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Abstract. Using Laplace transform method, semi-analytical solutions are presented for transient electroosmotic flow of Max-
well fluids between micro-parallel plates. The solution involves solving the linearized Poisson–Boltzmann equation, together
with the Cauchy momentum equation and the Maxwell constitutive equation considering the depletion effect produced by
the interaction between macro-molecules of the Maxwell fluids and the channel surface. The overall flow is divided into
depletion layer and bulk flow outside of depletion layer. In addition, the Maxwell stress is incorporated to describe the
boundary condition at the interface. The velocity expressions of these two layers were obtained respectively. By numerical
computations of inverse Laplace transform, the influences of viscosity ratio μ, density ratio ρ, dielectric constant ratio ε
of layer II to layer I, relaxation time λ̄1, interface charge density jump Q, and interface zeta potential difference Δψ̄ on
transient velocity amplitude are presented.
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1. Introduction

Microfluidics is one of the most important research areas in microelectromechanical systems (MEMS) due
to its potential applications as a tool for studying fundamental physical and biochemical processes and
a platform for performing chemical and biological assays [1,2]. Most solid surfaces acquire electrostatic
charges when they are in contact with aqueous solution. The electrostatic charges on the solid surface
will attract the counterions in the aqueous solution. Accumulation of these counterions forms an electri-
cally charged layer, called electric double layer, near the solid–liquid interface [3]. The ions of opposite
charge cluster immediately near the wall, forming the Stern layer, a layer of typical thickness of one ionic
diameter. Right next to the Stern layer, the diffuse layer is formed, which contains both co-ions and
counterions, and its ion density variation obeys the Boltzmann distribution [4]. The Stern layer and the
diffuse layer constitute the EDL. When an external electric field is applied along the interface, the excess
counterions in the EDL will be pushed to move and consequently causing the bulk liquid (the aqueous
solution) to move due to the viscous effect. Such a liquid motion is referred to as the electroosmotic flow.
EOF is a principal means to transport aqueous solutions in micron and submicron channels. Plug-like
velocity profile is a signature of the pure EOF in a microchannel. The EOF can be easily controlled by the
applied electric fields; hence, it has been widely used for precise liquid operation in intricate microchannel
networks.

In the literature, various theoretical and experimental studies on steady EOF of Newtonian fluids in
microchannels have been conducted under different geometric domains and physical conditions [5–10].
Recently, time-dependent EOF has been attracting growing attention as an alternative mechanism of
microfluidic transport [11–17].
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All the papers indicated above deal with Newtonian fluids. However, the flow behavior of non-New-
tonian fluid is of high interest in many areas of science and technology. In practical applications for
electroosmosis, such as sample collection, detection, mixing, and separation of various biological and
chemical species on a chip integrated with fluidic pumps and valves, the fluid rheological behavior usually
needs to be taken into account. The theoretical study of electroosmotic flows of non-Newtonian fluids is
recent and has been mostly limited to simple fluid models due to the complex constitutive relations.

Limited studies have been reported for EOF involving non-Newtonian fluids. The EOF of power-law
fluids was studied in Refs [18–22]. It was found that the behavior index n of the power-law fluid substan-
tially influences velocity profiles. EOF of non-Newtonian fluids with viscoelasticity was also addressed
analytically [23–28]. It was revealed that the presence of the viscoelasticity can essentially affect the flow
pattern and the volumetric flow rate.

It needs to note that all the above models implicitly assume that fluid properties are uniform in the
whole domain for viscoelastic fluids. However, such a situation is hardly found in experiments. In fact,
due to the unavoidable interaction between macro-molecules and the channel surface, polymer depletion
and adsorption phenomena will be produced [29]. Sousa et al. [30] investigated the effects of the depletion
layer on electroosmotic Poiseuille flows of PTT (Phan–Thien–Tanner) fluids. Liu et al. [31] studied time
periodic EOF of Jeffrey fluid in a slit microchannel taking the depletion effect into account. However,
these theoretical analyses overlooked the effect of electric field generated stress (Maxwell stress) at the
interface between the depletion layer and bulk flow outside of depletion layer. Volkov et al. [32] pointed
out that at the interface of two immiscible electrolyte solutions, a narrow region exists where the electric
potential changes abruptly due to the adsorption of ions. The sharp change at this layer can often be
described by a zeta potential jump across the interface. Theoretical studies on steady two-fluid EOF with
full interfacial electrostatics [33] show the importance of the Maxwell stress on interface. Very recently,
the free surface instability in EOF of ultrathin liquid films was investigated by Mayur et al. [34]. The
role of interfacial Maxwell stress on thin film stability is highlighted.

Although some basic features of EOF of non-Newtonian fluid are reported in the aforementioned stud-
ies, much of its rich nature remains to be examined. Moreover, few publications investigate the transient
EOF in non-Newtonian fluid. The main purpose of this paper is extending our early work [31] to study
the transient EOF of Maxwell fluids in a slit microchannel with the depletion effects included. The overall
flow is divided into depletion layer (taking as Newtonian fluid) and bulk flow outside of depletion layer
(taking as Maxwell fluid). We incorporate the Maxwell stress on the interface. Semi-analytical solutions
for EOF velocity are obtained for each layer by solving the general Cauchy momentum equation with
Laplace transform. Furthermore, the influencing parameters for EOF of Maxwell fluids are analyzed.

This paper is organized as follows: The physical description of the problem and the analytical solution
to the equations governing the transient EOF of the Maxwell model are presented in the Sect. 2. The
Sect. 3 discusses the numerical results of the study and the parametric dependence of the EOF velocity.
Finally, conclusions are presented in the Sect. 4.

2. Problem formulation

2.1. Electrical potential equation

The transient EOF of the incompressible Maxwell fluids between two negatively charged micro-parallel
plates separated by a distance (height) 2H is sketched in Fig. 1. The length of the channel is L and
the width is W, both assumed to be much larger than the height, i.e., L,W >> 2H. Use a two-dimen-
sional coordinate system where y-axis and x-axis are perpendicular and tangential to the charged surface,
respectively. The bottom plate is located at y = −H, while the top plate is located at y = H. Due
to symmetry of the geometry and flow conditions with respect to the channel mid-plane (y = 0), only
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Fig. 1. Schematic of transient EOF of the Maxwell fluids through a slit microchannel

the upper half of the channel (0 ≤ y ≤ H) is considered in this analysis. The chemical interaction of
electrolyte liquid and solid wall generates an EDL, a very thin charged liquid layer the thickness ξ at
the solid–liquid interface. Due to the interaction between macro-molecules and the channel surfaces, the
concentration of nonadsorbing particles decreases steeply near smooth surfaces, leaving a depleted layer
of pure solvent adjacent to the solid–liquid interface. The depletion layer has a thickness δH , which is
larger than the EDL thickness and much smaller than half height H of the microchannel (see Fig. 1).
Within the depletion layer (noted as layer I), the viscosity of the solvent is much lower than that of the
bulk and the fluid can be taken as Newtonian fluid, while the bulk fluids out of the depletion layer are
modeled by Maxwell viscoelastic model (noted as layer II).

The EOF is pumped by an axial DC electric field with strength E0, the liquid inside the EDL sets in
motion along x direction due to electroosmosis. For a symmetric binary electrolyte solution, the electrical
potential and the local volumetric net charge density within layer I and layer II are described by the
following Poisson–Boltzmann (PB) equations (i = 1 means layer I, i = 2 means layer II)

d2ψi(y)
dy2

= −ρei(y)
εi

, i = 1, 2 (2.1)

ρei
(y) = −2n0zνe0 sinh

[
zνe0ψi(y)
kbT

]
, i = 1, 2 (2.2)

where ψi(y), ρei(y), and εi are the electrical potential, the local volumetric net charge density and dielec-
tric constant of the electrolyte liquid for layer I and layer II, respectively, n0 is the ion density of bulk
liquid, zν is the valence, e0 is the electron charge, kb is the Boltzmann constant, and T is the absolute
temperature.

Assuming the electrical potential is small enough, linear approximation can be used for the hyperbolic
sine function appearing in the right-hand side of Eq. (2.2), by inserting Eq. (2.2) into Eq. (2.1), resulting
in the so-called Debye–Hückel equation

d2ψi(y)
dy2

=
2n0z

2
νe

2
0

εikbT
ψi(y) = κ2

iψi(y) with κi =
(
2n0z

2
νe

2
0/εikbT

)1/2
, i = 1, 2 (2.3)

where λDi = 1/κi has the dimension of length and denotes the EDL thickness. The boundary conditions
for the potential are usually written in the form

ψ1(y)|y=H = ψ0, (2.4a)
dψ2(y)

dy
|y=0 = 0, (2.4b)
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here, ψ0 is the wall zeta potential. Moreover, at the interface (y = H − δH) between layer I and layer II,
two boundary conditions are required. Here, we impose the zeta potential difference Δψ and Gauss’s law
for the electrical displacement

[ψ2(y) − ψ1(y)] |y=H−δH
= Δψ, (2.4c)[

ε1
dψ1(y)

dy
− ε2

dψ2(y)
dy

]
|y=H−δH

= −qs, (2.4d)

Here, qs denotes interface charge density jump. Introducing the following dimensionless groups:

ȳ =
y

H
,Dei =

λDi

H
,
[
ψ̄i(ȳ), ψ̄0,Δψ̄

]
=
zνe0
kbT

[ψi(y), ψ0,Δψ] , Q =
Hzνe0qs
ε1kbT

, (2.5)

where Dei is the nondimensional Debye length. Dimensionless electrical potential Eq. (2.3) and the cor-
responding boundary conditions (2.4) can be written as

d2ψ̄i(ȳ)
dy2

=
1
De2i

ψ̄i(ȳ), (2.6)

ψ̄1(ȳ)|ȳ=1 = ψ̄0,
dψ̄2(ȳ)

dȳ
|ȳ=0 = 0,

[
ψ̄2(ȳ) − ψ̄1(ȳ)

] |ȳ=1−δ̄H
= Δψ̄, (2.7a,b,c)

(
dψ̄1(ȳ)

dȳ
− ε

dψ̄2(ȳ)
dȳ

)
|ȳ=1−δ̄H

= −Q with ε =
ε2
ε1

and δ̄H =
δH
H
. (2.7d)

The general solutions of Eq. (2.6) are obtained as

ψ̄1(ȳ) = A1 cosh
(

1
De1

ȳ

)
+B1 sinh

(
1
De1

ȳ

)
, ψ̄2(ȳ) = A2 cosh

(
1
De2

ȳ

)
+B2 sinh

(
1
De2

ȳ

)
.

(2.8a,b)

With the boundary condition (2.7), the constants A1, B1, A2, and B2 can be written as

B2 = 0 (2.9a)

B1 =
{
ψ̄0 csch

1
De1

[
1
De1

coth
1 − δ̄H
De2

− ε

De2
coth

1 − δ̄H
De1

]
− coth

1
De1

[
εΔψ̄

De2

× csch
1 − δ̄H
De1

−Q coth
1 − δ̄H
De2

csch
1 − δ̄H
De1

]}
/

{
1
De1

coth
1 − δ̄H
De2

−ε 1
De2

coth
1 − δ̄H
De1

− coth
1
De1

[
1
De1

coth
1 − δ̄H
De1

coth
1 − δ̄H
De2

− ε

De2

]}
, (2.9b)

A1 = ψ̄0 sech
1
De1

−B1 tanh
1
De1

, (2.9c)

A2 = sech
1 − δ̄H
De2

{
Δψ̄ +A1 cosh

1 − δ̄H
De1

+B1 sinh
1 − δ̄H
De1

}
. (2.9d)

2.2. Velocity distributions

If we consider only pure EOF along x direction, the one-dimensional Cauchy momentum equation can be
expressed as

ρi
∂ui(y, t)

∂t
= − ∂

∂y

(
τ i
yx

)
+ ρei(y)E0, (2.10)



Vol. 65 (2014) Transient electroosmotic flow of general 439

where u(y, t) is the axial velocity along positive x direction, ρi is the fluid density, t is time, τyx is the stress
tensor, and E0 is DC electric field. Within the layer I, the stress tensor can be described by Newtonian
fluid with viscosity μ1

τ I
yx = −μ1

∂uI(y, t)
∂y

, (2.11)

where uI(y, t) and τ I
yx mean the velocity and stress tensor in layer I, respectively, whereas the viscoelastic

fluid within the layer II is described by Maxwell model, and its constitutive equation satisfies

τ II
yx + λ1

∂τ II
yx

∂t
= −μ2

∂uII(y, t)
∂y

, (2.12)

where λ1 is the relaxation time, μ2 is the zero shear rate viscosity, uII(y, t) and τ II
yx mean the velocity

and stress tensor in layer II, respectively. For layer I, no-slip condition at the wall should be satisfied

uI(y, t)|y=H = 0. (2.13)

At the interface between the depletion layer and the bulk of the fluid, both fluids move at the same
velocity

uI(y, t)|y=H−δH
= uII(y, t)|y=H−δH

. (2.14)

For layer II, besides velocity continue condition of Eq. (2.11), the centerplane flow symmetry condition
should be satisfied due to only half of the channel being considered

∂uII(y, t)
∂y

|y=0 = 0. (2.15)

In addition, the total stresses including shear stress and Maxwell stress at the interface between layer I
and layer II should be equal

τ I
yx + ε1E0

dψ1(y)
dy

= τ II
yx + ε2E0

dψ2(y)
dy

. (2.16)

The above problem is reformulated in terms of the following nondimensional variables defined by

(ȳ, δ̄H) =
(y, δH)
H

,
(
t̄, λ̄1

)
=

(t, λ1)
ρ1H2/μ1

,
[
ūI(ȳ, t̄), ūII(ȳ, t̄)

]
=

[
uI(y, t), uII(y, t)

]
Ueo

,

Ueo = −ε1ψ0E0

μ1
,

(
τ̄ I
ȳx̄, τ̄

II
ȳx̄

)
=

(τ I
yx, τ

II
yx)

μ1Ueo/H
, μ =

μ2

μ1
, ρ =

ρ2

ρ1
, (2.17)

where Ueo denotes steady Helmholtz–Smoluchowski EOF velocity of Newtonian fluids within the layer I,
μ and ρ are viscosity and density ratios of layer II to layer I.

For layer I, using Eq. (2.11), the electroosmosis Eq. (2.10) and corresponding boundary conditions
(2.13)–(2.14) are normalized as

∂ūI(ȳ, t̄)
∂t̄

=
∂2ūI(ȳ, t̄)

∂ȳ2
+

1
De21

ψ̄1

ψ̄0
, (2.18)

ūI(ȳ, t̄)|ȳ=1 = 0, ūI(ȳ, t̄)|ȳ=1−δ̄H
= ūII(ȳ, t̄)|ȳ=1−δ̄H

. (2.19a,b)

For layer II, the normalized electroosmosis Eq. (2.10), constitutive Eq. (2.12), and corresponding
boundary conditions (2.15)–(2.16) are
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ρ
∂ūII(ȳ, t̄)

∂t̄
= −∂τ̄ II

ȳx̄

∂ȳ
+

ε

De22

ψ̄2

ψ̄0
, (2.20)

τ̄ II
ȳx̄ + λ̄1

∂τ̄ II
ȳx̄

∂t̄
= −μ∂ū

II

∂ȳ
, (2.21)

∂ūII(ȳ, t̄)
∂ȳ

|ȳ=0 = 0,
[
τ̄ I
ȳx̄ − 1

ψ̄0

dψ̄1

dȳ

]
|ȳ=1−δ̄H

=
[
τ̄ II
ȳx̄ − ε

ψ̄0

dψ̄2

dȳ

]
|ȳ=1−δ̄H

. (2.22)

Let us employ the method of Laplace transform defined by

U I(ȳ, s) = L[ūI(ȳ, t̄)] =

∞∫
0

ūI(ȳ, t̄)e−st̄dt̄,

U II(ȳ, s) = L[ūII(ȳ, t̄)] =

∞∫
0

ūII(ȳ, t̄)e−st̄dt̄,

¯̄τ II
ȳx̄(ȳ, s) = L[τ̄ II

ȳx̄(ȳ, t̄)] =

∞∫
0

τ̄ II
ȳx̄(ȳ, t̄)e−st̄dt̄. (2.23a,b,c)

Assuming initial condition satisfies

uI (y, 0) = uII (y, 0) = uI
t (y, 0) = uII

t (y, 0) = 0, (2.24)

then for layer I, the Laplace transforms of Eq. (2.18) and boundary condition (2.19) give

∂2U I(ȳ, s)
∂ȳ2

= sU I(ȳ, s) − 1
De21

ψ̄1

sψ̄0
, (2.25)

U I(ȳ, s)|ȳ=1 = 0, U I(ȳ, s)|ȳ=1−δ̄H
= U II(ȳ, s)|ȳ=1−δ̄H

. (2.26a,b)

For layer II, the transforms of Eqs. (2.20) and (2.21) and boundary condition (2.22) give

ρsU II(ȳ, s) = −∂ ¯̄τ II
ȳx̄

∂ȳ
+

ε

De22

ψ̄2

sψ̄0
, (2.27)

(1 + λ̄1s)¯̄τ II
ȳx̄ = −μ∂U

II(ȳ, s)
∂ȳ

, (2.28)

∂U II(ȳ, s)
∂ȳ

|ȳ=0 = 0, (2.29a)
[
∂U I(ȳ, s)

∂ȳ
+

1
ψ̄0s

dψ̄1

dȳ

]
|ȳ=1−δ̄H

=
[

μ

(1 + λ1s)
∂U II(ȳ, s)

∂ȳ
+ ε

1
ψ̄0s

dψ̄2

dȳ

]
|ȳ=1−δ̄H

. (2.29b)

Eliminating ¯̄τ II
ȳx̄ by combining Eqs. (2.27) and (2.28) yields

∂2U II(ȳ, s)
∂ȳ2

= β2U II(ȳ, s) − ε(1 + λ̄1s)
De22μ

ψ̄2

sψ̄0
with β2 =

ρ

μ
s(1 + λ̄1s). (2.30)

Equations (2.25) and (2.31) for layer I and layer II are linear and inhomogeneous ordinary differential
equation, and their solutions are

U I(ȳ, s) = C1 cosh
(√
sȳ

)
+ C2 sinh

(√
sȳ

)
+ C cosh

(
1
De1

ȳ

)
+D sinh

(
1
De1

ȳ

)
, (2.31)

U II(ȳ, s) = C3 cosh(βȳ) + C4 sinh(βȳ) +E cosh
(

1
De2

ȳ

)
. (2.32)
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Using boundary conditions (2.26) and (2.29), these constants can be determined as

C =
A1

sψ̄0De21(s− 1/De21)
, D =

B1

sψ̄0De21(s− 1/De21)
, E =

ε(1 + λ̄1s)A2

μsψ̄0De22(β2 − 1/De22)
, (2.33a,b,c)

C1 =
{

sinh(
√
s) cosh(e)

[
μ

(1 + λ̄1s)De2
E sinh(a2) − C

1
De1

sinh(a1) −D
1
De1

cosh(a1)

+
1
sψ̄0

[
εA2

De2
sinh(a2) − A1

De1
sinh(a1) − B1

De1
cosh(a1)

]]
− μβ

1 + λ̄1s
sinh(e) sinh(

√
s)

× [E cosh(a2) − C cosh(a1) −D sinh(a1)]

+
[√

s cosh(e) cosh(b) − μβ

1 + λ̄1s
sinh(e) sinh(b)

]
·
[
C cosh

1
De1

+D sinh
1
De1

]}
/

{
sinh(

√
s)

[√
s cosh(e) sinh(b) − μβ

1 + λ̄1s
sinh(e) cosh(b)

]

− cosh(
√
s)

[√
s cosh(e) cosh(b) − μβ

1 + λ̄1s
sinh(e) sinh(b)

]}
, (2.33d)

C2 = − csch(
√
s)[C cosh

1
De1

+D sinh
1
De1

+ C1 cosh(
√
s)], (2.33e)

C3 = sech(e)[C1 cosh(b) + C2 sinh(b) + C cosh(a1) +D sinh(a1) − E cosh(a2)], (2.33f)

C4 = 0, (2.33g)

where

a1 = (1 − δ̄H)/De1, a2 = (1 − δ̄H)/De2, b =
√
s(1 − δ̄H), e = β(1 − δ̄H) (2.33h)

The inverse Laplace transform is defined by

ūI(ȳ, t̄) = L−1
[
U I(ȳ, s)

]
=

1
2πi

∫
Γ1

U I(ȳ, s)est̄ds, (2.34a)

ūII(ȳ, t̄) = L−1
[
U II(ȳ, s)

]
=

1
2πi

∫
Γ2

U II(ȳ, s)est̄ds, (2.34b)

where Γ1 and Γ2 are vertical line to the right of all singularities of U I and U II in the complex s plane.
Due to the complexity of the express of U I and U II , the numerical computation must be performed by
numerical inverse Laplace transform.

3. Numerical results and discussion

In the previous section, we have obtained semi-analytical transient EOF velocity of generalized Maxwell
fluids which depends mainly on some nondimension parameters, such as viscosity ratio μ, density ratio ρ,
dielectric constant ratio ε of layer II to layer I, relaxation time λ̄1, interface charge density jump Q, and
interface zeta potential difference Δψ̄. In this section, we will discuss their influence on the transient
EOF velocity in detail. In the following computations, the normalized thickness of the depletion layer
δ̄H is taken as 0.1 [29] and ψ̄0 is taken as 1. The numerical inversion of Laplace transforms is based on
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Fig. 2. Simplified transient velocities for Newtonian fluids (1/De2 = 15, 1/De1 = ε1/2/De2, ε = 1, δ̄H = 0.1, ρ = 1, μ = 1,
λ̄1 = 0,Δψ̄ = 0, Q = 0)

Fig. 3. Effects of the dimensionless interface charge density jump Q on the normalized transient EOF velocity of Maxwell

fluids (1/De2 = 15, 1/De1 = ε1/2/De2, ε = 1, ρ = 1, μ = 1, λ̄1 = 0.1, Δψ̄ = 0): a Q = 0.1, b Q = 1, c Q = 5, d Q = 10
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Fig. 4. Influences of the interface zeta potential difference Δψ̄ on the transient EOF velocity of Maxwell fluids (1/De2 =

15, 1/De1 = ε1/2/De2, μ = 1, ρ = 1, λ̄1 = 0.1, Q = 1, ε = 1): a Δψ̄ = −0.5, b Δψ̄ = 0.1, c Δψ̄ = 0.5, d Δψ̄ = 1

accelerating the convergence of the Fourier series obtained from the inversion integral using trapezoidal
rule, which was proposed by De Hood et al. [35].

When ρ = 1, μ = 1, ε = 1, λ̄1 = 0,Δψ̄ = 0, and Q = 0, current theoretical results for Maxwell fluids
lead to the case of Newtonian fluids. Figure 2 shows the transient velocity for Newtonian fluids. It can be
noted from Fig. 2 that as expected, a classical plug-like velocity profile can be obtained when the velocity
distribution attains steady status.

The effects of the dimensionless interface charge density jump Q(Q = 0.1, Q = 1, Q = 5, Q = 10) on
the transient EOF velocity of Maxwell fluids are illustrated in Fig. 3 for given values of all the other
parameters. With the increase in interface charge density jump Q, the velocity shows a strong jump at
the interface of the depletion layer.

Figure 4 shows the influences of the interface zeta potential difference Δψ̄(−0.5, 0.1, 0.5, 1) on the
transient EOF velocity of Maxwell fluids. At the interface of two immiscible electrolyte solutions, a nar-
row region exists where the electric potential changes abruptly due to the adsorption of ions. It can be
found from Fig. 4 that as expected, the velocity amplitude becomes large with the interface zeta potential
difference under steady status.
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Fig. 5. Influences of the viscosity ratio μ on the transient EOF velocity of Maxwell fluids (1/De2 = 15, 1/De1 =

ε1/2/De2,Δψ̄ = 0, ρ = 1, λ̄1 = 0.2, Q = 0, ε = 1): a t = 0.1, b t = 1.4, c t = 2.5, d t = 4.0

Figure 5 shows the effects of viscosity ratio μ(0.3, 1.0, 2.0, 5.0) of layer II to layer I on the EOF velocity
of Maxwell fluids for different times. When the external electric field is applied at both ends of micro-
channel, the ions in EDL will be subjected to move because of the electric field force. Due to the effect of
fluid viscosity, the freedom ions will drive the fluid particles nearby to move. With the increase in time,
the fluid’s movement will spread to the whole microchannel. For smaller viscosity ratio μ, it means the
viscosity of layer II is small, the fluid is easy to drive, so the fluid velocity is large. Similar explanation can
be used for larger viscosity ratio. Velocity profiles of EOF are strongly dependent on the viscosity ratio μ.
When the viscosity ratio is high, the flow resistance of the low EO mobility liquid is high, resulting in the
velocity amplitude becomes small. It can be shown from Fig. 5 that as expected, the velocity amplitude
becomes small with the increase in the viscosity within the layer II under steady status. As the electro-
osmotic force is concentrated in the EDL region close to the wall, the change of velocity profiles mainly
focuses in the EDL narrow region. In addition, with the increase in time, the EOF velocity approaches
gradually steady status. That is to say, further increase in the time will lead to invariable velocity profile.

The influences of dielectric constant ratio ε(0.3, 0.5, 0.7, 1.1) of layer II to layer I on the transient EOF
velocity of Maxwell fluids are illustrated in Fig. 6 for different times. When given the value of De2, the
De1 increases due to 1/De1 = ε1/2/De2 and ε adds, while high value of De1 results in large velocity. It
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Fig. 6. Influences of dielectric constant ratio ε on the transient EOF velocity of Maxwell fluids (1/De2 = 20, 1/De1 =

ε1/2/De2,Δψ̄ = 0, ρ = 1, λ̄1 = 0.1, Q = 0, μ = 1): a t = 0.3, b t = 0.6, c t = 1.2, d t = 2.0

can be found that larger dielectric constant ratio leads to larger velocity under steady status. Similarly,
with the increase in time, the EOF velocity approaches gradually steady status.

4. Conclusion

In this work, the transient EOF of generalized Maxwell fluids through a slit microchannel was investi-
gated taking the depletion effects and Maxwell electrical stress at the interface into account. The overall
flow is divided into depletion layer and bulk flow outside of depletion layer. Through solving the lin-
earized Poisson–Boltzmann equation, the Cauchy momentum equation, and the Maxwell constitutive
equation, semi-analytical solutions of these two layers were obtained by Laplace transform respectively.
By numerical computations of inverse Laplace transform, the influences of viscosity ratio μ, density ratio
ρ, dielectric constant ratio ε of layer II to layer I, relaxation time λ̄1, interface charge density jump Q, and
interface zeta potential difference Δψ̄ on transient velocity amplitude are studied. The velocity behaves
strong jump at the interface between layer I and layer II with the increase in interface charge density
jump Q. The velocity amplitude becomes large with the interface zeta potential difference Δψ̄ under
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steady status. However, the velocity amplitude becomes small with the increase in the viscosity within
the Maxwell fluid layer II under steady status. Larger dielectric constant ratio ε leads to larger velocity
under steady status. Finally, it is interesting to find that under steady status, the density ratio has little
effect on the EOF velocity.
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