
Physica A 411 (2014) 104–112

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Analysis of transport properties determined by Langevin
dynamics using Green–Kubo formulae
Jun Zhang ∗, Dandan Zeng, Jing Fan
State Key Laboratory of High temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

h i g h l i g h t s
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a b s t r a c t

Recently, the Langevin dynamics method has been applied to simulate gas flows. It is very
crucial to evaluate whether the Langevin dynamics could correctly predict transport prop-
erties of gas or not. In this paper, the transport properties of Langevin velocity model and
acceleration model are analyzed by using Green–Kubo formulae. For the Langevin velocity
model, the time correlation functions have the exact exponent forms, and the Prandtl num-
ber for monatomic gas is predicted to be 3/2. For the Langevin acceleration model with an
additional time scale, the molecular movements change from Markovian process to Non-
Markovian process, and the Prandtl number could be adjusted to some extent. In the limit
of equilibrium, there is a minimum about 1.298 for the Prandtl number of monatomic gas
when the two time scales are equal in Langevin acceleration model. Besides theoretical
analyses, molecular simulations according to the Langevin velocity model and acceleration
model are performed, and the simulation results validate our analytical solutions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A stochastic algorithm based on Langevin equation, has been proposed to simulate rarefied gas flows recently [1–3].
Here we call it Langevin simulationMonte Carlo (LSMC)method. Comparing with the direct simulationMonte Carlo (DSMC)
method [4,5], which has been very popular in the simulation of rarefied gas flows, the LSMC method is more efficient for
simulating small Knudsen number flows. It is known that in DSMC method, the molecular movements and inter-molecular
collisions are assumeduncoupled during small time intervals.Molecularmotions aremodeled deterministically,while inter-
molecular collisions are treated statistically. For accurate DSMC applications, the sizes of cell within which molecular col-
lision partners are selected should be less than mean free path of molecules, and the time steps should be less than mean
collision time. Therefore, DSMCwould become computationally very expensive for the simulation of small Knudsen number
flows. On the other hand, the Langevin equation uses drift term and diffusion term to describe molecule movements, and
no direct molecular collisions have to be modeled. This allows the LSMC method to proceed with much larger time step
than that used in DSMC method. Using Langevin simulation, very good agreement of molecular stresses and mean velocity
in comparison with DSMC, linearized Boltzmann and experiment has been achieved [1,3].

∗ Corresponding author. Tel.: +86 10 82544025; fax: +86 10 62561284.
E-mail address: zhangjun04@imech.ac.cn (J. Zhang).

http://dx.doi.org/10.1016/j.physa.2014.06.012
0378-4371/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2014.06.012
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2014.06.012&domain=pdf
mailto:zhangjun04@imech.ac.cn
http://dx.doi.org/10.1016/j.physa.2014.06.012


J. Zhang et al. / Physica A 411 (2014) 104–112 105

According to the principle of stochastic process, the Langevin equation is closely related to the Fokker–Planck equa-
tion [6], and the LSMCmethod could be regarded as a stochastic solution of the Fokker–Planck equation. The relationbetween
LSMCmethod and Fokker–Planck equation is similar to the relation between DSMCmethod and Boltzmann equation. Based
on gas kinetic theory, the Fokker–Planck equation could be considered as an approximation of Boltzmann equation [7].Many
researchers have discussed the Fokker–Planck description as a model equation for gas dynamics. For example, Lebowitz
et al. [8] and Pawula [9] tried to approximate the Boltzmann equation by a Fokker–Planck equation with a simple drift
model, which results in a wrong Prandtl number for monatomic gas molecules. Since the Prandtl number is very important
for the heat transport phenomena, many efforts have been made for the Fokker–Planck model to provide correct Prandtl
number. Heinz [10] introduced an acceleration model with an additional time scale, which could be used to adjust the
Prandtl number. With the acceleration model, the molecule movements change fromMarkovian process to Non-Markovian
process. Yano et al. [11] proposed a Fokker–Planck equation with a source term to correct Prandtl number. Recently, Gorji
et al. [2] introduced a cubic non-linear drift term in Fokker–Planck equation, and this model leads to the correct Prandtl
number for monatomic gas. In the equilibrium limit, the non-linear drift model automatically regresses to be linear.

In this paper, we employed the Green–Kubo formulae [12] to analyze the transport properties of Langevin equation,
including velocity model and acceleration model proposed by Heinz [10]. The Green–Kubo relations give the exact mathe-
matical formulae for transport coefficients in terms of integrals of time correlation functions of some specific microscopic
flux. Based on the Langevin model and Ito calculus [13], we could directly obtain the analytical solution of velocity for each
molecule, and then the time correlation functions are determined. Using Green–Kubo formula, we obtain the analytical so-
lutions of transport coefficients, and the corresponding results are presented in Sections 2 and 3 for the Langevin velocity
model and acceleration model, respectively. In order to validate our analytical results, molecular simulations under equilib-
rium condition are performed, and the corresponding results are shown in Section 4. The discussions and conclusions are
presented in Section 5.

2. Analysis of Langevin velocity model

Let us consider simple Langevin model for the velocity ux of one molecule in x direction,

dux

dt
= −

1
τ

(ux − ⟨ux⟩) +


4es
3τ

1/2 dw
dt

, (1)

where ⟨ux⟩ is the mean, or macroscopic velocity of molecules, τ is the characteristic relaxation time scale of molecular
velocities, es refers to the specific kinetic energy ofmolecules, i.e., es =

3
2 ⟨u

2
x⟩, andw(t) is aWiener processwith the following

properties
dw
dt

(t)


= 0, (2)
dw
dt

(t)
dw
dt


t ′


= δ(t − t ′). (3)

Note that our analysis is performed under equilibrium condition, and hence ⟨ux⟩ equals zero. Meanwhile, the kinetic energy
is constant and equal to 3

2RT , where R is the gas constant, and T is the temperature of system.
Using Ito calculus [13], the exact solution of Eq. (1) could be written as

ux(t) = ux(0) e−
t
τ +


4es
3τ

 1
2
 t

0
e−

t−sx
τ

dw
dsx

(sx) dsx. (4)

Similarly, the evolutions of velocities in y and z direction are

uy(t) = uy(0) e−
t
τ +


4es
3τ

 1
2
 t

0
e−

t−sy
τ

dw
dsy

(sy) dsy, (5)

uz(t) = uz(0) e−
t
τ +


4es
3τ

 1
2
 t

0
e−

t−sz
τ

dw
dsz

(sz) dsz . (6)

Having these expressions of velocity evolutions, the transport coefficients can be obtained by using Green–Kubo rela-
tions [12], which give the diffusion, viscosity and thermal conductivity coefficients as follows:

D =


+∞

0
⟨ux(0)ux(t)⟩ dt, (7)

µ =
1

kBVT


+∞

0
⟨Pxy(0)Pxy(t)⟩ dt, (8)

κ =
1

kBVT 2


+∞

0
⟨Jx(0)Jx(t)⟩ dt, (9)
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where V is the volume of system, T is the temperature, Pxy(t) =
N

i=1 mui,xui,y and Jx(t) =
N

i=1

 1
2mu2

i −
5
2kBT


ui,x are

the microscopic stress and heat flux, respectively, N is the total number of particles in the system, kB is the Boltzmann con-
stant, and the ⟨ ⟩ denotes an ensemble average. In the following analysis, we firstly calculate the time correlation functions
as ⟨ux(0)ux(t)⟩, ⟨Pxy(0)Pxy(t)⟩ and ⟨Jx(0)Jx(t)⟩, and then obtain the transport coefficients by integrating the corresponding
time correlation functions.

2.1. Diffusion coefficient

By taking the average of ux(0) multiplied by ux(t) as Eq. (4), we could obtain

⟨ux(0)ux(t)⟩ = ⟨u2
x(0)⟩ e

−
t
τ +


4es
3τ

 1
2

ux(0)

 t

0
e−

t−sx
τ

dw
dsx

(sx) dsx


. (10)

Because dw
dsx

is uncorrelated to ux(0), the ensemble averagemakes the last term in Eq. (10) zero. The time correlation function
of velocity is simplified as

⟨ux(0)ux(t)⟩ = ⟨u2
x(0)⟩ e

−
t
τ =

2es
3

e−
t
τ . (11)

Consequently, the diffusion coefficient could be obtained using Green–Kubo formula as Eq. (7),

D =
2es
3


+∞

0
e−

t
τ dt =

2es
3

τ . (12)

2.2. Viscosity coefficient

Due to the independence of particles in Langevin dynamics, the ensemble average terms of inter-particles equal zero.
And thus the time correlation function of microscopic stress can be simplified as

⟨Pxy(0)Pxy(t)⟩ =


N
i=1

mui,x(0)ui,y(0) ·

N
j=1

muj,x(t)uj,y(t)


= Nm2

⟨ux(0)uy(0)ux(t)uy(t)⟩. (13)

On substituting Eqs. (4) and (5) into Eq. (13), we obtain

⟨Pxy(0)Pxy(t)⟩ = Nm2 e−
2t
τ ⟨u2

x(0)u
2
y(0)⟩ + Nm2


4es
3τ

 1
2

ux(0)u2

y(0)
 t

0
e−

t−sx
τ

dw
dsx

(sx) dsx


+Nm2


4es
3τ

 1
2

u2
x(0)uy(0)

 t

0
e−

t−sy
τ

dw
dsy

(sy) dsy


+Nm2 4es

3τ


ux(0)uy(0)

 t

0
e−

t−sx
τ

dw
dsx

(sx) dsx

 t

0
e−

t−sy
τ

dw
dsy

(sy) dsy


. (14)

Considering that the inter-particles and inter-directions are uncorrelated, and the Wiener process is uncorrelated to
initial velocities, the last three terms in Eq. (14) equal zero. Hence Eq. (14) reduces to

⟨Pxy(0)Pxy(t)⟩ = Nm2 e−
2t
τ ⟨u2

x(0)⟩⟨u
2
y(0)⟩ =

4e2s
9

Nm2 e−
2t
τ . (15)

Integrating the time correlation function of microscopic stress, we obtain the viscosity coefficient

µ =
1

kBVT
4e2s
9

Nm2


+∞

0
e−

2t
τ dt =

Pτ

2
, (16)

where P is the pressure, i.e., P = nkBT , and n is the number density, i.e., n = N/V .

2.3. Thermal conductivity coefficient

Similarly, considering the independence of particles, the time correlation function of microscopic heat flux reduces to

⟨Jx(0)Jx(t)⟩ = N


1
2
mu2(0) −

5
2
kBT


ux(0) ·


1
2
mu2(t) −

5
2
kBT


ux(t)


, (17)

where u2(0) = u2
x(0) + u2

y(0) + u2
z (0) and u2(t) = u2

x(t) + u2
y(t) + u2

z (t).
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On substituting Eqs. (4)–(6) into Eq. (17) and making some simplifications, we obtain

⟨Jx(0)Jx(t)⟩ = N


1
2
mu2(0) −

5
2
kBT

2

u2
x(0) e

−
3t
τ


. (18)

By taking the moments of the Maxwellian distribution function under equilibrium condition, we could obtain ⟨u2
x(0)⟩ =

2es
3 , ⟨u4

x(0)⟩ =
4e2s
3 and ⟨u6

x(0)⟩ =
40e3s
9 . And thus Eq. (18) could be written as

⟨Jx(0)Jx(t)⟩ =
20e3s
27

Nm2 e−
3t
τ . (19)

Integrating the time correlation function of microscopic heat flux, we obtain the thermal conductivity coefficient

κ =
1

kBVT 2

20e3s
27

Nm2


+∞

0
e−

3t
τ dt =

5PRτ
6

. (20)

2.4. Prandtl number

The Prandtl number is a dimensionless number approximating the ratio of momentum diffusivity and thermal diffusivity
and can be expressed as

Pr =
Cpµ

κ
, (21)

where Cp is the specific heat capacity. For monatomic gas, Cp =
5
2R. On substituting Eqs. (16) and (20) into Eq. (21), the

Prandtl number equals 3/2 for monatomic gas. This analytical result is the same as that presented in Jenny et al.’s paper [1],
where they derived the Prandtl number by taking moments of the Fokker–Planck equation. It is known that the Prandtl
number is 2/3 for monatomic gas, so the simple Langevin velocity model could not predict correct Prandtl number.

3. Analysis of Langevin acceleration model

Since the simple Langevin velocitymodel cannot predict correct Prandtl number formonatomic gas, some developments
have been made for adjusting Prandtl number. Heinz [10] proposed the acceleration model with an additional time scale τa
for describing molecular movements,

dux

dt
= ax, (22)

dax
dt

=
1
τa


−


1 +

τa

τ


ax −

1
τ
ux +


4es
3τ


1 +

τa

τ

1/2 dw
dt


, (23)

where ax is the acceleration in x direction. The velocity model as Eq. (1) can be recovered by multiplying Eq. (23) by τa and
taking the limit τa → 0. For the sake of derivation easily, letting r1 = −

1
τ
and r2 = −

1
τa
, Eq. (23) changes to simple form as

dax
dt

= (r1 + r2) ax − r1r2ux +


−

4es
3

r1r2 (r1 + r2)
1/2 dw

dt
. (24)

The formal solution of Eq. (24) gives

ax(t) = ax(0) e(r1+r2)t +

 t

0
e(r1+r2)(t−s)


−r1r2ux +


−

4es
3

r1r2 (r1 + r2)
1/2 dw

ds
(s)


ds. (25)

It can be seen from Eq. (25) that the acceleration model describes a non-Markovian process because the future velocity
is calculated in terms of the velocity history between zero and t . This is the main difference between the accelerationmodel
and velocity model.

Combining Eq. (24) with Eq. (22), we could obtain the exact solution of velocity

ux(t) = ax(0)
er2t − er1t

r2 − r1
+ ux(0)

r2 er1t − r1 er2t

r2 − r1

+
1

r2 − r1


−

4e
3
r1r2 (r1 + r2)

1/2  t

0
(er2(t−s)

− er1(t−s))
dw
ds

(s) ds. (26)



108 J. Zhang et al. / Physica A 411 (2014) 104–112

By differentiating Eq. (26) with respect to t , the expression of acceleration follows as

ax(t) = ax(0)
r2 er2t − r1 er1t

r2 − r1
+ ux(0)

r1r2(er1t − er2t)
r2 − r1

+
1

r2 − r1


−

4e
3
r1r2 (r1 + r2)

1/2  t

0
(r2 er2(t−s)

− r1 er1(t−s))
dw
ds

(s) ds. (27)

The velocities and accelerations in y and z directions have the same forms as Eqs. (26) and (27), respectively. Considering
that energy is conserved under equilibrium condition, these relations ⟨u2

x(t)⟩ =
2es
3 , ⟨a2x(t)⟩ =

2es
3 r1r2 and ⟨ux(t)ax(t)⟩ = 0

are necessarily satisfied. Using these expressions, the transport coefficients could be obtained by employing Green–Kubo
formulae.

3.1. Diffusion coefficient

By taking the average of ux(0) multiplied by ux(t) as Eq. (26), we obtain

⟨ux(0)ux(t)⟩ = ⟨ux(0)ax(0)⟩
er2t − er1t

r2 − r1
+ ⟨u2

x(0)⟩
r2 er1t − r1 er2t

r2 − r1

+
1

r2 − r1


−

4e
3
r1r2 (r1 + r2)

1/2 
ux(0)

 t

0
(er2(t−s)

− er1(t−s))
dw
ds

(s) ds

. (28)

Because ⟨ux(t)ax(t)⟩ = 0 and ux(0) is uncorrelated to dw
ds , both of the first and last terms in Eq. (28) are zero. And thus

the time correlation function of velocity is simplified as

⟨ux(0)ux(t)⟩ =
2es
3

r2 er1t − r1 er2t

r2 − r1
. (29)

Consequently, the diffusion coefficient could be obtained using Green–Kubo formula as Eq. (7),

D =
2es
3


+∞

0

r2 er1t − r1 er2t

r2 − r1
dt =

2es
3

−(r1 + r2)
r1r2

=
2es
3

(τ + τa). (30)

3.2. Viscosity coefficient

On substituting Eqs. (26) and (27) into Eq. (13), we obtain the time correlation function of microscopic stress,

⟨Pxy(0)Pxy(t)⟩ =
4e2s
9

Nm2 (r2 er1t − r1 er2t)2

(r2 − r1)2
. (31)

Integrating the time correlation function of microscopic stress, we obtain the viscosity coefficient,

µ =
Nm2

kBVT
4e2s
9


+∞

0

(r2 er1t − r1 er2t)2

(r2 − r1)2
dt

=
Nm2

kBVT
4e2s
9

−((r1 + r2)2 + r1r2)
2r1r2(r1 + r2)

=
p(τ 2

+ 3ττa + τ 2
a )

2(τ + τa)
. (32)

3.3. Thermal conductivity coefficient

On substituting Eqs. (26) and (27) into Eq. (17) andmaking some simplifications, we obtain the time correlation function
of microscopic heat flux,

⟨Jx(0)Jx(t)⟩ =
20e3s
27

Nm2 (r1 er2t − r2 er1t)3

(r2 − r1)3
. (33)

Integrating the time correlation function of microscopic heat flux, we obtain the thermal conductivity coefficient,

κ =
Nm2

kBVT 2

20e3s
27


+∞

0

(r2 er1t − r1 er2t)3

(r2 − r1)3
dt

=
Nm2

kBVT 2

20e3s
27

−(r1 + r2)(2r21 + 9r1r2 + 2r22 )
3r1r2(2r1 + r2)(r1 + 2r2)

=
5pR
6

(τ + τa)(2τ 2
a + 9τaτ + 2τ 2)

(2τa + τ)(τa + 2τ)
. (34)
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Fig. 1. The Prandtl number versus τa/τ for the Langevin acceleration model.

3.4. Prandtl number

On substituting Eqs. (32) and (34) into Eq. (21),we obtain the Prandtl number determined by Langevin accelerationmodel
for monatomic gas,

Pr =
3(2τa + τ)(τa + 2τ)(τ 2

+ 3ττa + τ 2
a )

2(τ + τa)2(2τ 2
a + 9τaτ + 2τ 2)

. (35)

It is obvious that the Prandtl number varieswith the ratio of two time scales, i.e., τa/τ . As shown in Fig. 1, when τa/τ → 0
or τa/τ → +∞, the Prandtl number has the maximum value 1.5; when the two time scales are equal, the Prandtl number
has theminimumvalue,which is about 1.298. Comparingwith the Langevin velocitymodel, the Langevin accelerationmodel
could adjust the Prandtl number to some extent, but cannot approach to the correct value 2/3 for monatomic gas. Note that
our analysis is performed in the limit of equilibrium, τ and τa are assumed constant. Under non-equilibrium condition, τ
and τa may vary in space via temperature dependence, and it is possible to adjust Prandtl number to the correct value 2/3
for monatomic gas. More details have been presented in Heinz’s paper [10].

4. Molecular simulations

To validate our analysis results, molecular simulations for Argon gas under standard state are performed, i.e., the temper-
ature and pressure of the system are 273 K and 1.01×105 Pa, respectively. The computational domain is a three-dimensional
box, and each boundary condition of which is assumed periodic. The introduction of periodic boundaries is equivalent
to considering an infinite, space-filling array of identical copies of the simulation region. In the process of simulation, a
molecule that leaves the simulation region through a particular boundary immediately reenters the region through the op-
posite boundary. As the DSMCmethod, each simulationmolecule in the LSMCmethod also represents a large number of real
molecules. The total number of simulation molecules is about 800 thousands. At the initial time, molecules are uniformly
distributed in the simulation domain, and their velocities and accelerations are randomly selected from Normal distribu-
tions. The calculating time step is 0.1τ , where τ = 4.179× 10−10 s, which is determined according to Eq. (16) to ensure the
viscosity predicted by Langevin velocity model is the same as the experimental value, 2.117 × 10−5 Nsm−2. For Langevin
acceleration model, we choose τ = 8.039 × 10−11 s and τa = 2.752 × 10−10 s, which make the viscosity predicted by
acceleration model is the same as experimental value and the Prandtl number equals 4/3. In each calculating time step, the
update of molecular velocities for Langevin velocity model is based on Eq. (4), while the update of molecular velocities and
accelerations for Langevin acceleration model is based on Eqs. (26) and (27). For both models, the evolutions of molecular
positions are performed according to

∆x(t) =

 t

0
u(t ′) dt ′. (36)

For numerical simulations, the terms containing Wiener process in Eqs. (4), (26), (27) and (36) are replaced by sampling
from a normal distribution. Jenny et al. [1] and Ermak and Buckholz [14] have developed this type of numerical schemes.
It is crucial that the first and second conditional moments and joint conditional moments predicted by numerical solutions
should be consistent with that predicted by the original evolution equations.



110 J. Zhang et al. / Physica A 411 (2014) 104–112

Particularly, for the Langevin velocity model, the numerical solution for each calculating time step ∆t follows as

x(∆t) = x(0) + u(0)τ (1 − e−∆t/τ ) +
√
Bε1, (37)

u(∆t) = u(0) e−∆t/τ
+


C2

B
ε1 +


A −

C2

B
ε2, (38)

where ε1 and ε2 are independent, normal distributed random variables, and A, B and C are related to the moments of veloc-
ities and displacements,

A =
2es
3


1 − e−2∆t/τ  , (39)

B =
2esτ 2

3


2∆t
τ

−

1 − e−∆t/τ  

3 − e−∆t/τ  , (40)

C =
2esτ
3


1 − e−∆t/τ 2 . (41)

For the Langevin acceleration model, the numerical solution for each calculating time step ∆t follows as

x(∆t) = x(0) + a(0)
r1(er2t − 1) − r2(er1t − 1)

(r2 − r1)r1r2
− u(0)

r21 (e
r2t − 1) − r22 (e

r1t − 1)
(r2 − r1)r1r2

+
√
Aε1, (42)

u(∆t) = a(0)
er2t − er1t

r2 − r1
+ u(0)

r2 er1t − r1 er2t

r2 − r1
+


D2

A
ε1 +


B −

D2

A
ε1, (43)

a(∆t) = a(0)
r2 er2t − r1 er1t

r2 − r1
+ u(0)

r1r2(er1t − er2t)
r2 − r1

+


E2

A
ε1 +


(AF − DE)2

A(AB − D2)
ε2 +


C −

E2

A
−

(AF − DE)2

A(AB − D2)
ε3, (44)

where ε1, ε2 and ε3 are independent, normal distributed randomvariables, andA, B, C,D, E and F are related to themoments
of velocities, accelerations and displacements,

A = −
2e
3

r22 (3 − 4er1t + e2r1t)
(r2 − r1)2r21

+
2e
3

(4 − 4er1t − 4er2t + 4e(r1+r2)t + 2r2t)
(r2 − r1)2

−
2e
3

r2(−1 + e2r1t + 2r2t)
(r2 − r1)2r1

+
2e
3

r1(1 − e2r2t + 2r2t)
(r2 − r1)2r2

−
2e
3

r21 (3 − 4er2t + e2r2t + 2r2t)
(r2 − r1)2r22

, (45)

B =
2e
3

(r2 − r1)2 − r1r2(er2t − er1t)2 + (r1 er2t − r2 er1t)2

(r2 − r1)2
, (46)

C =
2e
3
r1r2

(r2 − r1)2 − (r1 + r2)(r1 e2r1t + r2 e2r2t) − 4r1r2 e(r1+r2)t

(r2 − r1)2
, (47)

D = −
2e
3

(r1 + r2)(r1(−1 + er2t) + r2(1 − er1t))2

r1r2(r2 − r1)2
, (48)

E =
2e
3

(1 + 2 er1t − er2t)(er2t − 1)r21
(r2 − r1)2

−
2e
3

(e2r1t − e2r2t − 2)r1r2
(r2 − r1)2

+
2e
3

(1 + 2 e2r2t − er1t)(er1t − 1)r22
(r2 − r1)2

, (49)

F = −
2e
3

r1r2(r1 + r2)(er2t − er1t)2

(r2 − r1)2
. (50)

Using the numerical schemes as Eqs. (37)–(41) for the Langevin velocity model and as Eqs. (42)–(50) for the Langevin
acceleration model, molecular simulations are proceeded up to 1 million time steps, and then ensemble average are
performed to obtain the time correlation functions. Figs. 2 and 3 show the time correlation functions of microscopic stress
and heat flux, respectively. The time scale is normalized by the parameter τ in Langevin velocitymodel. It is obvious that the
time correlation functions for the velocity model have the exponent forms. At the initial stage the time correlation functions
for acceleration model are larger than that for velocity model, and after no longer than τ , the time correlation functions for
accelerationmodel become less than that for velocitymodel. Note that the parameter τ in velocitymodel and the parameters
τ and τa in acceleration model are determined by the viscosity coefficient, so the integrations of time correlation function
of microscopic stress for the velocity model and acceleration model are the same, which predict correctly the viscosity
coefficient. However, the integration of time correlation function of microscopic heat flux for acceleration model is larger
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Fig. 2. Time correlation function of microscopic stress versus time.

Fig. 3. Time correlation function of microscopic heat flux versus time.

than that for velocitymodel, and it means that the thermal conductivity coefficient predicted by accelerationmodel is larger
than that for velocity model. In this way, acceleration model could decrease the Prandtl number to some extent.

Fig. 4 shows the acceleration correlation function for accelerationmodel. After about 0.3τ the correlation becomesminus,
then approaches to the minimum at about 0.6τ , and finally goes back to zero at about 3τ . The integration of acceleration
correlation function is zero, and it means that the acceleration has a zero integral correlation time [13].

5. Discussions

In this paper, transport properties of Langevin velocitymodel and accelerationmodel are investigated using Green–Kubo
formulae. The analytical solutions of transport coefficients, including diffusion, viscosity, and thermal conductivity
coefficients are obtained. For the Langevin velocitymodel, the time correlation functions have the exact exponent forms, and
the predicted Prandtl number is 3/2 for monatomic gas. For the Langevin acceleration model with an additional time scale,
the time correlation functions are somewhat different from that of velocitymodel, and the Prandtl number could be adjusted
to some extent, but the minimum of Prandtl number predicted by acceleration model is still larger than the correct value
2/3 for monatomic gas. Recently, a non-linear velocity model has been proposed by Gorji et al. [2], and the cubic non-linear
drift term leads to the correct Prandtl number of 2/3 for monatomic gas under nonequilibrium state. However, in the limit
of equilibrium, the non-linear velocitymodel automatically reduces to the simple velocitymodel, which predicts the Prandtl
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Fig. 4. Acceleration correlation function for the Langevin acceleration model.

number as 3/2. To the best our knowledge, none of Langevinmodels could predict correct Prandtl number formonatomic gas
in the limit of equilibrium by far. How to develop a reasonable Langevin model for predicting correct transport properties is
still an open question. Note that we only consider ideal particle systems in this paper, especially the ideal gas molecules. For
the nonideal dissipative system, inter-particle interactions play an important role in the transport properties. The problems
associatedwithmass-transfer processes, i.e., diffusion processes, in dissipative systems of interacting particles [15–18] have
been widely investigated in various fields, such as in plasmas of combustion products and in polymer colloid suspensions.
Yet the research of viscosity and thermal conductivity coefficients of these systems is still rare. It is worthwhile to study on
this subject in the future.
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