AI P Physics of

Plasmas
Nonlinear theory of classical cylindrical Richtmyer-Meshkov instability for arbitrary
Atwood numbers

Wan Hai Liu, Chang Ping Yu, Wen Hua Ye, Li Feng Wang, and Xian Tu He

Citation: Physics of Plasmas (1994-present) 21, 062119 (2014); doi: 10.1063/1.4883222
View online: http://dx.doi.org/10.1063/1.4883222

View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/21/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Scale coupling in Richtmyer-Meshkov flows induced by strong shocks
Phys. Plasmas 19, 082706 (2012); 10.1063/1.4744986

Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime
Phys. Plasmas 19, 072108 (2012); 10.1063/1.4736933

Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers
Phys. Plasmas 19, 042705 (2012); 10.1063/1.3702063

Multimode evolution of the ablative Richtmyer-Meshkov and Landau-Darrieus instability in laser imprint of planar
targets
Phys. Plasmas 13, 122703 (2006); 10.1063/1.2399460

A vortex model for Richtmyer—Meshkov instability accounting for finite Atwood number
Phys. Fluids 17, 031704 (2005); 10.1063/1.1863276

<

" Give us your dirty old books!

The Niels Bohr Library & Archives is looking
for book donations - <



http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/846043250/x01/AIP-PT/HC_PoPArticleDL_082714/chp_books_banner1640x440.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Wan+Hai+Liu&option1=author
http://scitation.aip.org/search?value1=Chang+Ping+Yu&option1=author
http://scitation.aip.org/search?value1=Wen+Hua+Ye&option1=author
http://scitation.aip.org/search?value1=Li+Feng+Wang&option1=author
http://scitation.aip.org/search?value1=Xian+Tu+He&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4883222
http://scitation.aip.org/content/aip/journal/pop/21/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/8/10.1063/1.4744986?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/7/10.1063/1.4736933?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/4/10.1063/1.3702063?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/13/12/10.1063/1.2399460?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/13/12/10.1063/1.2399460?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/17/3/10.1063/1.1863276?ver=pdfcov

PHYSICS OF PLASMAS 21, 062119 (2014)

@CrossMark

Nonlinear theory of classical cylindrical Richtmyer-Meshkov instability

for arbitrary Atwood numbers

Wan Hai Liu (x{/7{%),"? Chang Ping Yu (F£%F),%>® Wen Hua Ye (0+32%€),2*5

Li Feng Wang (E 375%),2* and Xian Tu He (8% 1+)>*

'Research Center of Computational Physics, Mianyang Normal University, Mianyang 621000, China
2HEDPS and CAPT, Peking University, Beijing 100871, China

SLHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

*Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

SDepartment of Physics, Zhejiang University, Hangzhou 310027

(Received 31 March 2014; accepted 2 June 2014; published online 27 June 2014)

A nonlinear theory is developed to describe the cylindrical Richtmyer-Meshkov instability (RMI) of an
impulsively accelerated interface between incompressible fluids, which is based on both a technique of
Padé approximation and an approach of perturbation expansion directly on the perturbed interface
rather than the unperturbed interface. When cylindrical effect vanishes (i.e., in the large initial radius of
the interface), our explicit results reproduce those [Q. Zhang and S.-I. Sohn, Phys. Fluids 9, 1106
(1996)] related to the planar RMI. The present prediction in agreement with previous simulations
[C. Matsuoka and K. Nishihara, Phys. Rev. E 73, 055304(R) (2006)] leads us to better understand the
cylindrical RMI at arbitrary Atwood numbers for the whole nonlinear regime. The asymptotic growth
rate of the cylindrical interface finger (bubble or spike) tends to its initial value or zero, depending
upon mode number of the initial cylindrical interface and Atwood number. The explicit conditions,
directly affecting asymptotic behavior of the cylindrical interface finger, are investigated in this paper.
This theory allows a straightforward extension to other nonlinear problems related closely to an

instable interface. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4883222]

. INTRODUCTION

When an incident shock collides with a corrugated interface
separating two fluids of different densities, the interface is with
Richtmyer-Meshkov instability (RMI)."* Another wide class of
RMI, not related to the shock-interface interaction, is driven by
the nonuniform vorticity on the interface, either initially depos-
ited or supplied by external sources.> RMI has great relevance to
inertial confinement fusion (ICF) and astrophysical problems.*

As the incident shock collides with the material interface,
it bifurcates into a transmitted shock and a reflected wave.
The reflected wave can be either a shock wave or a rarefaction
wave, which depends on the material properties of the fluids
across the interface and the incident shock strength. When the
shock collides with the material interface from the light fluid
phase to the heavy fluid phase, the reflected wave is a shock;
otherwise, it is a rarefaction wave. See Ref. 6 for further
details of the reflected wave types. For the case of the
reflected shock, the perturbed interface grows linearly at first,
and then exhibits in the shapes of bubbles, and spikes in its
weakly nonlinear regime. The bubbles (spikes) refer to the
portions of the light (heavy) fluid entering the heavy (light)
fluid. For this case, the fluids near the material interface can
be approximated to be incompressible after both the transmit-
ted shock and reflected one depart from the interface.

Some experiments’ ° and numerical simulations'®" on
the growth rate of the RMI interface have been performed, and
several theories'®** have been predicted by different
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approaches. Most of these theoretical literatures just concerned
with the linear growth rate of the interface at earlier stage. For
several decades, theories could not give a quantitatively correct
prediction for the growth rate of RMI interface in the nonlinear
regime until Zhang’s nonlinear theory” was published. The
theory provided a pretty result for the planar RMI interface.
The prediction of this theory, based on the case of a reflected
wave, is in excellent agreement with the results of full nonlin-
ear numerical simulations, and with experimental data from
the earlier linear stage to the later nonlinear stage. In this
theory, the perturbation solutions in weakly nonlinear regime
led to a perfect Padé approximation which gave the final result
by matching the linear solution and the asymptotic solution. In
addition, Velikovich and Dimonte** successfully investigated
the incompressible RMI by using the Padé approximation
based on nonlinear perturbation theory.

Most previous works focused on the planar RMI, however,
only a few>?*2’ dealt with the cylindrical RMI which is much
closer to the applications, such as ICF. For cylindrical RMI,
scaling laws for unstable interfaces driven by strong shocks
were researched numerically.”” The effect of convergence on
the interface growth rate was studied experimentally on the
OMEGA laser.?® In Ref. 29, the dependence of growth rates of
a bubble and spike on the fluid densities and on mode number
involved in the initial perturbations was seeded analytically by
employing the method used in the investigation.> A crucial
step of the method is based on the fact that the physical quanti-
ties on the perturbed interface are expanded into Taylor series
indirectly on the unperturbed interface. This step is consider-
ably complex, especially to the cylindrical system. In this pa-
per, for the case of the reflected shock, we employ a simple

© 2014 AIP Publishing LLC
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method based directly on the perturbed interface to solve the
cylindrical RMI problem in weakly nonlinear regime by con-
sidering the nonlinear correction up to fourth order. Applying
the technique of the Padé approximation results in the growth
rates of the interface fingers for the whole nonlinear regime.

Il. THEORETICAL FRAMEWORK AND EXPLICIT
RESULTS

Our insight starts from the time when the reflected and
transmitted shocks leave the interface and the fluids in the vi-
cinity of the interface can be regarded as impressible ones.
In the cylindrical geometry (r, 0, z), the initial interface is
given to be located at

r=a(0,t=0) = ry+ apcos(nb), (1)

where n=2nry// is mode number, ry is the initial radius of
the interface, A is perturbation wavelength, and ay is the per-
turbation amplitude of the interface (a9 < min{4,ro}). The
initial velocity distribution of the interface is

da(0,1)
ot

= vy cos(nb), )
=0

where v, is proportional to ag in the magnitude. The interface
a(0, 1), due to the cylindrical RMI, evolves with time. It is
dominated by

0P, 10¢, > . .
ar ( 8r> + = 20 ( 20 0 in two fluids, (3a)

oa 10a0p by

ot 1290 90 Or

b 10a0s, 00y 3
5% 2o a0 o — 0 A r=alds), Qo)

=a(0,1,  (3b)

o¢ o 1 (96,\
(14A) 81+ (811) +ﬁ(—9‘)1
d¢ b\ 1 <a¢> )2
o-m| %25 (%) 45 (G
+f(®)=0 at r=a(0,r), (3d)

where Atwood number A = (p; — p2)/(p1 + p2) with p; and p,
being fluid densities, and ¢; is velocity potential function of the
fluid, and £(¢) is an arbitrary function of time. Throughout this
paper, we determine the subscripts 1 and 2 corresponding to the
physical quantities at the inner and outer regions of the inter-
face, respectively. Accordingly, A > 0 corresponds to a case of
an incident shock traveling from the lighter fluid outsider the
interface to the heavy one insider the interface, and A < 0 means

o) _ P lao(—2An — 302 + 1) + t0o(4A%% — 4An — n® + 1)
a
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a case of an incident shock advancing from the lighter fluid
insider the interface to the heavy fluid outsider the interface.

The interface and velocity potentials at time ¢ can be
expressed as

L 15
61(07 l) = C(l‘)i’o + Za(”(& Z‘) =70 1+ ZSZlazho(l‘)
I=1 =1

L -1

+ Zs’ Za;vl,zyn(t)cos(l —2m)n0 + O(e-),

=1 m=0
(4a)
(r,0,1) Z(f) 28 Zd’lll 2 (02
x cos(l — 2m)nf + O(SLH), (4b)
gy
= Z¢(2)(’ ZS Z¢211 am( ~(=2m)n
=1
x cos(l — 2m)nf + O(SLH), (4c)

where the parameter ¢ = ag/i with k¥ = min{ro, A} is much
less than 1 and L =4 is selected. Gauss symbol |//2] denotes
the maximum integer which is less than or equal to //2. The
time function {(f) determines whether the unperturbed inter-
face moves with time: the interface will keep resting when
{(t) = 1; otherwise, it will move from the initial position r
(t=0)=ro. Unknowns  a;_ou(t), ¢1,/_0,(t), and
Gripom =12, ;m=0,1,---, 11/2]] always need
to be ascertained. Note that velocity potentials ¢, (r, 0, r) and
¢, (r, 0,1) have satisfied the Laplace equation (3a) and condi-
tions V¢, (r,0,1)|,_o = 0and V,(r,0,1)],_.. . = 0.

We substitute Egs. (4a)-(4c) into Egs. (3b)—(3d) and
then replace r in these three resulting equations with a(0, t)
expressed by Eq. (4a). The final equations containing 0 and ¢
are obtained. To further obtain the /th (/ > 0) order equations
just including the terms of &, we need to expand the left
hand sides of these three final equations in Maclaurin series
of ¢. Here, the zeroth order equations, considering the effect
of arbitrary function f(f), can be satisfied automatically.
Therefore, the first-, second-, third-, and fourth-order equa-
tions together with the initial conditions (1) and (2) can be
solved successively.

The results related to perturbed interface are

aV = (ag + tvg)cos(nb), (52)

tvo(2ag + tvg)

2.2
@ _ rpAn—1) _
a arg cos(2n0) arg ,  (5b)
|
o2 cos(3n0)
0
2.2 2 2.2 2
vy [3a0(2An +n 7) + tvo(4A n“+4An+n 9)] cos(n0), (5¢)

24r(2]



062119-3 Liu et al. Phys. Plasmas 21, 062119 (2014)
202 202 212
@ _2% 003 cos(4nf) — b U30 cos(2n0) + / v03 ) (5d)
192r 48rp 192r
where
o = —8taguy[14A%n* + A(16n* — 13)n — 14n” + 3] + 1242
x [24(20% + 1) + Tn* — 1] + Ao2(1284%0° — 188471 — 64An® + 92An + 44n* — 15),
B = 2tagvol4A’n® — 24An — 161> + 21] + 12a2[A(n* + n) — 3n* + 2]
+ 202 (16A%n® — 4A*n* — 22An — 8n* 4 15),
and
7 = 8tagvo[2(A% + Dn* + 5An — 18] + 12a3(2An + n* — 9) + Fvi[4n(A*n + TA + n) — 45].
|
Taking wave number k =27/ and mode number n=2nro/Z  and d. means (vg + vyp)/2. They are
into account, one obtains n=kry,. Replacing n in Egs.
(5a)~(5d) with o, and taking the limit 7, — oo, the results . ~ (—Anagv} — n*agv} + 2aov})
. . ao(0,1) ~ vo + 5 t
corresponding to the planar geometry predicted by Ref. 23 N
qre rf:produced. That ig, in the condition of large r, the cy- (2 A2n2vg _4 Anvg - nzvg + 30(3)) (8a)
lindrical RMI problem is reduced to the planar one. 2,2 r,
0
ll. PADE APPROXIMATION AND DISCUSSION 5[ 5 ) )
' doro 1| @(1022~9) +4rd(An—1)]
To probe into growth rates of spikes and bubbles for de(0,1) ~ T 43 t
A >0 case, we select a spike located at € =0 and a bubble at 0 "o
0=m/n. Letting vy, and vy, denote the growth rates at the _aova [8421% + A(8n* —21)n — 160> +21] 2
tips of spike and bubble, respectively, one has 4r3
vg(84%2° — 2140 —8An® +26An+10n* — 15) ,
Usp = do(oa l) + de(oa I), (6a) + 6r8 o
. . (8b)
Upp = 7a0(05 t) + a. (07 t)v (6b)

where the dot over a letter denotes the time derivative. The
a, and a, result from odd and even (including the nonoscilla-
tion terms, i.e., zeroth harmonic) cosine Fourier modes,
respectively. The d, represents the overall growth rate
defined as

As is well known, above solutions can just serve to
describe the interface movement in the weakly nonlinear re-
gime. For the stage of the nonlinear regime prior to turbulent
mixing, these weakly nonlinear solutions fail to play a cor-
rect role. One of the standard methods to extend the range of
validity beyond the range of the finite Taylor series expan-
sion is a Padé approximation.”>**2%3! Applying the Padé to

Uoverall = (Usp - vbb)/z - (’:max - ’;min)/za (7) Eq (83), one has
40(0.1) = ( 2 _9) 2( U02 P 4 2(—24%2 2_3) ' ©
A -2 2a5(A -2 —2A 4A -3
1+aovo n—lz—n terax{O7 dAntn R 7 wAAn }v%tz
g 2r;
. cvo + Uit
Equation (9) is selected as P or PY Padé approximation ac(0,1) = (10)

according to the fact that the overall growth rate decays at
large times predicted in Ref. 3. For Eq. (8b), the P} Padé
approximation is constructed as

4r3 (& + oaovot + yv3r?)’

where
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¢ = 12a3r4(8A%0% — 32An° + 154n + 24n* — 15) — 96ayrS(An — 1) — 643(9 — 10n2)°r2,

— 8a2ri[404%n* 4 A2(9n® — 132n*) + 14A(160% — T)n — 94n* + 51]

£ = —6a2r2 (84> — 32An® + 15An + 24n® — 15) + 3a4(9 — 10%)° + 4873 (An — 1)?,

+ 82[8430° + 342(4n — 1)1 + A(50n — 321°) + 19n% — 24]

062119-4 Liu et al.
t = 24a42(10n> — 9) [—44%0% + A(112% — 3)n — Tn® + 3]
+3a5(10m> —9)" + 19215 (An — 1)°,
0 = 3a2(10n*> — 9)[84%n* + A(8n* — 21)n — 160> + 21
and

1 = a3[1924%n* +324° (70 — 27)n® + 3A%(64n* — 452n° + 651)n?]
+ Ad2[(—608n° +2360n° — 2178n) + 568n* — 1536n* + 1053
— 82 [84%n* — 294%n> + A>(47n% — 8n*) + A(18n% — 41)n — 100> + 15].

It is worth noting that the expressions of Padé (9) and
(10) obtained for the cylindrical geometry can be reduced to
Egs. (53) and (54)* when n = kry and in the limit of large ry.
Thus, the growth rates of the spike tip (6a), bubble tip (6b),
and the overall interface (7) based on Padé approximations (9)
and (10) are formulated for A >0 case. For A <0 case, the
positions of a bubble and a spike need to be exchanged each
other. In addition, based on the singularity of Padé approxima-
tion, Egs. (9) and (10) are available for the physical parameter
space n” +An—2>0, o/é >0, and /¢ > 0 with & # 0.

In fact, when ag is much smaller than A or r(, the fully
nonlinear evolution of the interface does not much depend
on the initial amplitude ao>? As a result, under the condition
ap =0, expressions (9) and (10) normalized by r( and v, can
be reduced to

1

&O(O»ﬂ =

.(0.1) (An—1)t
ae b) - b)
- 8A3n? —21A%n* — 8An® +26An+ 10n* — 15£2

6(1 —An)

(11b)

where symbol~denotes the normalized physical quantity.

To confirm the validity of the theoretical prediction, we
show the normalized growth rates of the bubble and spike
against normalized time at A =—0.2 [A=0.2] for variable
mode numbers in Fig. 1(i) [Fig. 1(ii)]. The corresponding
growth rates with the same mode numbers as ours can be
seen in Figs. 2(a)-2(d) in Matsuoka’s simulation work,?
where A= *0.2 corresponds to A= F0.2 of this paper.
Their Figs. 2(a)-2(d), based on a nonphysical parameter
0=0 for n=1 and 6 =0.1 for other mode numbers, show
the growth rates at early times and at fully nonlinear stage,
respectively. Note that, in their Figs. 2(a) and 2(b), only the

2
1+ max{0, —3(24%n> — 4An —n> + 3) }i partial curves of the growth rates are plotted before the
(11a) calculations break down. These factors result in the
1.5 T T T T T . 1.5 T T T T
(1) (i1) |
~ 107 Outgoing bubble ] /;o 1.0+ ~ :
S N N = LN S Outgoing spike
= 05 - 17 205y ST T -
I ettt e BT o ol fbel
8 0.0 TTrttecTIiiiiiiiizimzziziaias _? 8 0.04 _______'_'_'_Z:::::::::::::::::_:0::.:-:::
ﬁ _______ =2 5 . T
g -0.57. P 1F-3  2-05{ _.- e ]
Qo ’ - - 8 o o R -
B ' _-="7 " Ingoing spike 3 S - , 1
o -1.0-\»” 1 -1.0-\ Ingoing bubble _
15 N - o 15 . :

04 08 12 16 20
Time (v t/r,)

=]
ee}
L
\S]
—_—
(o)
\S]
(e
o
S

0.0 04
Time (v t/r,))

FIG. 1. Normalized growth rates of bubble and spike, vyu/vg and vp/vo, vs normalized time, vot/ro, at A= —0.2 (i) and A =0.2 (ii). Different mode numbers
n=1,2,3,and 8 are, separately, denoted by lines, dashed lines, dotted-dashed lines, and dotted lines. The initial perturbation amplitude is fixed as ao/ro =0.
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FIG. 2. Normalized growth rates of bubble and spike, vyp/vo and vgp/vg, vs normalized time, vot/ro, at A= —0.8 (i) and A =0.8 (ii). Different mode numbers
n=1,2,3,and 8 are, separately, denoted by lines, dashed lines, dotted-dashed lines, and dotted lines. The initial perturbation amplitude is fixed as ao/ro =0.

small difference between their Figs. 2(a) and 2(c) [Figs. 2(b)
and 2(d)] and Fig. 1(i) [Fig. 1(i1)] in this paper. However, the
trends of the growth rates of the bubble and spike are the
same.

Figure 1 shows that for smaller Atwood number (i.e.,
A= =*0.2), the normalized growth rate v/v, of outgoing bub-
ble (spike) or ingoing spike (bubble) tends to different values
with time, depending on mode number. When mode number
is larger, the v/vy of the bubble and spike approaches zero.
The larger the mode number is, the faster the v/v, reaches
zero. For the smaller mode number (e.g., n=1), the move-
ment of outgoing bubble (spike) becomes slowly with time,
while the ingoing spike (bubble) accelerates its speed toward
to the center of the inner fluid. It is evident that mode num-
ber directly influences the evolution behavior of the bubble
and spike.

To seek effect of Atwood number on the bubble and
spike, we show the v/v, of bubble and spike for A= *=0.8
with normalized time in Fig. 2. Atwood number has a dra-
matic influence on the evolution of the bubble and spike,
especially on outgoing bubble and ingoing spike in Fig. 2(i),

10

Mode number (1)

29 111

05 00 05
Atwood number (4)

-1.0 1.0

FIG. 3. Parameter space: region II corresponds to 24%n*> — 4An — n?
+3 < 0; regions I and III correspond to 2A%n*> — 4An — n*> +3 > 0.

where the v/vg does not tend to zero for mode number n =1,
2, 3, or 8. As a result, it is necessary to investigate asymp-
totic behavior of the bubble and spike. From expressions
(11a) and (11b), we have

0, 2A%n* —4An —n* +3 <0,

A f _
@0(0,1 = +00) {1, otherwise.

(12a)
Ge(0,7 — +00) =0. (12b)

In accordance with growth rates (6a) and (6b), we can get

2.2 2
ﬁsp(f—>+oo):{(1)’ 2A%n* —4An —n® +3 <0,

otherwise,
(13)
and
JO ] 0, 2A%1n> —4An —n* +3 <0,
bip(f — +00) = { —1, otherwise.
(14)

These expressions show that for the case of 24%n> — 4An
—n? + 3 < 0, the normalized asymptotic growth rates of out-
going spike and ingoing bubble are both zero; otherwise, they,
respectively, tend to 1 and —1. Relationship 24%n*> — 4An —
n? +3 < 0 means mode number n between AE-I) and AS?),
in which A" = (24 +v3—-242)/(242—1) and AP
—(24-v3— 2A2)/(2A2 — 1). That is to say, when mode
number is between A'" and AE-Z) corresponding to region II
shown in Fig. 3, the asymptotic growth rate of neither out-
going (ingoing) bubble or ingoing (outgoing) spike tends to
rest; otherwise (i.e., regions I and III shown in Fig. 3), it does
to its initial value. Especially for the ingoing spike, shown in
Figs. 1(1) and 2(i), the asymptotic growth rate profoundly
influences the time evolution of the spike. For calculation sim-
ulations, the prompt acceleration of ingoing spike directly
makes the calculation break down easily.
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IV. CONCLUSION

In summary, we apply an approach of the perturbation
expansion to explore the problem of cylindrical RMI in
incompressible, inviscid, and irrotational fluids directly at
the perturbed interface rather than the unperturbed one and
obtain the explicit solutions up to the fourth order in the
weakly nonlinear regime. Padé approximation employed in
the perturbation solutions results in the nonlinear results
which are valid for the full nonlinear regime before turbu-
lence mixing. In the limit of large initial interface radius, our
results reproduce the previous work® which is extremely
valid for the planar case. Comparison between the fully non-
linear simulation from Matsuoka and Nishihara® and our
explicit prediction is manipulated, and the qualitative agree-
ment denotes that the theoretical results are helpful to better
understand cylindrical RMI. The asymptotic growth rate of
outgoing bubble (spike) or ingoing spike (bubble) tends to
either its initial velocity or zero, depending on mode number
and Atwood number. This theory provided here allows a
straightforward extension to other nonlinear problems related
closely to an instable interface.
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