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The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh–Taylor instability with
a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections
up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood
number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases
gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength),
the larger the NSA of the fundamental mode. When r0/λ is large enough (r0� λ ), the NSA of the fundamental mode is
reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.
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1. Introduction
When a fluid supports another fluid of higher density in

a gravity field or accelerates another fluid of higher density,
the interface between the two fluids will be closely related to
the Rayleigh–Taylor instability (RTI).[1,2] Assuming a heavier
fluid is superposed over a lighter one in a gravitational field
−g𝑒y where g is acceleration, an initial single-mode cosine
modulation, with wave number k = 2π/λ , where λ is the per-
turbation wavelength, and small perturbation amplitude ε on
an interface between two fluids of densities ρh and ρl, is the
simplest case. The classical linear theory[1,2] shows that the
initial cosine modulation with a small amplitude grows expo-
nentially with time t, ηL = ε eγt , where γ =

√
Akg is the linear

growth rate with the Atwood number A = (ρh−ρl)/(ρh +ρl).
When the typical perturbation amplitude and the wavelength
are of the same order of magnitude, the second and the third
harmonics are generated successively, and then the perturba-
tion enters the nonlinear regime. Before the strong nonlin-
ear growth regime,[3–6] there exists a weakly nonlinear growth
regime.[7–24] Within the framework of the third-order weakly
nonlinear theory,[7–12] the interface position at time t takes the
form η(x, t) = η1 cos(kx)+η2 cos(2kx)+η3 cos(3kx), where
η1, η2, and η3 are, respectively, the amplitudes of the first
three harmonics
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For problems with a large Atwood number, A → 1, equa-
tions (1a)–(1c) can be reduced to
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As can be seen in Eq. (1a) or (2a), at the third order, the
growth of the fundamental mode is reduced by the non-
linear mode-coupling effects, i.e., the third-order negative
feedback to the fundamental mode. Based on the previous
definition,[8,9,11,12,28] the transition into the nonlinear regime
occurs when the growth of the fundamental mode is reduced
by 10% in comparison to the linear growth (ε eγt ), and we have

ηs

λ
=

√
2

π
√

5(3A2 +1)
, (3)

where ηs is the nonlinear saturation amplitude (NSA) of the
fundamental mode with corrections up to the third order. Let
A = 1, then ηs ≈ 0.1λ is recovered, which is a widely used
threshold for nonlinearity.
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In the Cartesian geometry, the weakly nonlinear be-
havior of the RTI has been a field of theoretical,[7–22]

experimental,[23–26] and numerical[27–32] interest. In many
applications, however, the RTI occurs in a cylindrical or
spherical geometry, for which the corresponding investi-
gations are few.[33–36] The RTI plays a significant role
in both astrophysics[37–39] and inertial confinement fusion
(ICF).[40,41] Therefore, it is necessary to investigate the NSA
of the spherical or cylindrical RTI to better understand and es-
timate the evolution of the RTI. In this paper, the NSA of the
fundamental mode in the cylindrical RTI for irrotational, in-
compressible, and inviscid fluids with a discontinuous profile
at an arbitrary Atwood number is investigated analytically by
taking corrections up to the third order into account.

2. Theoretical framework and explicit results
This section is devoted to the detailed description of the

theoretical framework of this work, and the analytic expres-
sions of the amplitudes of the first three harmonics with cor-
rections up to the third order are given.

A cylindrical coordinate system is established, where r
and θ are normal to and along with the undisturbed interface
r = r0 between two fluids, respectively. The disturbed inter-
face is located at r = a(θ , t), which is always above zero. In
the following discussion, we shall denote the properties of the
fluid outside the interface by subscript h and that inside the
interface by subscript l, unless stated otherwise. We assume
the two fluids in a gravitational field −g𝑒r to be irrotational,
incompressible, and inviscid; the governing equations for this
system are

∂
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+ f (t) = 0, at r = a(θ , t), (4d)

where φi(r,θ , t) are the velocity potentials for the two fluids
with i being h or l, f (t) is an arbitrary function of time t,
which is introduced in the integral for the Bernoulli relation
with respect to space, and the perturbation interface a(θ , t)
corresponds to η(x, t) in the Cartesian geometry. The Laplace
equation (4a) comes from the incompressibility condition in
the cylindrical geometry. Equations (4b) and (4c) represent
the kinematic boundary conditions in the cylindrical geome-
try (the normal velocity continuous condition at the interface),

i.e., a fluid particle initially situated at the material interface re-
mains at the interface afterwards. The Bernoulli equation (4d)
represents the dynamic boundary condition, i.e., the pressure
continues across the material interface.

We consider an initial perturbation in the form r =

a(θ , t = 0) = r0 + ε cos(κθ), where r0 is a positive constant,
mode number κ = 2πr0/λ , and ε � λ . Due to this small-
amplitude perturbation in the cylindrical interface, the per-
turbed interface is prone to the RTI. Higher harmonics (i.e., the
second harmonic, the third harmonic, and so on) will be sub-
sequently generated in the nonlinear mode-coupling process.
Hence, a(θ , t) and φi(r,θ , t) can be expanded into a power se-
ries in ε̂ = ε/λ (the initial perturbation amplitude normalized
by the perturbation wavelength, which is a small parameter) as

a(θ , t) = ζ (t)r0 +
N

∑
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= r0
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× cos(n−2m)κθ +O(ε̂N+1), (5a)
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× cos(n−2m)κθ +O(ε̂N+1), (5c)

where function ζ (t) determines whether the unperturbed in-
terface moves with time, the interface will keep resting
when ζ (t) ≡ 1, otherwise, it will move away from the ini-
tial position r(t = 0) = r0. The a(n)(θ , t) and φ

(n)
l (r,θ , t)

(φ (n)
h (r,θ , t)) are, respectively, the n-th order perturbed in-

terface and the n-th order perturbed velocity potential for
the inner (outer) fluid of the interface when the first three
harmonics are taken into account. For the (n − 2m)-th
Fourier harmonic at the n-th order, when m = 0, a(n)n−2m =

ε̂nλ n enβ tαn,n−2m is the generation coefficient of the per-
turbation interface, φ

(n)
l,n−2m = ε̂nλ n enβ tφl,n,n−2mr(n−2m)κ and

φ
(n)
h,n−2m = ε̂nλ n enβ tφh,n,n−2mr−(n−2m)κ are the generation co-

efficients of the velocity potentials for the light and the heavy
fluids, respectively; when m > 0, they are the corresponding
correction coefficients of the n-th order for the perturbation
interface. Here Gauss’s symbol [n/2] denotes the maximum
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integer that is less than or equal to n/2, and β is the linear
growth rate in the cylindrical geometry. Note that the per-
turbation velocity potentials φh(r,θ , t) and φl(r,θ , t) have sat-
isfied the Laplace equation (4a) and the boundary conditions
∇φh|r→+∞ = 0 and ∇φl|r=0 = 0. Also, α1,1 = 1 when the ini-
tial condition is taken into account. The coupling factors in the
amplitudes of the Fourier harmonics, αn,n−2m (n = 2, . . . , N,
m = 0, 1, . . ., [n/2]), and β are to be determined.

It should be emphasized that the procedure to solve this
system is non-trivial. The detailed steps are as follows. (i)
Substitute Eqs. (5a)–(5c), in which O(ε̂N+1) is neglected, into
Eqs. (4b)–(4d). (ii) Replace r in the three equations with a(t).
(iii) Re-express the left-hand sides of the resulting equations
into Maclaurin series of ε̂ and collect terms of the same power
in ε̂ to construct a set of equations. (iv) Eliminate unknown
factors in the velocity potentials and solve the resulting equa-
tions successively for n = 1,2, . . . ,N.

By employing the above steps, the linear growth rate and
the coupling factors of the first three harmonics with correc-
tions up to the third order (i.e., N = 3 in Eqs. (5a)–(5c)) can be
expressed as

β =

√
Agκ

r0
, (6a)

α2,0 =−
1

4r2
0
, (6b)

α2,2 =−
Aκ +1

2r0
, (6c)

α3,1 =
−3A2κ2 +Aκ−κ2 +9

16r2
0

, (6d)

α3,3 =
4A2κ2 +7Aκ−κ2 +3

8r2
0

. (6e)

Expression (6a) shows that the linear growth rates in cylin-
drical and Cartesian geometries are different unless κ/r0 = k
(i.e., the same λ ). Keeping Atwood number A, acceleration
g, and mode number κ fixed, the smaller the initial radius of
the interface (r0), the larger the linear growth rate in the cylin-
drical geometry. Expression (6c) denotes that the second har-
monic has a character of negative growth (i.e., anti-phase). In
addition, expressions (6c)–(6e) demonstrate that the coupling
factors are influenced not only by A but also by κ and r0. If the
constant λ is considered in both the cylindrical and the Carte-
sian geometries (i.e., κ/r0 = k), and r0 is large (i.e., r0→+∞),
αn,n−2m/kn−1 (n= 2, . . . ,N, m= 0,1, . . ., [n/2]) will be simpli-
fied to the corresponding Atwood number fn,n−2m in Ref. [11].
This means that under the conditions of the same λ and a large
r0, the perturbed interface in the cylindrical geometry repro-
duces that in the Cartesian geometry, and the results from the
classical third-order weakly nonlinear theory,[7–11] as shown
in Eqs. (1a)–(1c), are recovered. It should be noted that the
generation of α2,0 is an essential character different from the
results in the Cartesian geometry where α2,0 = 0.

Accordingly, the interface position in the framework of
the third-order theory in the cylindrical geometry takes the
form ζ r0+a(θ , t) .

= ζ r0+∑
3
n=1 an cos(nκθ), where ζ and the

amplitude of the n-th harmonic, an, are

ζ = 1+η
2
Lcα2,0, (7a)

a1 = ηLc
(
1+η

2
Lcα3,1

)
, (7b)

a2 = η
2
Lcα2,2, (7c)

a3 = η
3
Lcα3,3, (7d)

where ηLc = ε eβ t is the linear growth amplitude of the funda-
mental mode in the cylindrical geometry. It should be pointed
out that the amplitude of the fundamental mode is just cor-
rected by the third harmonic. An essential character different
from the Cartesian RTI is that the zeroth order harmonic does
not vanish in the cylindrical RTI (see Eq. (7a)). This means
that the position of the initial unperturbed interface r = r0 will
be changed into r = ζ (t)r0 with the development of the per-
turbation, entirely different from that in the Cartesian space
where the initial unperturbed interface stays invariable all the
time.

3. NSA of the fundamental mode
We start to analyze the NSA of the fundamental mode

with corrections up to the third order. As mentioned above,
the NSA of the fundamental mode can be defined as the lin-
ear growth amplitude of the fundamental mode

(
∼ eβ t

)
at the

saturation time (ts) when the growth of the fundamental mode
is reduced by 10% in comparison to the linear growth. Hence,
we have

ε eβ ts −a1(ts)
ε eβ ts

=
1

10
. (8)

Here, β and a1 are, respectively, substituted by Eqs. (6a) and
(7b), and the saturation time ts of the fundamental mode can
be obtained by solving the resulting Eq. (8) as

ts =
√

r0

Agκ
log

(
2r0

ε

√
2/5√

3A2κ2−Aκ +κ2−9

)
. (9)

Then, the NSA of the fundamental mode with corrections up
to the third order is determined as as = ηLc(ts) = ε eβ ts , i.e.,

as = 2

√
2
5

√
r2

0
3A2κ2−Aκ +κ2−9

. (10)

By using mode number κ = 2πr0/λ , the normalized satura-
tion time and the NSA of the fundamental mode are

ts√
λ/g

=

log2

√
2r2

0

5ε
(
12π2A2r2

0−2πAr0 +4π2r2
0−9

)
√

2Aπ
,

(11a)
as

λ
=

2
√

2r0
√

5
√

12π2A2r2
0−2πAr0 +4π2r2

0−9
. (11b)
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When the limit of r0→+∞ is taken into account, we have

t∞
s√
λ/g

=
log
√

2/5επ2 (3A2 +1)√
2Aπ

, (12a)

a∞
s

λ
=

√
2

π
√

5
√

3A2 +1
. (12b)

As can be seen, when r0/λ is large enough (i.e., r0/λ →+∞),
the NSA of the fundamental mode in the cylindrical geometry
will tend to that in the Cartesian geometry, i.e., equation (3) is
recovered. This means that the cylindrical effect on the NSA
of the fundamental mode will vanish.

We show the normalized NSA, as/λ , of the fundamental
mode versus Atwood number A for different initial radii of the
interface in Fig. 1. Here r0/λ =0.8, 1.0, 2.0, +∞ are uniformly
selected.

0 0.2 0.4 0.6 0.8 1.0

0.25

0.20

0.15

0.10

A

a
s
/
λ

r0/λ=0.8

r0/λ=1.0

r0/λ=2.0

large r0

Fig. 1. (color online) The normalized NSA of the fundamental mode,
as/λ , versus arbitrary A for different initial radii of the cylindrical in-
terface. The result of large r0 corresponds to that of the Cartesian ge-
ometry.

Figure 1 demonstrates that the normalized NSA of the
fundamental mode decreases monotonously with increasing A
for large r0 (corresponding to the Cartesian geometry), while
it firstly rises weakly to a peak and then decreases sharply with
increasing A for finite r0/λ . Thus, there is a critical Ac. For
A 6 Ac, the NSA keeps increasing to a maximum with increas-
ing A; otherwise, it keeps decreasing. Meanwhile, Ac has a
trend of increasing with decreasing r0/λ . For a selected A,
the NSA of the fundamental mode increases with decreasing
r0/λ . It is clear that r0 has a significant influence on the NSA
of the fundamental mode, particularly when r0 < λ . As can be
seen, the normalized NSA of the fundamental mode at A = 1
and r0/λ = 0.8 is 0.111, while that at A = 1 for large r0 is
only 0.1. Furthermore, at A = 0 and r0/λ = 0.8, the NSA of
the fundamental mode is 0.275, while the corresponding re-
sult in the Cartesian geometry is just 0.201. Accordingly, the
cylindrical effects (especially at small r0/λ ) play an important
role in the NSA of the fundamental mode for arbitrary A.

4. Conclusion
The nonlinear saturation amplitude of the fundamental

mode in the classical RTI (irrotational, incompressible, and
inviscid fluids) with a discontinuous cylindrical profile for an
arbitrary Atwood number and nonlinear corrections up to the
third order is explored analytically. The prediction of the NSA
of the fundamental mode with corrections up to the third or-
der from the classical weakly nonlinear theory[7–11] is recov-
ered when the initial radius of the interface normalized by the
perturbation wavelength tends to infinity. The NSA of the
fundamental mode in the cylindrical geometry has a different
trend with Atwood number A from the one in the Cartesian
geometry. The NSA of the fundamental mode in the Cartesian
geometry decreases monotonously with increasing A; when
the cylindrical effects are taken into account, it first slightly
increases to a maximum and then decreases with increasing
A. Accordingly, there is a critical Ac which is small. When
A 6 Ac, the NSA keeps increasing generally with increasing
A; when A > Ac, the NSA keeps decreasing quickly with in-
creasing A. It is also found that the smaller the normalized ini-
tial radius of the interface r0/λ , the larger Ac. Again, r0 plays
a vital role in the NSA of the fundamental mode. The NSA
of the fundamental mode increases with decreasing r0/λ , es-
pecially when r0 is compared to λ . Our analytic results show
that not only the Atwood number but also the initial radius of
the interface strikingly influences the NSA of the RTI. Thus, it
should be included in applications where the NSA plays a role,
such as the inertial confinement fusion ignition target design.
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