,
a bottom mountain centred at (λc, θc) = (3π/2, π/6) is
specified as

hs = hs0

(
1 − d

d0

)
, (32)

where d = min
[

d0,
√

(λ − λc)
2 + (θ − θc)

2
]

and parameters are chosen as hs0 = 2000 m, d0 = π/9.
This test checks the performance of numerical models

dealing with the topographic source term. The ‘C-property’
mentioned in section 2 is of essential importance in this
test. Non-physical oscillations can be found along the
mountain boundary in numerical solutions not satisfying
the ‘C-property’, for example in the high-resolution spectral
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Figure 8. Numerical solutions of the (a) total height field and (b) absolute error of Williamson’s standard test case 5 on grid N = 36 (No. of DOFs:
38 882) at day 15.

transform solution on grid T213 shown in Jakob-Chien et al.
(1995) (their Figure 5.1).

Numerical results of the total height field after integrating
the proposed MCV model for 15 days on grid N = 36
are shown in Figure 8(a). The present model rigorously
guarantees the ‘C-property’, thus there is not any visible
oscillation around the bottom mountain. There is no
analytic solution for this test. The absolute error of the
total height field is calculated against the spectral transform
solution to this test on T426 grid (available online at
http://icon.enes.org/; provided by the German National
Meteorological Service, DWD) and shown in Figure 8(b). It

is observed that the significance errors are generated around
the topography in the spectral transform solutions on T42
and T63 grids (Figure 5.2 in Jakob et al., 1993), while it is
not a significant problem to the present model.

The present model conserves the total mass to machine
precision. Additionally, the conservation errors of the total
energy and potential enstrophy are small due to the accuracy
of the MCV model. The normalized conservation errors of
the total energy and potential enstrophy are shown in
Figure 9 for simulations on grids N = 9, N = 18, N = 36
and N = 72. Unlike Jakob-Chien et al. (1995), we give
the absolute values of errors for clear illustration on a
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Figure 11. As Figure 9, but for Williamson’s standard test case 6 on refined grids.

logarithmic scale. With refined grid resolution, conservation
errors continue to decrease. The conservation error of the
total energy by our model on grid N = 36 is competitive
with the spectral transform solution on grid T42 (Figure 5.3
in Jakob-Chien et al., 1995).

3.3. Williamson’s test case 6: Rossby–Haurwitz wave

The Rossby–Haurwitz wave still provides a good test bed for
global middle-term simulations. The details of the set-up of
this test case were given in Williamson et al. (1992). The flow
field of the Rossby–Haurwitz wave test is complicated and
consists of phenomena of different scales. A high-order
model with less numerical dissipation is more suitable

to simulate this test. Similar to the isolated mountain
test, there is no existing analytic solution. We consider
the spectral transform solution on the fine T213 grid
(Jakob-Chien et al., 1995) as the reference for its high-order
accuracy.

Numerical solutions of the present model on different
grids with N = 48 and N = 96 are shown in Figure 10 for
the height field at day 7 and day 14. Overall, both the basic
structure and phase speed of our results agree well with
the reference solution at day 7 and day 14. Comparing the
numerical results with different grid resolutions, structures
look almost identical at day 7. At day 14, obvious difference
between numerical results with different grid resolutions
is observed at the 8500 contour. It is closed on coarse
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Figure 12. Numerical solutions of the relative vorticity field of the balanced jet flow at day 5 on (a) grid N = 40 with 48 002 DOFs, and (b) grid N = 160
with 768 002 DOFs.

grid N = 48. Furthermore, the 10 500 circle is found to
be larger on fine grid N = 96. Similar changes are found
in the spectral transform solutions on T42 and T63 grids
(Figure 5.7 in Jakob-Chien et al., 1995). The main reason
for this change is the reduced numerical dissipation due to
the smaller grid spacing.

Mass is exactly conserved by the present model.
Normalized conservation errors of the total energy and
potential enstrophy are shown in Figure 11 for simulations
on grids N = 9, N = 18, N = 36 and N = 72. As in the
previous test, conservation errors continue to decrease with
the increase of grid resolution. Our solution on grid N = 36
is competitive with the spectral transform solution on grid
T42 in terms of total energy error (Figure 5.9 in Jakob-Chien
et al., 1995).

3.4. Perturbed jet flow

A perturbed jet flow test was proposed by Galewsky et al.
(2004). A balanced height and velocity field are given
similarly as Williamson’s test case 2, but within a very
narrow belt zone (Galewsky et al., 2004, give details of the
set-up). As a result, the balance relation in the solution is
easily destroyed by numerical errors including the initial
imbalance and the truncation errors. We first test the
balanced set-up without any perturbation in the height
field. Numerical results of the relative vorticity field at day 5
are shown in Figure 12 for simulations on grids N = 40 and
N = 160. On coarse grid N = 40, the 5-wave phenomenon
is visible mainly due to the extra numerical errors caused
by five internal boundaries between different patches of
the spherical icosahedron. On the fine grid N = 160, the
balance condition is preserved during numerical simulation.
Additionally, we give evolution of normalized l1 errors of
the height field in Figure 13 for simulations on refined
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Figure 13. Normalized l1 errors of height field of the balanced jet flow
computed on refined grids.

grids. The number of DOFs on grid N = 85 is equivalent to
those of the tests shown in Figure 7 of Weller (2012). The
normalized l1 errors by three different models (the multi-
moment model on triangular mesh, the multi-moment
on hexagonal mesh and the TRiSK model) at day 5 are
of similar magnitude. The errors of two multi-moment
models have the same evolution pattern, i.e. the error
grows constantly during 5 days. Whereas, in the TRiSK
model, numerical error grows very slowly in the first two
to three days, as shown in Figure 7(a) in Weller (2012),
and then grows more rapidly than two multi-moment
models.
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Figure 14. Numerical solutions of relative vorticity field of the perturbed jet flow at day 6 on various refined grids: (a) N = 40 with 48 002 DOFs, (b)
N = 80 with 192 002 DOFs, (c) N = 120 with 432 002 DOFs, and (d) N = 160 with 768 002 DOFs.

Second, we add a small perturbation to the height field
to test the perturbed jet flow. This test case runs on a
series of refined grids to check the convergence of relative
vorticity fields at day 6. The reference solution is given in
Galewsky et al. (2004) using a spectral transform model on
fine grid T341. Numerical results of the relative vorticity
field of the perturbed jet flow by integrating the MCV
model for 6 days are shown in Figure 14 for simulations
on grids N = 40, N = 80, N = 120 and N = 160. On the
coarse grid with N = 40, the result (Figure 14(a)) looks
very different from the reference solution and the wave
pattern is dominated by numerical errors. On the grid with

N = 80 (Figure 14(b)), the difference between the numerical
solution and the reference one is apparent only in the area
from longitude −270◦ to −180◦. On the grids with N = 120
and N = 160, the numerical results (Figure 14(c, d)) look
almost the same and the flow structures agree well with the
reference solution.

4. Conclusion

We have extended our global transport model (Chen
et al., 2012) to a system of conservation laws (shallow-
water equations) by implementing the MCV method on
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an icosahedral–hexagonal spherical grid. All computational
variables (unknowns) are the point values of physical fields
defined at the vertices and the centre of elements; this allows
us to construct a third-order spatial discretization scheme
based on a single-cell stencil. The time evolution equations
of both PVs and VIAs are used as the constraint conditions
to derive the equations for updating the unknowns. The
VIA constraint leads to a finite-volume formulation, and
ensures rigorous numerical conservation. The numerical
formulation of the MCV method on a hexagonal element is
simple and easy to use.

A third-order accuracy was proved in our previous study
(Chen et al., 2012) for the advection equation by Taylor
expansion analysis and numerical experiments. In this article
we have verified its third-order accuracy for a nonlinear
system of conservation laws. Widely used benchmark tests
were simulated by the present model and the numerical
results are competitive with most existing advanced models
on an icosahedral grid. Furthermore, the MCV scheme
also shows advantage in computational efficiency compared
with other local high-order schemes due to, for example,
a larger available CFL number (Ii and Xiao, 2009). The
proposed high-order scheme on an icosahedral–hexagonal
grid is a very promising framework for developing general
circulation models.
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