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Smoothed particle hydrodynamics (SPH) is a popular meshfree Lagrangian particle method,
which uses a kernel function for numerical approximations. The kernel function is closely
related to the computational accuracy and stability of the SPH method. In this paper, a new
kernel function is proposed, which consists of two cosine functions and is referred to as
double cosine kernel function. The newly proposed double cosine kernel function is suffi-
ciently smooth, and is associated with an adjustable support domain. It also has smaller
second order momentum, and therefore it can have better accuracy in terms of kernel
approximation. SPH method with this double cosine kernel function is applied to simulate
a dam-break flow and water entry of a horizontal circular cylinder. The obtained SPH
results agree very well with the experimental results. The double cosine kernel function
is also comparatively studied with two frequently used SPH kernel functions, Gaussian
and cubic spline kernel functions.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Smoothed Particle Hydrodynamics (SPH) [1,2] is a meshfree Lagrangian particle method, in which particles are used to
represent the state of a system, and are used to approximate governing equations through using a smoothing or kernel func-
tion (or abbreviated as a kernel). As a comparatively new computational method, SPH combines the advantages of meshfree,
Lagrangian and particle methods. First, particles are used to represent the state of a system and these particles can freely
move according to internal particle interactions and external forces. Therefore it can naturally obtain history of fluid motion,
and can easily track material interfaces, free surfaces and moving boundaries. The meshfree nature of SPH method remove
the difficulties due to large deformations since SPH uses particle rather than mesh as a computational frame to approximate
related governing equations. These nice features of SPH make it fairly attractive in modeling problems with deformable
boundaries, moving interfaces, free surfaces and large deformations [3–6].

SPH was originally invented to solve astrophysical problems in open space [1,2] and it was later extended to simulate many
other compressible flows such as shock problems [3–7]. By treating the flow as slightly compressible with an appropriate
equation of state, the SPH method can be used to simulate incompressible flows successfully [8,9]. It is also possible to rigor-
ously treat incompressible flows in SPH through solving the pressure Poisson equation [10,11] in a way similar to the moving
particle semi-implicit (MPS) method [12,13]. SPH was also expended to simulate multi-phase flows with sharp interfaces
[14–16]. More details of the SPH method and its recent developments can be found in a number of review papers [4–6,17].
ematical
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Kernel functions are very important in SPH method as they are closely related to the computational accuracy and stability
[18,19] of the SPH method, and therefore they have been studied by many researchers. According to [18] the stability of SPH
is related to the second derivative of the kernel function. Monaghan [17] proposed a method on how to construct high order
kernel functions by starting with normal standard kernel functions and gave a Super Gaussian kernel as an example. A
disadvantage of high order kernel functions is that they can become negative in part of the domain and this may cause
unphysical results. Fulk and Quinn [20] have studied SPH kernel functions in one dimensional spaces. According to their
assessment, bell-shaped kernels perform better than kernels with other shapes and no kernel function is significantly better
than the cubic spline. Liu et al. [21] presented a general approach to construct analytical kernel functions. They also
constructed a new quadric kernel function which was applied to the one dimensional shock problem and a one dimensional
TNT detonation problem. Ha [22] provided a comparative study on Liu’s quartic kernel function with the cubic spline kernel
function and quintic spline kernel function. He pointed out that the quartic kernel gave the best results for a benchmark
lid-driven cavity problem. Jin and Ding [23] provided three criterions for determining suitable kernel functions through
evaluating computational accuracy. They concluded that Gaussian and Q-spline kernel functions should be regarded as
the best kernel functions among ten kernels in their study. Cabezón et al. [24] proposed a one-parameter family of interpo-
lating kernels with compact support based on the harmonic-like functions.

2. SPH methodology

2.1. SPH approximations

In the SPH method, for a field function f ðrÞ, its value, f, at point ra can be first approximated using the following integral
formula:
h f ðraÞi ¼
Z

f ðrÞWðra � r;hÞdV ; ð1Þ
where Wðra � r;hÞ is a kernel function, dV is a differential volume element. The parameter h in kernel W is referred to as a
smoothing length which determines the actual size of the integral domain.

Eq. (1) can be further written as the averaged summation over a set of particles, each associated with a small mass ele-
ments as follows:
hfai ¼
X

b

fbWabVb; ð2Þ
where fa ¼ f ðraÞ, Wab ¼Wðra � rb;hÞ. The indexes a and b denote the labels of particles. Particle b has position rb, velocity ub,
mass mb, density qb, and volume Vb ¼ mb=qb.

The gradient of function f ðrÞ can be obtained by differentiating the kernel in Eq. (2) as follows:
hrfai ¼
X

b

fbraWabVb; ð3Þ
where raWab denotes the gradient of the kernel W taken with respect to a-coordinates.

2.2. SPH equations of motion

In this paper, the Lagrangian form of the Reynolds-averaged Navier–Stokes (RANS) equations are used as governing equa-
tions for incompressible, viscous flows:
dq
dt
¼ �qr � U; ð4Þ

dU
dt
¼ � 1

q
rP þ l

q
r2U þ 1

q
r � ðqRÞ þ g; ð5Þ
where q is fluid density, U is the velocity vector, P is pressure, l is the dynamic viscosity, g is the gravitational acceleration,
and R is the Reynolds stress tensor whose elements are:
Rij ¼ �u0iu
0
j: ð6Þ
The eddy viscosity assumption is used to model the Reynolds stress tensor as:
R ¼ 2mtS �
2
3

kI; ð7Þ
where mt is the eddy viscosity, S is the mean rate-of-strain tensor, k is turbulence kinetic energy and I is unite tensor.
The Smagorinsky model of eddy viscosity is widely used:
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mt ¼ ðCsDlÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
; ð8Þ
where Cs is Smagorinsky constant and Dl is a mixing length which is assumed to be the initial particle spacing in SPH.
Following Lo and Shao [10], a value of 0.12 is chosen for Cs. Sij are the elements of S given by:
Sij ¼
1
2

@Uj

@xi
þ @Ui

@xj

� �
: ð9Þ
An additional equation is required to calculate turbulence kinetic energy k. For the definition of k is:
k ¼ 1
2

u0iu
0
i; ð10Þ
and noting Eq. (6), the relation between k and the Reynolds stress tensor can be written as:
k ¼ �1
2

Rii: ð11Þ
Using Eq. (2) and a few mathematical techniques, the continuity Eq. (4) is expressed as:
dqa

dt
¼
X

b

mbUab � raWab: ð12Þ
The right hand side of the momentum Eq. (5) can be expressed as:
1
q
rP

� �
a

¼
X

b

mb
pa

q2
a
þ pb

q2
b

� �
raWab; ð13Þ

l
q
r2U

� �
a
¼
X

b

8lmbrab � raWab

ðqa þ qbÞ
2ðr2

ab þ 0:01h2Þ
Uab; ð14Þ

1
q
r � ðqRÞ

� �
a

¼
X

b

mb
Ra

qa
þ Rb

qb

� �
� raWab: ð15Þ
In the SPH method, an artificial compressibility technique is usually used to model the incompressible flow as a slightly
compressible flow. The artificial compressibility considers that every theoretically incompressible fluid is actually slightly
compressible. Therefore, it is feasible to model the incompressible flow by using a quasi-incompressible equation of state
[9]:
pðqÞ ¼ c2ðq� q0Þ; ð16Þ
where q0 is a reference density, c is a numerical speed of sound. In order to reduce the density fluctuation down to one per-
cent c is usually taken ten times larger than the maximum fluid velocity.

2.3. Solid boundary treatment (SBT)

Many solid boundary treatment algorithms have been proposed in different SPH literatures, such as repulsive SBT algo-
rithm [8,25], dynamic SBT algorithm [3] and some others. In this paper dynamic boundary conditions are used. Solid bound-
aries are replaced by three layers of virtual particles (Fig. 1) which can remain fixed in position as fixed wall boundaries, or
can move as a rigid body but not as separate particles. The density and pressure of the solid boundary particles are calculated
as fluid particles. For a moving body the sum of all the reaction forces on the body particles from fluid particles is applied to
the whole body.
Fluid particles

Solid boundary particles

Fig. 1. Sketch of virtual particles for solid boundary.
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3. Kernel functions for SPH method

3.1. Properties of a kernel function

The kernel function W is very important, because it determines the pattern to interpolate. There are several kernel func-
tions used in literatures [3,19,20,26]. To choose or construct a suitable kernel, the following properties usually required:

(1) Delta function property, which means that the kernel function should tend to the Dirac delta function as the smooth-
ing length tends to zero:
lim
h!0

Wðr;hÞ ¼ dðrÞ: ð17Þ
It is noted that in Eq. (1), if the kernel is replaced by the delta function, the interpolant can reproduces f exactly.
(2) Normalization condition, which means the kernel function must be normalized:
Z
Wðr;hÞdV ¼ 1: ð18Þ
This property is also called unity condition. By satisfying this unity condition, a constant can be approximated exactly.
(3) Compact support property, which means the kernel function should have compact support:
Wðr;hÞ ¼ 0; jrjP jh; ð19Þ
where j is usually a scalar factor which determines the area of the compact support domain.

Besides the above properties, other requirements may also required in different literatures such as monotonically
decreasing condition, even function condition, smoothing condition, and non-negativity condition [21].

3.2. A new kernel function

Any function can be employed as a kernel function if it has the above properties. Considering these properties, we pro-
posed a new kernel function as follows:
Wðs;hÞ ¼ ad

4 cos p
j s
� �

þ cos 2p
j s
� �

þ 3; 0 6 s 6 j
0; j < s

8><
>: ; ð20Þ
where s ¼ r=h, r ¼ jrj is the distance between two particles. ad is the normalized coefficient in d dimensional space, and with
the value of a1 ¼ 1=ð6khÞ, a2 ¼ p=½ð3p2 � 16ÞðkhÞ2�, and a3 ¼ p=½ð4p2 � 30ÞðkhÞ3� in one, two and three dimensional space,
respectively. This new kernel function is referred to as double cosine function since it is consist of two cosine functions.
The double cosine kernel function and its first two derivatives are shown in Fig. 2.
Fig. 2. Double cosine function (j = 2) and its first two derivatives.
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It shall be noted that this double cosine kernel function is sufficiently smooth and can be arbitrarily differentiated. Also
the support domain of the double cosine kernel function is adjustable as can be seen from Eq. (20), it is conveniently to
change parameter j to adapt the support domain.

Though there are diversified kernel functions in many different SPH literatures, the Gaussian and cubic spline kernel are
more frequently used, and therefore we shall comparatively investigate the double cosine kernel function with the Gaussian
and cubic spline kernel.

The Gaussian function is written as [2]:
Fig. 3
Gðr; hÞ ¼ ad exp½�ðr=hÞ2�; ad ¼ 1=ð
ffiffiffiffi
p
p

hÞd: ð21Þ
The Gaussian kernel is sufficiently smooth even for high orders of derivatives, and is regarded as a golden selection by
Monahan [17], sine it is very stable and accurate especially for disordered particles. It is, however, not really compact, as
it never goes to zero theoretically, unless the support domain approaches infinity. Because it approaches zero very fast
numerically, it is practically compact. This can also result in a large support domain with an inclusion of more particles
for SPH approximation and therefore it is computationally very expensive.

Another most commonly used kernel is the cubic spline function:
M4ðs;hÞ ¼ ad

ð2� sÞ3 � 4ð1� sÞ3; 0 6 s < 1

ð2� sÞ3; 1 6 s < 2
0; 2 6 s

8>>>><
>>>>:

; ð22Þ
where s ¼ r=h, and a1 ¼ 1=ð6hÞ, a2 ¼ 15=ð14ph2Þ, and a3 ¼ 1=ð4ph3Þ in one, two and three dimensional space, respectively.
The cubic spline function works very well in many numerical simulations. However, a disadvantage is that the cubic spline
kernel function is not smooth enough, as it is a piecewise function and its second derivative is a polyline.

By selecting different values of parameter j, the shape of the double cosine function can approach the Gaussian and the
spline functions (see Figs. 3 and 4). But it is important to note that the double cosine kernel function has a finite compact
support domain rather an infinite support domain as in the Gaussian kernel function, and therefore it can be cost-effective
compared with the Gaussian kernel function. Also, the second derivative of the double cosine kernel function is sufficiently
smooth rather than a polyline as for the cubic spline kernel function, and therefore it can be numerically more stable [19].

3.3. Errors estimation

3.3.1. Error in kernel approximation
In early literatures, SPH has been usually referred to as a method of second order accuracy. This observation comes from

Taylor series analysis of the kernel approximation of a field function (as expressed in Eq. (1)). For example, in one-dimen-
sional space, using Taylor series expansion on f at x, and retain the first three terms, Eq. (1) can be further written as:
hf ðxaÞi ¼
Z

f ðxÞWðxa � x; hÞdx

¼ f ðxaÞ
Z

Wðx� xa; hÞdV þ f 0ðxaÞ
Z
ðx� xaÞWðx� xa;hÞdxþ 1

2
f 00ðxaÞ

Z
ðx� xaÞ2Wðx� xa;hÞdxþ Rðh3Þ; ð23Þ
. Comparison of the double cosine function (denoted by W with j = 2.35) and Gaussian function (denoted by G) and their first two derivatives.



Fig. 4. Comparison of the double cosine function (denoted by W with j = 2) and the cubic spline function (denoted by M4) and their first two derivatives.
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where R is the remainder of the Taylor series expansion. Considering the normalization condition (expressed in Eq. (18)), and
even function condition (i.e.

R
xWðx;hÞdx ¼ 0), it is easy to conclude that kernel approximation of a field function f can have

second order accuracy. As f is a sufficiently smooth function, and its derivatives are associated with a finite magnitude. It can
be further concluded that the accuracy of kernel approximation (expressed in Eq. (23)) is closely related to the second
momentum of the kernel function:
Z
x2Wðx;hÞdx: ð24Þ
Therefore, the second momentum of the kernel function can be regarded as an index to estimate the magnitude of the
error of kernel approximation. A bigger value of the second momentum leads to bigger errors of the kernel approximation
and vice versa.

For the double cosine, Gaussian, and cubic spline kernel functions, the second momentum can be analytically calculated.
In one-dimension space, the double cosine function yields a smaller value (0:6h2, when j ¼ 2) than the cubic spline function
(3h2) and the Gaussian function (h2). Therefore as far as the kernel approximation is concerned, the double cosine kernel
function can produce better results.

3.3.2. Errors in particle approximation
The computational accuracy of an SPH simulation is finally determined by the particle approximation of averaged sum-

mation over nearest neighboring particles, while the accuracy of particle approximation is not only related to the selection of
kernel functions and smoothing length, but also closely related to the distribution of particles. In order to compare the
performance of double cosine kernel function with Gaussian and cubic spline kernel function, SPH particle approximation
results for an exponential function, f ¼ expðxÞ, and a trigonometric function, f ¼ sin x, and their derivatives are analyzed.

The computational domain is 0 6 x 6 6, and 101 particles are evenly distributed in the calculation. The smoothing length
used is 1.2 times the initial particle spacing. The obtained SPH results by using double cosine, Gaussian and cubic spline
kernel function are plotted in Figs. 5–8, in which SPH-D, SPH-G, and SPH-C denote SPH kernel approximations using double
cosine, Gaussian and cubic spline kernel function, respectively.

Table 1 shows the relative errors in SPH particle approximation of f ¼ expðxÞ and sin x, and their derivatives by using dif-
ferent kernels. The relative errors are calculated by following formulae:
Ef ¼
hf i � f

f
; ð25Þ

Edf=dx ¼
hdf=dxi � df=dx

df=dx
: ð26Þ
It is seen that three kernel functions can all produce acceptable results. The relative errors obtained using the double co-
sine kernel for functions f ¼ expðxÞ and sin x are between those obtained using Gaussian and cubic spline kernel functions.
For derivatives of f ¼ expðxÞ and sin x, the relative errors obtained using double cosine kernel are also comparable with those
obtained using Gaussian and cubic spline kernel functions. It should be noted that the relative errors obtained using double
cosine kernel are all smaller than those obtained using cubic spline kernel.For the double cosine kernel function, it is also
feasible to adjust parameter j to obtain better particle approximation accuracy. From Figs. 9 and 10, we can see that the



Fig. 5. SPH particle approximations of f ¼ expðxÞ by using different kernels.

Fig. 6. SPH particle approximations of f ¼ sin x by using different kernels.

Fig. 7. SPH particle approximations of the derivative of f ¼ expðxÞ by using different kernels.
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error increases when j increases when 101 particles are used; but it decreases quickly when j increases when enough par-
ticles (1001 particles) are employed. The relative errors in particle approximation of the derivatives of f ¼ expðxÞ and



Fig. 8. SPH particle approximations of the derivative of f ¼ sin x by using different kernels.

Table 1
Relative errors in kernel approximation.

Relative errors Ef (%) Edf=dx (%)

f ¼ expðxÞ f ¼ sin x f ¼ expðxÞ f ¼ sin x

Double cosine 0.154 0.011 1.76 1.91
Cubic spline 0.226 0.094 2.33 2.15
Gaussian 0.130 0.129 0.126 0.133
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f ¼ sin x are shown in Figs. 11 and 12. The relative errors reduce when the number of particles increases, but the decrease is
not significant when j < 3. Taking into account the above analysis about errors, it is reasonable to take j in the range of
2 6 j 6 3. If j > 3, much more particles will be needed, and the computational time will also increase quickly.
4. Numerical examples

In order to demonstrate the effectiveness of the newly proposed double cosine kernel function for practical engineering
problems with incompressible, viscous fluids, two numerical examples are provided in this section. The first example is the
dam-break flow and the second example is the water entry of a horizontal circular cylinder. Both examples involve free sur-
face and even breaking waves, while water entry also involves fluid–solid interaction. These two numerical examples have
been provided in different references to demonstrate the effectiveness of a certain numerical method, and can serve as good
benchmark problems.
Fig. 9. Relative error of particle approximation for expðxÞ vs. j.



Fig. 10. Relative error of particle approximation for sin x vs. j.

Fig. 11. Relative error of particle approximation for the derivative of expðxÞ vs. j.

Fig. 12. Relative error of particle approximation for the derivative of sin x vs. j.
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Fig. 13. Initial configuration of the water column.

Fig. 14. The time dependent location of water front.
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Fig. 15. Initial configuration of water entry of horizontal circular cylinder.
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4.1. Dam-break flow

A 2-D dam-break flow is simulated in this section. The geometry is shown in Fig. 13. The water column is 0.2 m high (H)
and 0.1 m wide (D), and the length of the dry bed is 0.9 m. At initial time, the water column is at rest, then it move under the
action of gravity. The time step is 5:0� 10�6 s.

Fig. 14 shows the water location versus time for both simulation and experimental results [27]. The non-dimensional
time and location are normalized by T ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffi
2g=D

p
and X ¼ x=D, respectively. It can be observed that the SPH results obtained

using the double cosine kernel are very close to those obtained using Gaussian and cubic spline kernel functions, while all
SPH results agree well with experimental observations.

4.2. Water entry of a horizontal circular cylinder

A neutrally buoyant cylinder case is simulated in this section. The water entry of a horizontal circular cylinder is simpli-
fied in two dimensions (Fig. 15). The results are compared with the experiments results obtained by Greenhow and Lin [28].
The diameters of both cylinders are 0.11 m, both cylinders are dropped from a height of 0.5 m, which is measured from the



Fig. 16. Depth of penetration during water entry of a cylinder.

Fig. 17. Comparison of free surface profiles by the SPH (right) with the experiment [28] (left).
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center of the water surface. So the initial water entry speed is V0 ¼ 2:955 m/s. The simulation started at the moment when
the cylinder just touches the water surface. The time step is 5:0� 10�6 s.

Fig. 16 shows the depth of penetration versus time during water entry of a cylinder. It is seen that all SPH results are com-
parable with experimental observations, while the double cosine kernel performs much better and is closer to experimental
observations than Gaussian and cubic spline kernel functions.
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Fig. 17 shows the free surface profile of a cylinder at several time instants. Water is splashed on both side of the cylinder
and an air cavity is formed above the cylinder. However, the numerical results did not capture the cavity very well.

5. Conclusions

In this paper, a new kernel function for the smoothed particle hydrodynamics method has been proposed. This new kernel
function consists of two cosine functions and therefore is referred to as double cosine kernel function. Compared with the
Gaussian and cubic spline kernel functions, the double cosine kernel function has special advantages.

Firstly, unlike the frequently used cubic spline kernel function, which has a piecewise linear second derivative, the double
cosine kernel function is sufficiently smooth. As the stability of SPH simulations is related to the second derivative of the
kernel function, a smoother function generally results in more stable SPH formulations.Secondly, the support domain of
the double cosine kernel function is adjustable through changing the scalar parameter j. Changing different values of j
can lead to different shapes of the kernel function. Increasing j can lead to sharper profiles while reducing j leads to more
flattened profiles with more particles and therefore more computational effort. For balancing computational accuracy and
computational effort, a range of 2.0–3.0 for j is recommended.

Thirdly, the double cosine kernel function has a smaller second momentum. This means that as far as kernel approxima-
tions are concerned, the double cosine kernel function has better accuracy than the cubic spline and Gaussian functions.

For SPH particle approximation, results obtained using the double cosine kernel functions are comparable to those ob-
tained using Gaussian and cubic spline kernel functions, while for some cases, the double cosine kernel performs the best.
This has also been demonstrated in the two numerical examples of dam-break and water entry.
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