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Dynamically stretching and retracting wingspan has been widely observed in the flight
of birds and bats, and its effects on the aerodynamic performance particularly lift gen-
eration are intriguing. The rectangular flat-plate flapping wing with a sinusoidally
stretching and retracting wingspan is proposed as a simple model for biologically in-
spired dynamic morphing wings. Numerical simulations of the low-Reynolds-number
flows around the flapping morphing wing are conducted in a parametric space by
using the immersed boundary method. It is found that the instantaneous and time-
averaged lift coefficients of the wing can be significantly enhanced by dynamically
changing wingspan in a flapping cycle. The lift enhancement is caused by both chang-
ing the lifting surface area and manipulating the flow structures responsible to the
vortex lift generation. The physical mechanisms behind the lift enhancement are ex-
plored by examining the three-dimensional flow structures around the flapping wing.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884130]

. INTRODUCTION

Animal flight has provided inspirations for new designs of Micro Aerial Vehicles (MAVs), since
natural flyers usually have the extraordinary maneuvering capability, high lift, and efficient propul-
sion. On the other hand, the complex low-Reynolds-number unsteady aerodynamics in flapping flight
poses challenges to researchers in aerodynamics and fluid mechanics because the knowledge and
database of the design of fixed-wing aircraft are not suitable in the design of such MAVs. Therefore,
it is desirable to understand the physical mechanisms of lift generation in animal flight. Insects, birds,
and bats are the three groups of extant flying animals. Notwithstanding the different morphology and
kinematics of their wings, the high-lift-generating mechanisms of flapping wings at low Reynolds
numbers are the common merits of these flyers. Some unique mechanisms for enhancing the lift
particularly in insect flight have been identified, including the “clap and fling” mechanism,'-? stable
attached leading-edge vortex (LEV) during dynamic stall,>”’ rapid acceleration of the wing at the
beginning of a stroke, fast pitching-up rotation of the wing near the end of the stroke,® wake capture
mechanism,” '° and wing-body/wing interaction.'!'-13

The aerodynamic force acting on flapping wings is directly related to the flow structures
around the wings. The flow structures near wings and in the wakes have been extensively investi-
gated by measuring flow fields around natural flyers or mechanical models® '4'* and by numerical
simulations.* The flow structures around a heaving and/or pitching rigid wing with several plan-
forms as a simplified flapping wing were also investigated,*2° providing a useful understanding
into low-Reynolds-number unsteady flows of animal flight. The comprehensive reviews on this topic
are given in Refs. 26-30. Recently, the concept of flexible wings has been proposed, and flexible
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wings of natural flyers could be adopted to improve the aerodynamic performance of MAVs. Insects
usually have flexible membrane wings that deform elastically during flapping flight and modify the
flow around the wings. Birds have flexible feathers, and bats have elastic membrane wings. The
effects of the wing flexibility have attracted considerable attentions.?'~3¢

More significantly, in contrast to insects, the wingspan and wing planform are actively changed
though the motion of the skeleton structure in the flight of birds and bats.!¢~'%:37 This dynamic wing
morphing is ubiquitous in the flight of birds and bats. For example, a bat wing has a bone skeleton
with more than ten joints and therefore a bat can quickly change the wingspan and planform by
moving the joints in a controllable way. In general, a bat (or bird) wing stretches outward in the
downstroke and retracts inward in the upstroke. The ratio between the minimum and maximum
wingspans of a Pallas’ long tongued bat could be as low as 0.6.%® The current research of morphing
wings has been limited on steady and quasi-steady morphing to meet specified mission requirements
at different flight regimes (such as takeoff, landing, and cruising).* The potential of the dynamic
morphing of a flapping wing for improving the flight performance has not been explored.

For a dynamic morphing flapping wing with the time-dependent wing area, the lift coefficient
in forward flight is defined as

F(1)
qooS(t)’

where F is the lift acting on the wing, o, = 0.50U2 is the dynamical pressure, Uy, is the freestream
velocity (or forward flight velocity), and S(#) is the instantaneous wing area. Theoretically, the effect
of changing the wing area is removed in CI(#) since S(¢) is used for normalization. The time-averaged
lift over a flapping period T is given by

Cl(t) = (1

T
(F)r = goT ™ / CUOS@)dr, @)
0

where ()7 = T! fOT e dt is the time-averaging operator in a period 7. According to Eq. (2), even
when the time-averaged lift coefficient is zero, i.e., (Cl)r = 0, the positive time-averaged lift ((F,)r
> 0) could be still generated by dynamically changing the wing area in flapping flight as long as
there is a positive correlation (CI(1)S(f))r > 0. The flight of birds and bats is just a good example
in which the wing area is increased in the downstroke and decreased in the upstroke to generate the
lift.

It is clear that the effect of changing the lifting surface area will directly alter the lift generation.
There are few studies on the complex flows around a dynamic morphing flapping wing like a bat or
bird wing. The flow structures altered by the dynamic morphing and their effects on the lift coefficient
are not well understood. To gain a better understanding into this problem, a canonical morphing
flapping wing, a rectangular flat-plate wing with a dynamically stretching and retracting wingspan,
is considered. This simplified model characterizes the main spanwise morphing features of flapping
wings of birds and bats although various birds and bats have more complex wing planforms and
kinematics. The fundamental question is how dynamically stretching and retracting wingspan in a
flapping cycle alters the flow structures and affects the lift as a result.

The objective of this work is to demonstrate through numerical simulations that the dynamic
morphing of a flapping wing can enhance the lift and explore the physical mechanisms behind
the lift enhancement. The strategy of solving this problem is outlined as follows. First, a generic
dynamic morphing flapping wing model is proposed, which captures the main morphing features
of a bird or bat wing in terms of stretching and retracting wingspan in flapping flight. This model
is a rectangular flat-plate wing with a sinusoidally varying wingspan that reaches the maximum
during the downstroke and the minimum during the upstroke. The wing geometry and kinematics
are described and the relevant aerodynamic parameters are defined to evaluate the lift enhancement
in Sec. II. The numerical method and setting are also briefly described in Sec. II. In Sec. III, the lift
enhancement is examined in the parametric space and it is indicated that the lift can be significantly
enhanced by both changing the lifting surface area and altering the flow structures in the process
of stretching and retracting wingspan. Further, the vortical structures that are responsible to the
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lift enhancement due to stretching and retracting wingspan are identified in Sec. I'V. It is observed
that the LEVs on the upper surface in the upstroke are significantly intensified and the shorter and
weaker LEVs occur on the lower surface in both the upstroke and downstroke. These flow structures
contribute to the overall vortex lift enhancement. These observations are further examined through a
detailed data analysis based on the lift decomposition into the vortex lift (the Lamb vector integral)
and the local acceleration term in Sec. V. Finally, the conclusions are drawn in Sec. VI.

Il. MODEL AND METHOD
A. Generic morphing flapping wing

The geometry and kinematics of wings of flying birds and bats are complicated.'®'®37 There-
fore, to gain a clear understanding of the aerodynamics of a dynamic morphing flapping wing, the
wing geometry and kinematics should be suitably simplified while the main morphing features of
the wing are retained. A generic morphing flapping wing is proposed, as illustrated in Fig. 1, which
characterizes the main features of dynamically stretching and retracting wingspan. A rectangular
flat-plate wing with a constant geometrical angle of attack (AoA) « heaves harmonically in a uniform
freestream flow. Meanwhile, its wingspan stretches outward before reaching a certain position in the
downstroke and retracts inward to the center line before reaching a certain position in the upstroke.
The wing thickness is zero, and the wing chord remains constant. The flapping kinematics is de-
scribed in a fixed laboratory coordinate system, as shown in Fig. 1. The x-axis points downstream
in the direction of the freestream flow, the y-axis is in the spanwise direction, and the z-axis is in
vertical direction pointing upward. The flapping kinematics of the center of the wing is prescribed
by

Zw = Asin(2r f1), 3)

where z,, is the vertical position of the wing center, A is the heaving amplitude, f is the flapping
frequency. The flapping Strouhal number is defined as St = 2fA/U,. The time history of z,, is shown
in Fig. 2, where T* = t/T — 1/4 = ft — 1/4 is a non-dimensional time in which the time is shifted by
1/4 of the period such that the downstroke in the flapping motion given by Eq. (3) starts at 7% = 0,
1, 2, --- when z,, reaches the maximum.

The spanwise stretching and retracting motion of the wing has the same frequency as that of the
flapping motion. The wingspan L reaches the maximum in the downstroke and the minimum in the
upstroke. The wing aspect ratio (AR) is prescribed as a function of time, i.e.,

AR(t) = % = ARy(a — bsinQrft + ¢)), )

where AR = Lo/c is the characteristic aspect ratio, Ly is the characteristic wingspan, c is the constant
chord, a and b are the coefficients that specify the stretching and retracting amplitude, and ¢ is the
phase difference between the flapping and stretching/retracting motions. The time-averaged AR in

v T
z - ' .
Uco f — I
~ < ~ s
— /%’T; PN J— ==
) v
(a) (b) ccos(o,

FIG. 1. Schematic of the computational model: (a) side view and (b) top view.
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FIG. 2. The time histories of the vertical displacement of the wing and the aspect ratio in the case of SR = 0.5. The solid
circles A, B, C, D, and E denote five key moments 7% = 4.125, 4.375, 4.625, 4.875, and 5.125, respectively, for illustration
of the flow structures in Sec. I'V.

a period is (AR)r = aARy. The span ratio, which is defined as a ratio between the minimum and
maximum wingspans (Lpyi, and Ly ), is introduced to measure the magnitude of the stretching and
retracting wingspan, i.e.,
L .
SR = "2, 5)

L max

The span ratio depends on a and b for a given value of ARy, as shown in Table I.

The time history of AR for SR = 0.5 and ¢ = /2 is shown in Fig. 2 along with the history
of z,,/c. When the non-dimensional variables as 2} = z,,/c, A* = Alc, f* = felUy, t* = tUslc,
L§ = Lo/c are used, the non-dimensional forms of Egs. (3) and (4) remain the same, which will be
used in Secs. II B-V. In summary, there are the four kinematical parameters: the span ratio SR, the
phase difference ¢, the flapping Strouhal number St = 2fA/U, and the relative flapping magnitude
A* = A/c. The geometrical AoA « and the characteristic aspect ratio AR are the other relevant
parameters. The instantaneous wing area is S(f) = L(f)c = c*AR(f), and the time-averaged wing area
in a period is (S(t))r = ac’ARy.

B. Aerodynamic parameters

The overall lift enhancement of the morphing wing is affected by both the dynamic change
of the lifting surface area and the altered flow structures by the dynamic morphing. A term “the

TABLE I. Coefficients specifying the amplitude of stretching and retracting wingspan.

SR a b AR (ARt
0.25 0.625 0.375 4.0 2.5
0.375 0.6875 0.3125 4.0 275
0.5 0.75 0.25 4.0 3.0
0.6 0.8 0.2 4.0 32
0.7 0.85 0.15 4.0 34
0.75 0.875 0.125 4.0 35
0.8 0.9 0.1 4.0 3.6
0.85 0.925 0.075 4.0 3.7
0.9 0.95 0.05 4.0 38
1.0 1.0 0.0 4.0 4.0
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effect of the morphing-altered flow structures” is used hereafter, which is defined as the additional
effect induced by the dynamic morphing on the lift enhancement after the geometrical effect of the
changing wing area is excluded. It will be pointed out later that the evolution of the LEVs is altered
by the dynamic morphing and the effect of the morphing-altered flow structures is related to the
vortex lift associated with the LEVs.

To characterize the overall lift enhancement, the lift coefficient based on the time-averaged wing
area (S)7 is introduced, i.e.,

F.(1)
Clo(t) = ———. (6)
T gty
The net increment of Cly() is
ACIy(1) = Cly(t) — Clo,rer (1), (7)

where Cly_A(?) is the reference lift coefficient of a reference flapping wing with the fixed wingspan
while the other parameters remain the same. This reference flapping wing has the fixed AR that
equals to the time-averaged AR (i.e., (AR)r = aARy) of the corresponding dynamic morphing
wing. Essentially, ACly(¢) represents the lift increment generated by both the effect of changing the
wing area and the effect of the flow structures altered by the dynamic morphing. In contrast, the
instantaneous lift coefficient CI(¢) defined in Eq. (1) isolates the effect associated with the dynamic
morphing by using the instantaneous wing area S(f) for normalization. Similarly, to compare the
wings with the dynamically changing wingspan and the fixed wingspan, the increment of CI(f) is
given by

ACI(t) = CI(t) — Clyos (1), (®)

where Cl,(?) is the reference lift coefficient of the reference flapping wing with the fixed wingspan
and the aspect ratio of (AR) 7. In fact, Cl,«(t) = Cly_/(?) since the wing area is fixed for the reference
wing. Here, ACI(f) mainly represents the lift increment generated by the effect of the morphing-
altered flow structures. Furthermore, both ACly(f) and ACI(t) depend on the parameters SR, ¢,
St, A*, and «. The time-averaged quantity (ACly)r represents the overall lift enhancement, while
(ACl)r describes the time-averaged lift enhancement caused by the effect of the morphing-altered
flow structures when the effect of changing wing area is removed. In this paper, both (ACly)r and
(ACl)7 are used as the measures of the lift enhancement in the parametric space (SR, ¢, St, A*, ).
A proportional relation is (Cl)7 = Crs(Cly)r, where the correlation coefficient is defined as Crg =
(F.()S™ ()7 (F.) 7' (S)7.

C. Numerical method and settings

The flow around the flapping rectangular wing is governed by the incompressible Navier-Stokes
(NS) equations

V-u=0,

L Vot Vit f ®
— 4+ u-Vu =— —V-u s
o1 P7 Re

where u is the non-dimensional velocity normalized by U, p is the non-dimensional pressure
normalized by pU?Z, f is the non-dimensional body force in the immersed boundary (IB) method,***!
and Re = Uyc/v is the Reynolds number. The unsteady flow with a moving boundary is handled by
using a semi-implicit IB method in the frame work of discrete stream function formula.*> With this
method, the geometry and kinematics of the flapping wing are described by a set of the Lagrangian
grid points. The NS equations are solved on a Cartesian grid by using the discrete stream function
(or exact projection) approach, in which the divergence-free condition is exactly satisfied.** The
detailed descriptions of the numerical method can be found in the work of Wang and Zhang.*?

The present work focuses on the effect of dynamically changing wingspan. The Reynolds
number is fixed at 300 for all the cases. This relatively low Reynolds number is selected by considering
the following factors. First, the dynamically changing wingspan is observed in a wide range of
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Reynolds numbers from several hundreds to about 103, such as in the slow-flying small bats (Pallas
long-tongued bat) and seagulls. It is assumed that the effect of dynamically changing wingspan
would be intrinsic and it could not be sensitive to the Reynolds number. Furthermore, the flapping
rectangular wing used in the present work has a sharp leading edge. The flow separates immediately
at the leading edge, and the separation point is not sensitive to the Reynolds number. In most cases,
the characteristic aspect ratio is fixed at ARy = 4. The flapping rectangular wing with SR = 0.5, St
= 0.3, A* = 0.25, and @ = 0° is selected as a typical case. The lift enhancement of the dynamic
morphing flapping wing is investigated in the parametric space (SR, ¢, St, A*, @). A non-dimensional
computational domain of [ — 16, 34] x [ — 15, 15] x [ — 15, 15] in the streamwise, spanwise, and
vertical directions is used. The uniform freestream flow is specified at the inlet of the computational
domain. The free convection boundary condition is set at the outlet. The no-slip boundary condition
is satisfied on the surface of the flapping wing. The zero-shear slip wall (no-friction) condition is
imposed on the other boundaries. The flow is uniform with (1, 0, 0) at # = 0, and the flapping wing
appears at t = 0T,

An unstructured Cartesian grid, with local refinement using hanging nodes, is used to discretize
the computational domain. The total number of discrete cells is 10 189 700 with the grid size §h/c
= 0.02 in arefined domain of [ — 1, 1] x [ — 3, 3] x [ — 1, 1] around the flapping wing, §h/c = 0.04
inaregion of [ — 2, 8] x [ — 4, 4] x [ — 2, 2] to resolve the flow structures in the wake, and §h/c
< 0.32 in the far field. The Lagrangian grid size varies with time in a range from the minimum of
8s/c = 0.01 to the maximum of §s/c = 0.02. Additional simulations are conducted to ensure that the
reasonable converged results are achieved in this work when the minimum grid size of §h/c = 0.02
and time step of Ar* < 0.005 are used. The code validation in various unsteady flows is described
by Wang and Zhang.*?

lil. LIFT ENHANCEMENT

The lift acting on the flapping wing with the stretching and retracting wingspan depends on
the span ratio (SR), phase difference (¢), Strouhal number (St), relative flapping amplitude (A*),
and geometrical AoA («). To examine the lift enhancement, the lift coefficients Cly(7) and CI(r) are
calculated, and the time-averaged lift coefficient increments (ACly)r and (ACl)r are evaluated in
the parametric space (SR, ¢, St, A*, o) for ARy = 4. The effect of the span ratio (SR) on the lift
enhancement is first investigated in Subsection III A and then the effects of the other parameters (¢,
St, A*, a) are examined in Subsection III B.

A. Effect of span ratio

We consider a typical case of the flapping wing with the stretching and retracting wingspan,
where the kinematical and geometrical parameters are (SR, ¢, St, A*, a) = (0.5, 7/2, 0.3, 0.25, 0°)
(referred to as the case of SR = 0.5) for ARy = 4. For comparison, the corresponding wing with
the fixed wingspan and AR = 3 is considered, where (SR, ¢, St, A*, «) = (1.0, 7/2, 0.3, 0.25, 0°)
(referred to as the case of SR = 1.0). Figure 3(a) shows the time histories of Cly(¢) and CI(¢) in the
cases of SR = 0.5 and SR = 1.0. Overall, both the lift coefficients Cly(¢) and CI(¢) for SR = 0.5 are
larger than those for SR = 1.0 during the most time of a flapping cycle. This observation indicates
that the stretching and retracting wingspan motion can enhance the time-averaged lift. Further, since
the effect of changing wing area is removed in CI(?), the fact that Ci(f) for SR = 0.5 is larger than
that for SR = 1.0 implies that the effect of the morphing-altered flow structures is responsible to the
lift enhancement in addition to the effect of changing lifting surface area.

In the case of SR = 0.5, the maximum of Cly(¢) is reached when the wing is at about 1/3 of the
downstroke. At the beginning of the upstroke, Cly(¢) is at the minimum. The maximum magnitude
of the positive Cly(f) generated in the downstroke is about two times larger than that of the negative
Cly(?) in the upstroke. This asymmetric lift generation in the downstroke and upstroke results in
(Clp)r > 0. In the case of SR = 1.0 where the wingspan remains constant during a flapping cycle,
Cly(?) reaches the maximum when the wing moves about 1/3 of the downstoke. The lift generation
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FIG. 3. The time histories of (a) CI and Cly, (b) ACI and AClp in one period in the cases of SR = 0.5 and SR = 1.0 for ¢
=m/2,5t=0.3,A* =0.25, and @ = 0°.

during the downstroke is similar to that in the SR = 0.5 case, except that the maximum of Cly(¥)
is about 8% smaller. However, unlike the SR = 0.5 case, the minimum of Cly(¢) is reached when
the wing is at about 1/3 of the upstroke. The peak magnitude of the negative Cly(¢) in the upstroke
is equal to that of the positive Cly(¢) in the downstroke. In contrast to the case of SR = 0.5, this
symmetric heaving kinematics without stretching and retracting wingspan in the downstroke and
upstroke results in (Cly)7 = 0.

Figure 3(b) shows the time histories of the lift coefficient increments A Cly(f) and ACI(¢) defined
in Egs. (7) and (8). The flapping wing generates a large positive lift increment (ACly > 0) in about
2/3 of the upstroke period for SR = 0.5, which is mainly caused by both retracting the wingspan
during the upstroke and altering the vortical structures associated with the spanwise motion. During
the most time of the downstroke, ACly(f) remains positive although its value is relatively small. It
is found that ACI(f)) is positive in the most time of both the upstroke and downstroke and there are
two peaks in this period. This fact indicates that the additional lift enhancement is achieved by the
effect of the morphing-altered flow structures. Furthermore, it is found that (Cly)7 = (CIl)7 = O for
SR = 1.0, (Cly)7 = 0.81, and (Cl)7 = 0.42 for SR = 0.5. The time-averaged lift coefficient (Cl)y
= 0.42 for SR = 0.5 is about half of (Cly)7 = 0.81. This further confirms that the contribution
to the lift enhancement by the morphing-altered flow structures is comparable to that generated
by changing the lifting surface area. Figure 4 shows the time-averaged lift coefficient increments
(ACly)r and (ACI)r as a function of SR for ¢ = /2, St = 0.3, A* = 0.25, and o = 0°. The values

257
o
. 20 ——8—— <ACI>;
AN ---e-- <ACl>;
o i .
61 1.5 5 N
ron | X
o o \
AR
o L
J 0
0.5
0 L L
0.25

FIG. 4. The time-averaged increments of the lift coefficient (ACly)7 and (ACl)r as a function of the span ratio SR for ¢
=m/2,5t=0.3,A* =0.25, and o = 0°.
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of both (ACly)7 and (ACl)7 are positive while they monotonically decay as SR increases, indicating
that the lift enhancement is achieved for 0.25 < SR < 1 and the lift enhancement is larger for a
smaller value of SR.

B. Effects of other parameters

The time-averaged lift coefficient increments (A Cly) 7 and (A CI)r are evaluated in the parametric
subspace (¢, St, A*, o) for ARy = 4. Figure 5(a) shows (ACly)r and (ACI)r as a function of the
phase angle ¢ for SR = 0.5, St = 0.3, A* = 0.25, and o = 0°. It is found that (ACly)7 increases
monotonically as ¢ increases and reaches the peak at ¢ = 90°. In contrast, (ACI)7 has the maximum
at about ¢ = 0.397 (¢ = 70°). Figure 5(b) shows (ACly)r and (ACl)r as a function of the heaving
amplitude A* for SR = 0.5, ¢ = 7/2, St = 0.3, and o = 0°, which indicates the monotonic decay
of (ACly)r as A* increases and the presence of the maximum in (ACl);r at A* = 0.375. The
dependencies of (ACly)r and (ACI)7 on the Strouhal number St are shown in Fig. 5(c) for SR
=0.5, ¢ = /2, A* = 0.25, and o = 0°, which indicates the monotonic increase of (ACly)r as A*
increases and the presence of the maximum in (ACl)r at St = 0.4. A preferred mode may exist in the
subspace (¢, St, A*, o) to achieve the maximum of (ACI)r, although the true global optimal mode
is not known yet. Figure 5(d) shows that both (ACly)7 and (ACI); weakly depend on the angle of
attack a for SR = 0.5, ¢ = /2, St = 0.3, and A* = 0.25.

Most importantly, the lift coefficient increment (ACl)r in Fig. 5 is significantly larger than zero
in all the cases. This indicates that the lift enhancement of the morphing wing is the phenomenon
not just in a special case but also in a large domain in the parametric space. Therefore, the effect
of the morphing-altered flow structures contributes significantly to the lift enhancement in addition
to the effect of changing the wing area. As indicated in Sec. II B, there is a proportional relation
(ACly7 = Cps(ACly) 1, where the correlation coefficient Crg is a function of the parameters (SR, ¢,
St, A*, ). In all the cases, it is found that 0.3 < (ACl)7/{ACly)r < 1 depending on the parameters.
This means that more than 30% of the overall lift enhancement is contributed by the effect of the
morphing-altered flow structures. Although the main results for ARy = L /c = 4 are presented
in this paper, the lift enhancement for ARy = 3 — 6 is also studied. As shown in Fig. 5(e) for SR
=05,¢=mn/2,5t=0.3,A* = 0.25, and o = 0°, it is found that (ACly)r and (ACI)y are increased
linearly with ARy, and the slopes of the linear relations are 0.04 for (ACly)r and 0.027 for (ACI)7.

IV. FLOW STRUCTURES
A. General characteristics

To understand the physical mechanisms behind the lift enhancement associated with dynamically
changing wingspan, the flow structures in the cases of SR = 1.0 and SR = 0.5 for (¢, St, A*, «)
= (7/2, 0.3, 0.25, 0°) are investigated as the typical cases. The Q-criterion is used to identify the
three-dimensional (3D) vortical structures, where Q is the second invariant of the velocity gradient
tensor. The flow structures in the case of SR = 1.0 are examined as a reference where the wingspan
remains unchanged. Then, the effects of stretching and retracting wingspan are studied by comparing
the reference flow structures with those in the case of SR = 0.5.

The formation of the vortex rings in the near wake at five phases T* = 4.125, 4.375, 4.625,
4.875, and 5.125 are shown in Fig. 6 that provide the top views of the flow structures. In the
case of SR = 1.0, as shown in Fig. 6(a), the LEVs, trailing-edge vortices (TEVs), and tip vortices
(TVs) generated at the beginning of the downstroke are denoted by LEV1, TEV1, TV1, and TV2,
respectively. The detached LEVs in the previous downstroke and upstroke are denoted by PLEV1
and PLEV2, respectively. As indicated in Fig. 6(b), LEV1, TV1, and TV2 are generated and attached
to the wing, while TEV1 sheds from the trailing edge in the downstroke. LEV1 has the positive
spanwise vorticity, contributing to the positive vortex lift. Subsequently, new vortices LEV2, TEV2,
TV3, and TV4 are generated during the reversal transition from the downstroke to the upstroke, and
LEV1, TV1, and TV2 generated during the downstroke shed from the wing surface. As shown in
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FIG. 5. The time-averaged increments of the lift coefficient (ACl)r and (ACly)r as a function of the relevant parameters:
(a) the phase difference for SR = 0.5, St = 0.3, A* = 0.25, & = 0°; (b) flapping amplitude for SR = 0.5, ¢ = 7/2, St = 0.3,
o = 0°; (¢) Strouhal numbers for SR = 0.5, ¢ = 7/2, A* = 0.25, « = 0°; (d) AoA for SR = 0.5, ¢ = /2, St = 0.3, and
A* =0.25; and (e) ARy for SR = 0.5, ¢ = /2, St = 0.3, A* = 0.25, and o = 0°. Note that ARy = 4 for (a)—(d).

Fig. 6(c), TEV1, TEV2, TV1, and TV2 together form the vortex ring R1. The detached vortex LEV1
stays near the upper surface of the wing and travels to the downstream, as shown in Figs. 6(c)—6(e).

In the case of SR = 0.5, the evolution of the flow structures is similar. At the beginning of the
downstroke, as shown in Fig. 6(a), the vortices LEV1, TEV1, TV1, and TV2 are generated, and the
vortices PLEV1 and PLEV2 are elongated due to the spanwise wing stretching. The vortex LEV1
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FIG. 6. The three-dimensional flow structures viewed from the top in the cases of SR = 1.0 (left) and SR = 0.5 (right) at
different times (a) 7* = 4.125, (b) T* = 4.375, (c) T* = 4.625, (d) T* = 4.875, and (e) T* = 5.125. The iso-surface of
Q = 3.0 is shown, where the gray scale (color online) indicates the spanwise vorticity. The detailed parameters for the cases
of SR = 1.0 and SR = 0.5 are (SR, ¢, St, A*, a) = (1.0, /2, 0.3, 0.25, 0°) and (SR, ¢, St, A*, &) = (0.5, /2, 0.3, 0.25, 0°),
respectively.

is also elongated and attached to the leading edge during the downstroke. The vortex TEV1 sheds
from the trailing edge shortly after the beginning of the downstroke. The vortices TV1 and TV2
start to shed at the middle of the downstoke due to the retraction of the wingspan in this case, which
is different from the case of SR = 1.0 where TV1 and TV2 shed at the end of the downstroke. At
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the reversal transition from the downstroke to the upstroke, as shown in Fig. 6(c), LEV1 sheds from
the leading edge, and then TEV1, LEV1, TVI, and TV2 together form the vortex ring R1 during
this reversal. It is noticed that TV1 and TV2 are not connected to the newly generated TEV2. After
shedding from the leading edge, LEV1 stays near the upper surface of the wing, contributing the
positive vortex lift. Therefore, the vortex capture mechanism also exists during the downstroke in
this case of SR = 0.5.

B. Vortex capture and stretching

Figure 7 shows the contours of the spanwise vorticity in the symmetrical plane y = 0 in the
cases of SR = 1.0 and SR = 0.5 at the phases T* = 4.125, T* = 4.375, T* = 4.625, T* = 4.875,
and T* = 5.125. In both the cases, the vortex LEV1 is generated, and the vortex PLEV1 is trapped
near the upper surface of the wing for about 1.5 periods, which contributes to the generation of the
positive vortex lift until it merges with TEV2. This is referred to as the vortex capture mechanism
in flapping flight, which is similar to the capture of a free vortex on an airfoil.**~*¢ In 2D, although a
free vortex cannot be stabilized near a stationary airfoil, vortex capture seems feasible on a moving
wing with the right kinematics in a certain period. This phenomenon also occurs in the hovering
flight of insects.”* '° To compare the vortex stretching mechanism in the cases of SR = 1.0 and SR
= 0.5, the top-viewed iso-surfaces of the spanwise vortex stretching term w,du,/dy at T* = 4.625
in the upstroke are shown in Fig. 8 for ¢ = /2, St = 0.5, A* = 0.25, and o = 0°. In the case
of SR = 0.5, it is found that the vortex LEV1 near the upper surface is consistently intensified by
the spanwise vortex stretching, which is supported by the correlations between the time histories
of the integrated spanwise vortex stretching, vorticity, and wing motion shown in Fig. 11(a). The
intensified vortex LEV 1 contributes to the larger positive vortex lift even though it is shorter, which
is further confirmed by the calculation of the vortex lift in the upstroke in Sec. V.

On the lower surface, the vortex PLEV2 generated in the previous cycle stays for about 1.5
periods near the lower surface of the wing. However, PLEV2 has the negative spanwise vorticity,
which contributes to the negative vortex lift as the negative vortex capture. More interestingly, as
shown in Figs. 7(c)-7(e), the vortex PLEV?2 originated from the previous upstroke on the lower
surface in the case of SR = 0.5 is much weaker than that in the case of SR = 1.0. This weaker
PLEV?2 is related to dynamically stretching and retracting wingspan. To observe the detailed 3D
structure of PLEV2, the development of PLEV2 on the lower surface in the case of SR = 0.5 is
shown in Fig. 9 in comparison with that in the case of SR = 1.0 as a reference. PLEV2 generates at
T* = 3.5, and part of PLEV2 sheds during 7% = 3.5 — 4.0 in the upstroke due to the retracting
wingspan. In the upstroke, PLEV2 for SR = 0.5 is much shorter than that for SR = 1.0. Therefore,
the total contribution of PLEV2 to the negative lift in the case of SR = 0.5 is smaller than that in
the case of SR = 1.0. As the wing moves downward after 7% = 4.0, as shown in Fig. 9(c), PLEV2
sheds from the lower surface of the wing with several legs, and it deforms into streamwise stripes
downstream. Due to this vorticity redistribution, the spanwise vorticity of PLEV2 is smaller in the
downstroke. Figure 10 shows the bottom-viewed iso-surfaces of the spanwise vortex stretching term
wydu,/0y in the cases of SR = 1.0 and SR = 0.5 at T* = 4.0 (the end of the upstroke) for St = 0.5, ¢
=m/2,A* =0.25, and o = 0°. The spanwise vortex stretching on the lower surface in the case of SR
= 0.5 is highly 3D, which corresponds to the complicated 3D vortical structures observed in Fig. 9.

To quantitatively evaluate the correlation between the spanwise vortex stretching and wingspan
motion in a flapping period, the two volume integrals of the spanwise vortex stretching term on the
upper and lower surfaces around the LEVs are evaluated, which are defined as

[Sy]upper ~ /;) C()y 8y*dV P [Sy]lower ~ / a)y ay*dv s (10)

Dipwer

upper

where D,pper and Djoyer are the selected domains [—5,0.5] x [—3, 3] x [z}, 14] and [-5,0.5]
x [=3, 3] x [—14, z},] on the upper and lower surfaces, respectively, to include the spanwise vor-
ticity near the LEVs and exclude the vorticity in the wake. Here the superscript * denotes the
non-dimensional quantities. Similarly, the strengths of the spanwise vorticity in the two domains
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FIG. 7. The contours of the spanwise vorticity in y = 0 in the cases of SR = 1.0 (left) and SR = 0.5 (right) at different time
(a) T* = 4.125, (b) T* = 4.375, (c) T* = 4.625, (d) T* = 4.875, and (e) T* = 5.125. The detailed parameters for the cases
of SR = 1.0 and SR = 0.5 are (SR, ¢, St, A*, a) = (1.0, /2, 0.3, 0.25, 0°) and (SR, ¢, St, A*, a) = (0.5, 7/2, 0.3, 0.25, 0°),
respectively.

are given by |y |upper and | @y |jower. The spanwise wing motion is characterized by the spanwise
velocity vy, of a middle point on the wing surface between the wing root and tip. Figure 11 shows
the time histories of |w, |, |Sy], and vy in a flapping period in the case of SR = 0.5. On the upper
surface, as indicated in Fig. 11(a), the integrated spanwise vortex stretching [S, | is well correlated
with vy, charactering the spanwise wing motion. In contrast, on the lower surface, there is a phase
shift of 180° between |S, | and vy as shown in Fig. 11(b). The magnitude of |w, |pper (>0) is larger
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FIG. 8. The top-viewed iso-surfaces of the spanwise vortex stretching term wydu,/dy in the cases of (a) SR = 1.0 and (b)
SR = 0.5 at T* = 4.625 in the upstroke for ¢ = /2, St = 0.5, A* = 0.25, and o = 0°. The light gray color (red) shows the
iso-surfaces of w,du,/dy = 8, indicating the regions where the vortices are stretched. The dark gray color (blue) shows the
iso-surfaces ofwydu,/dy = —38, indicating the regions where the vortices are compressed.

than that of |, |jower (<0) in the most of the downstroke and the first 1/3 of the upstroke, which
leads to the over vortex lift enhancement.

Based on the above observations, the LEVs on the upper surface are significantly intensified by
the spanwise vortex stretching associated with dynamically changing wingspan, which contributes
to the elevated lift in the case of SR = 0.5. In the meantime, the shorter and weaker LEVs on the
lower surface in the upstroke have the smaller contribution to the negative lift. The combined effect
of these mechanisms results in the overall vortex lift enhancement that corresponds to the peak in
ACI in Fig. 3(b) in the upstroke in the case of SR = 0.5. The large peak in AClj in the upstroke
includes the contribution from the effect of changing the wing area. In the downstroke, since the
vortical structures on the lower surface become highly 3D, the spanwise vorticity of these structures
is decreased. As a result, they have a smaller contribution to the negative lift, which leads to the
smaller peak in ACI in Fig. 3(b) in the downstroke.

V. LIFT DECOMPOSITION: VORTEX FORCE AND ACCELERATION

The lift decomposition is used to further understand the relationship between the lift enhance-
ment and the flow structures. For a sufficiently large rectangular control domain in which a wing is
enclosed, Wang et al.*’ gave a simple but reasonably accurate lift formula

a
L%pk~/uxde—pk~/ —udV, (1)
2 v, ot

where V¢ denotes the control volume, k is the unit vector normal to the freestream, (u x w) - k is the
vertical component of the Lamb vector, and u - k is the vertical component of the velocity. The first
and second terms in the right-hand side of Eq. (11) are the vortex lift (the Lamb vector integral) and
the contribution associated with the fluid acceleration induced by a moving wing for the unsteady
inertial effect.

To investigate the roles of the flow structures in the lift generation, a rectangular control volume
of [ —5,0.5] x [ — 3, 3] x [ — 14, 14] in the streamwise, spanwise, and vertical directions is selected.
The lift coefficient CI is used as a measure for the lift enhancement associated with the altered flow
structures since the effect of changing the wing area is excluded in CI. Figure 12 shows the lift
coefficient Clg;y,, calculated by using Eq. (11) compared with CI calculated based on the pressure
and viscous stress fields on the wing. The contributions from the vortex lift and the acceleration
term are denoted by Cl,,,,; and Cl,., respectively. As shown in Fig. 12, Cl;,, is in good agreement
with CI. In the case of SR = 0.5, the time-averaged lift coefficient calculated by using the simple lift
formula is 0.43, which agrees with 0.42 given by calculation based on the pressure and viscous stress
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FIG. 9. The development of LEVs on the lower surface viewed from the bottom at (a) 7% = 3.75 and (b) T* = 4.0 in the
upstroke, and (c) 7* = 4.125 and (d) 7% = 4.375 in the downstroke. The left column: SR = 1.0, and the right column: SR
= 0.5. The iso-surfaces of Q = 3.0 are shown, and the gray scale (color online) indicates the spanwise vorticity. The detailed
parameters for the cases of SR = 1.0 and SR = 0.5 are (SR, ¢, St, A*, ) = (1.0, /2, 0.3, 0.25, 0°) and (SR, ¢, St, A*, ) =
(0.5, /2, 0.3, 0.25, 0°), respectively.
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(a) (b)

FIG. 10. The bottom-viewed iso-surfaces of the spanwise vortex stretching term w,du,/dy in the cases of (a) SR = 1.0 and
(b) SR = 0.5 at T* = 4.0 (the end of the upstroke) for ¢ = /2, St = 0.5, A* = 0.25, and & = 0°. The light gray color (red)
shows the iso-surfaces ofwydu,/dy = 8, indicating the regions where the vortices are stretched. The dark gray color (blue)
shows the iso-surfaces of wydu,/dy = —8, indicating the regions where the vortices are compressed.

fields on the wing surface. The relative error is about 2.4%. For the case of SR = 1.0, the positive
lift and negative lift generated in the flapping are canceled out each other due to the symmetrical
flapping motion such that the time-averaged lift coefficients (CI)r and (Cly;,,,)r are zero.

Figure 13 shows the contributions of the vortex lift term (ACI,,,,) and local acceleration term
(ACly.) to the lift coefficient increment ACI in one period. It is indicated that the contribution of
the vortex lift to ACI is positive in a full period particularly in the upstroke. This means that the
vortex lift is enhanced by dynamically stretching and retracting wingspan in flapping flight. In this
case, the local acceleration term has the negative contribution to ACI particularly in the upstroke.
Furthermore, the contributions of the vortical structures to CI in the upper and lower portions of the
control volume divided by the flat-plate rectangular wing are evaluated in the cases of SR = 0.5 and
SR = 1.0. Figure 14 shows the contributions of the vortex lift term to CI in the upper and lower
portions of the control volume in one period. In the average sense, the contributions of the vortex
lift term in the upper and lower portions to CI are positive and negative, respectively, in the cases of
SR = 0.5 and SR = 1.0. During the upstroke, the contributions of the vortex force in both the upper
and lower portions for SR = 0.5 are larger than those for SR = 1.0. As pointed out in Sec. IV B,
the LEVs on the upper surface in the upstroke are significantly intensified by the spanwise vortex
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FIG. 15. The vertical component of the Lamb vector in the symmetrical plane y = 0 at 7% = 4.875 in the upstroke for (a) SR
= 1.0 and (b) SR = 0.5 for ¢ = 7/2, St = 0.3, A* = 0.25, and o = 0°.

stretching, which contributes to the elevated lift in the case of SR = 0.5. In the meantime, the shorter
and more 3D LEVs on the lower surface have the smaller contribution to the negative lift. These
differences lead to the higher positive peak in ACI(#) during the upstroke in Fig. 3(b). During the
downstroke, the contribution of the vortex force in the lower portion for SR = 0.5 is still larger than
that for SR = 1.0. As aresult, there is the smaller peak in ACI(f) during the downstroke as indicated
in Fig. 3(b). This is related to the vortical structures with the decreased spanwise vorticity on the
lower surface as discussed in Sec. IV B. In summary, the vortex force associated with the vortical
structures altered by dynamically changing wingspan significantly contributes the lift enhancement.

To visualize the contributions of the vortical structures to the lift enhancement, the instantaneous
contours of the Lamb vector projected in the vertical direction at 7* = 4.875 (when the wing is
near the end of the upstroke) are shown in Fig. 15. The positive vertical component of the Lamb
vector associated with the intensified vortical structures on the upper surface is increased in the
case of SR = 0.5. On the lower surface, as shown in Fig. 15(b), the negative vertical component
of the Lamb vector in the case of SR = 0.5 has a smaller magnitude than that in the case of SR
= 1.0. This corresponds to the vortex PLEV?2 having the much smaller spanwise vorticity as shown
in Fig. 7(d). Therefore, the vortical structures are altered by dynamically stretching and retracting
wingspan, which contribute the elevated time-averaged lift.

VL. CONCLUSIONS

The flapping flat-plate rectangular wing with a dynamically stretching and retracting wingspan
is studied through numerical simulations as a model of biologically inspired morphing wing for lift
enhancement. The wingspan varies as a given function of time in a flapping cycle. The detailed
flow fields and unsteady lift of the wing at the Reynolds number of 300 are calculated in the
parametric space consisting of the span ratio, phase angle, Strouhal number, heaving amplitude,
and geometrical angle of attack. It is found that the lift is significantly enhanced by dynamically
stretching and retracting wingspan in flapping flight. The lift enhancement is achieved by both the
effect of changing the wing area and the effect of the morphing-altered flow structures. It is observed
that the LEVs on the upper surface in the upstroke are significantly intensified by the spanwise
vortex stretching associated with the dynamically changing wingspan, which contributes the more
positive vortex lift. At the meantime, the shorter and weaker LEVs on the lower surface in both
the upstroke and downstroke have the smaller contribution to the negative lift. A combination of
these mechanisms leads to the overall vortex lift enhancement in the upstroke and downstroke.
The relationship between the lift enhancement and the morphing-altered flow structures is further
confirmed by the lift decomposition into the vortex lift and the local acceleration term. This work
reveals the significance of the dynamic wing morphing in the lift enhancement. Birds and bats could
dynamically stretch and retract the wingspan in flapping flight for enhancing the lift unlike insects
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with the fixed wingspan. This illustrates a fundamentally different aerodynamic aspect between
birds/bats and insects in flapping flight.
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