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Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor

instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically

investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental

mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at

the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10%

in comparison to its corresponding linear growth, and the NSA of the second harmonic can be

obtained in the same way. The analytic results indicate that the effects of the initial radius of the

interface (r0) and the Atwood number (A) play an important role in the NSAs of the first two har-

monics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases

slightly and then decreases quickly with increasing A. For given A, the smaller the r0=k (with k
perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r0=k is large

enough (r0 � k), the NSA of the fundamental mode is reduced to the prediction of previous literatures

within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech.

187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the sec-

ond harmonic first decreases quickly with increasing A, reaching a minimum, and then increases

slowly. Furthermore, the r0 can reduce the NSA of the second harmonic for arbitrary A at r0 � 2k
while increase it for A � 0:6 at r0 � 2k. Thus, it should be included in applications where the NSA has

a role, such as inertial confinement fusion ignition target design. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901088]

I. INTRODUCTION

When a fluid supports another fluid of higher density in

a gravity field or accelerates another fluid of higher density,

the interface between the two fluids will be closely related to

Rayleigh-Taylor instability (RTI).1,2 Assuming a heavier

fluid is superposed over a lighter one in a gravitational field

�gey, where g is acceleration, an initial single-mode cosine

modulation, with wave number k ¼ 2p=k, where k is the per-

turbation wavelength and small perturbation amplitude e
[i.e., the initial perturbation is in the form gðx; t ¼ 0Þ ¼
e cosðkxÞ with ke� 1] on an interface between two fluids of

densities qh and ql, is a simplest case. According to the clas-

sical linear theory,1,2 the initial cosine modulation with small

amplitude grows exponentially in time t, gL ¼ eect, where

c ¼
ffiffiffiffiffiffiffiffi
Akg
p

is the linear growth rate with A ¼ ðqh � qlÞ=
ðqh þ qlÞ being the Atwood number. When the typical per-

turbation amplitude and its wavelength are of the same order

of magnitude, the second and third harmonics are generated

successively, and then the perturbation enters the nonlinear

regime. Before a strong nonlinear growth regime,3–6 one has

a weakly nonlinear growth regime.7–17,19–24 Within the

framework of the third-order weakly nonlinear theory,7–11

the interface position at time t takes the form, gðx; tÞ ¼ g1

cosðkxÞ þ g2 cosð2kxÞ þ g3 cosð3kxÞ, where g1, g2, and g3

are, respectively, the amplitudes of the fundamental mode,

the second harmonic, and the third harmonic

g1 ¼ gL �
1

16
3A2 þ 1ð Þk2g3

L; (1a)

g2 ¼ �
1

2
Akg2

L; (1b)

g3 ¼
1

2
A2 � 1

4

� �
k2g3

L: (1c)

It is worth noting that the amplitudes of the second and the

third harmonics can be negative. Here, the negative ampli-

tude means the corresponding phase being opposite to the

initial cosine modulation’s (anti-phase). For problems with

large Atwood number, A! 1, Eqs. (1a)–(1c) are reduced to

g1 ¼ gL �
1

4
k2g3

L; (2a)

g2 ¼ �
1

2
kg2

L; (2b)

g3 ¼
3

8
k2g3

L: (2c)

As can be seen in Eq. (1a) or (2a), at the third-order, the growth

of the fundamental mode is reduced by the nonlinear mode-

coupling effects, i.e., third-order negative feedback to the fun-

damental mode. According to the previous definition,8,9,11,23

the transition into the nonlinear regime to occur when the

a)Author to whom correspondence should be addressed. Electronic mail:
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1070-664X/2014/21(11)/112103/8/$30.00 VC 2014 AIP Publishing LLC21, 112103-1

PHYSICS OF PLASMAS 21, 112103 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.199.81 On: Wed, 12 Nov 2014 10:01:47

http://dx.doi.org/10.1063/1.4901088
http://dx.doi.org/10.1063/1.4901088
http://dx.doi.org/10.1063/1.4901088
mailto:lixl@imech.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4901088&domain=pdf&date_stamp=2014-11-06


growth of the fundamental mode is reduced by 10% in compar-

ison to its corresponding linear growth (i.e., eect), we have

g1s

k
¼

ffiffiffi
2
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 3A2 þ 1ð Þ

p ; (3)

where g1s is the nonlinear saturation amplitude (NSA) of the

fundamental mode with corrections up to the third-order. Let

A¼ 1, then g1s � 0:1k is recovered, which is a typical

threshold for nonlinearity widely used.

As mentioned above, the weakly nonlinear behaviors of

the RTI in the Cartesian geometry have been a field of

theoretical,7–18 experimental,19–21 or numerical22–27 interest.

In many applications, the RTI occurs in spherical or cylindri-

cal geometry where the corresponding investigation has been

undertaken by several authors;28–36 specifically, an extra

instability due to the curvature of the interface (i.e., the Bell-

Plesset effect), the nonlinear evolution of the interface, and

numerical solutions including magnetic effects have been

addressed. The RTI has a significant role in astrophysics37–41

and inertial confinement fusion (ICF).42–53 In astrophysics,

the RTI plays a central role in evolutions of many astrophysi-

cal phenomena, such as supernova explosion.39,40 In ICF, at

the initial acceleration stage, when the imploding spherical

shell is accelerated inward by the low density blow-off

plasma, the ablation front is subject to the RTI, and at the

later stage, when the compressed fuel starts to decelerate the

imploding pusher, the hot spot/shell surface is also prone to

the RTI. The RTI can limit the implosion velocity and, in

some cases, even break up the implosion shell, resulting in

the auto-ignition failure. The ICF targets must be designed to

keep the RTI growth at an acceptable level. Therefore, it is

central to investigate the NSA of the spherical or cylindrical

RTI to better understand and estimate the evolution of the

RTI because of its significance in both fundamental research

and engineering applications. In this research, NSAs of the

first two harmonics in the cylindrical RTI for irrotational,

incompressible, and inviscid fluids with a discontinuous pro-

file at arbitrary Atwood numbers are investigated analytically

by taking corrections up to the fourth-order into account.

II. THEORETICAL FRAMEWORK AND EXPLICIT
RESULTS

This section is devoted to the detailed description of the

theoretical framework of the present paper, and the analytic

expressions of amplitudes of the first four harmonics with

corrections up to the fourth-order are demonstrated.

A cylindrical coordinate system where r and h are,

respectively, normal and along to the undisturbed interface

r ¼ ~r0 between two fluids is established. The disturbed inter-

face is located at r ¼ aðh; tÞ which is always above zero. In

the following discussion, we shall denote the properties of

the fluid outside the interface by the subscript h and that

inside the interface by the subscript l unless otherwise stated.

Assuming the two fluids in a gravitational field �ger to be

irrotational, incompressible, and inviscid, the governing

equations for this system are

@

@r
r
@/i

@r

� �
þ @

@h
1

r

@/i

@h

� �
¼ 0; in two fluids; (4a)

@a

@t
þ 1

r2

@a

@h
@/l

@h
� @/l

@r
¼ 0; at r ¼ a h; tð Þ; (4b)

@a

@t
þ 1

r2

@a

@h
@/h

@h
� @/h

@r
¼ 0; at r ¼ a h; tð Þ; (4c)

ql

@/l

@t
þ 1

2

@/l

@r

� �2

þ 1

2r2

@/l

@h

� �2

þ gr

" #

�qh

@/h

@t
þ 1

2

@/h

@r

� �2

þ 1

2r2

@/h

@h

� �2

þ gr

" #

þ f tð Þ ¼ 0 at r ¼ a h; tð Þ; (4d)

where /iðr; h; tÞ are velocity potentials for the two fluids

with i denoting h or l, and the interface perturbation aðh; tÞ
corresponds to gðx; tÞ in Cartesian geometry. The Laplace

equation (4a) comes from the incompressibility condition in

cylindrical geometry. Equations (4b) and (4c) represent the

kinematic boundary conditions in cylindrical geometry (i.e.,

the normal velocity continuous condition at the interface)

that a fluid particle initially situated at the material interface

remains at the interface afterwards. The Bernoulli equation

(4d) represents the dynamic boundary condition in which the

pressure continues across the material interface.

We consider an initial perturbation in the form

r ¼ aðh; t ¼ 0Þ ¼ r0 þ e cosðjhÞ, where r0 is a positive con-

stant, mode number j ¼ 2pr0=k and e� k. According to

principle of mass conservation of the fluid inside the cylin-

drical interface, i.e., qlp~r2
0 ¼ ql

Ð 2p
h¼0
ð
Ð r0þe cosðjhÞ

r¼0
rdrÞdh

where the symbol ~r0 is the time-independent average radius

of the interface, we especially modify the initial position

r0 as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2

0 �
e2

2

r
: (5)

It is obvious that r0 � ~r0 with e, specially r0 ¼ ~r0 when

e ¼ 0. Due to this small amplitude perturbation in the cylin-

drical interface, this perturbed interface is prone to RTI.

Higher harmonics (i.e., the second harmonic, the third har-

monic, and so on) will subsequently be generated by the non-

linear mode-coupling process. Hence, the aðh; tÞ and

/iðr; h; tÞ can be expanded into a power series in e as

a h; tð Þ ¼ f tð Þr0 þ
XN

n¼1

a nð Þ h; tð Þ ¼ r0 1þ
XN

2½ �

n¼1

e2ne2nbta2n;0

0
@

1
A

þ
XN

n¼1

enenbt
Xn2½ ��1

m¼0

an;n�2m cos n� 2mð Þjhþ O eNþ1ð Þ;

(6a)

/l r; h; tð Þ ¼
XN

n¼1

/ nð Þ
l r; h; tð Þ ¼

XN

n¼1

enenbt
Xn

2½ �

m¼0

/l;n;n�2mr n�2mð Þj

� cos n� 2mð Þjhþ O eNþ1ð Þ; (6b)
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/h r; h; tð Þ ¼
XN

n¼1

/ nð Þ
h r; h; tð Þ ¼

XN

n¼1

enenbt
Xn

2½ �

m¼0

/h;n;n�2mr� n�2mð Þj

� cos n� 2mð Þjhþ O eNþ1ð Þ; (6c)

where the function fðtÞ determines whether the unperturbed

interface moves with time: the interface will keep resting

when fðtÞ 	 1; otherwise, it will move from the initial posi-

tion rðt ¼ 0Þ ¼ r0. The functions aðnÞðh; tÞ and /ðnÞl ðr; h; tÞ
[/ðnÞh ðr; h; tÞ] are, respectively, nth-order perturbed interface

and nth-order perturbed velocity potential for the inner [outer]

fluid of the interface when the first four harmonics are taken

into account. Regarding the ðn� 2mÞ th Fourier harmonic at

the nth-order, when m¼ 0, a
ðnÞ
n�2m ¼ enenbtan;n�2m [/ðnÞl;n�2m ¼

enenbt/l;n;n�2mrðn�2mÞj or /ðnÞh;n�2m ¼ enenbt/h;n;n�2mr�ðn�2mÞj]

is a generation coefficient of the perturbation interface [gener-

ation coefficient of the velocity potential for the light or heavy

fluid]; while when m> 0, it is a correction coefficient of the

nth-order for the perturbation interface [a correction coeffi-

cient of the velocity potential for the inner fluid or outer fluid

of the interface]. Here, Gauss’s symbol [n=2] denotes the

maximum integer that is less than or equal to n=2 and b is the

linear growth rate in the cylindrical geometry. Note that the

perturbation velocity potentials /hðr; h; tÞ and /lðr; h; tÞ have

satisfied the Laplace equation (4a) and the boundary condi-

tions r/hjr!þ1 ¼ 0 and r/ljr¼0 ¼ 0. And a1;1 ¼ 1 when

the initial condition is taken into account. The coupling factors

in the amplitudes of the Fourier harmonic, an;n�2m, (n ¼ 2;

 
 
 ; N, and m ¼ 0; 1; 
 
 
 ; ½n=2�) and b are what we ulti-

mately intend to determine.

It should be emphasized that the procedure of the solv-

ing this system is a key point. The detailed steps are

(i) Substituting Eqs. (6a)–(6c), in which OðeNþ1Þ is

neglected, into Eqs. (4b)–(4d).

(ii) Replacing r in these three equations with Eq. (6a).

(iii) Reexpressing the left hand sides of the resulting equa-

tions into Maclaurin series of e and collecting terms

of the same power in e to construct a set of equations.

(iv) Eliminating unknown factors in the velocity poten-

tials and solving the resulting equations successively

for n¼ 1, 2, 
 
 
, N.

Comparing the procedures applied into the similar prob-

lems in Cartesian geometry, steps (i)–(iii) are somewhat dif-

ferent. In Cartesian geometry, the initially unperturbed

interface keeps invariable with the development of the RTI,

and hence, the formal method is to expand all the physical

quantities on this initial interface. Thus, one obtains the

equations holding on the initial interface, instead of those

constructing on the developing interface. In view of the ini-

tial unperturbed interface moving with the development of

the perturbation, we do not use the formal approach in this

research. It is interesting that we have, respectively, per-

formed these two different methods and obtained the same

results. However, the method provided here is confirmed to

be much simpler than the formal one by the calculations at

the same conditions.

The linear growth rate and coupling factors of the first

four harmonics with corrections up to the fourth-order [i.e.,

N¼ 4 in Eqs. (6a)–(6c)] can be expressed as

b ¼
ffiffiffiffiffiffiffiffiffi
Agj
r0

r
; (7a)

a2;0 ¼ �
1

4r2
0

; (7b)

a2;2 ¼ �
Ajþ 1

2r0

; (7c)

a3;1 ¼
�3A2j2 þ Aj� j2 þ 9

16r2
0

; (7d)

a3;3 ¼
4A2j2 þ 7Aj� j2 þ 3

8r2
0

; (7e)

a4;0 ¼
A2j2 � 5Ajþ j2 � 12

32r4
0

; (7f)

a4;2 ¼
123A3j3þ 135A2j2þA 11j2� 173ð Þjþ 78j2� 228

336r3
0

;

(7g)

a4;4 ¼ �
16A3j3 þ 39A2j2 � 8Aj3 þ 31Aj� 9j2 þ 8

24r3
0

:

(7h)

Expression (7a) shows that the linear growth rates in

Cartesian and cylindrical geometries are different unless

j=r0 ¼ k (i.e., the same k). Keeping Atwood number A,

acceleration g, and mode number j invariable, the smaller

the initial radius of the interface r0 is, the larger the linear

growth rate in the cylindrical geometry is. Expression (7c)

denotes that the second harmonic has a character of negative

growth (i.e., anti-phase). In addition, expressions (7c)–(7h)

demonstrate that coupling factors are influenced by not only

A but also j and r0. If the constant k is considered in both the

cylindrical and Cartesian geometries [i.e., j=r0 ¼ k], and r0

is large [i.e., r0 ! þ1], an;n�2m=kn�1 (n ¼ 2; 
 
 
 ; N, and

m ¼ 0; 1; 
 
 
 ; ½n=2�) will be simplified to the corresponding

Atwood number fn;n�2m in work.11 This means that under the

conditions of the same k and large r0, the perturbed interface

in cylindrical geometry will reproduce that in Cartesian ge-

ometry, and the results from the classical third-order weakly

nonlinear theory,7–11 as shown in Eqs. (1a)–(1c), are recov-

ered. It should be noted that the generation of a2;0 and a4;0 is

an essential character different from the results in Cartesian

geometry where a2;0 ¼ a4;0 ¼ 0.

Accordingly, the interface position at the framework of

the fourth-order theory in the cylindrical geometry takes the

form fr0 þ aðh; tÞ¼: fr0 þ
P4

n¼1 an cosðnjhÞ, where f and

the amplitude of the nth harmonic, an, are

f ¼ 1þ g2
Lcða2;0 þ a4;0g

2
LcÞ; (8a)

a1 ¼ gLcð1þ a3;1g
2
LcÞ; (8b)

a2 ¼ g2
Lcða2;2 þ a4;2g

2
LcÞ; (8c)
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a3 ¼ a3;3g
3
Lc; (8d)

a4 ¼ a4;4g
4
Lc; (8e)

where gLc ¼ eebt is the linear growth amplitude of the funda-

mental mode in the cylindrical geometry. It should be

pointed out that the amplitudes of the first two harmonics are

corrected by the higher harmonics (the third and the fourth

harmonics), but the third and the fourth harmonics are not, to

this order of approximation. As stated just now, an essential

character different from the Cartesian RTI is that the zeroth

harmonic does not vanish in cylindrical RTI [see Eq. (8a)].

This means that the position of the initial unperturbed inter-

face r ¼ r0 will be changed into r ¼ fðtÞr0 with the develop-

ment of the perturbation, differing entirely from that in

Cartesian space where the initial unperturbed interface keeps

invariable all the time.

III. NSA OF THE FUNDAMENTAL MODE

Considering the third-order (fourth-order) nonlinear cor-

rection to the fundamental mode (second harmonic), the

NSA of the fundamental mode (second harmonic) can be

determined. In this section and Sec. IV, we shall analyze the

NSAs of the fundamental mode and the second harmonic,

respectively, with corrections up to the fourth-order.

As mentioned above, the NSA of the fundamental mode

can be defined as the linear growth amplitude of the funda-

mental mode ð�ebtÞ at the saturation time ðt1sÞ when the

growth of the fundamental mode is reduced by 10% in com-

parison to its corresponding linear growth. Hence, we have

eebt1s � a1 t1sð Þ
eebt1s

¼ 1

10
: (9)

Here, b and a1 are, respectively, substituted by Eqs. (7a) and

(8b), and the saturation time t1s of the fundamental mode can

be obtained by solving the resulting equation (9). It is

t1s ¼
ffiffiffiffiffiffiffiffiffi
r0

Agj

r
log

2r0

e

ffiffiffi
2

5

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2j2 � Ajþ j2 � 9
p

0
B@

1
CA
: (10)

Then, the NSA of the fundamental mode with corrections up

to the third-order is determined as a1s ¼ gLcðt1sÞ ¼ eebt1s ,

i.e.,

a1s ¼ 2

ffiffiffi
2

5

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0

3A2j2 � Ajþ j2 � 9

s
: (11)

Using mode number j ¼ 2pr0=k, the normalized saturation

time and NSA of the fundamental mode are

t1sffiffiffiffiffiffiffiffi
k=g

p ¼ 1ffiffiffiffiffiffiffiffiffi
2Ap
p log 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

0

5e 12p2A2r2
0 � 2pAr0 þ 4p2r2

0 � 9
� �

s
;

(12a)

a1s

k
¼ 2

ffiffiffi
2
p

r0ffiffiffi
5
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12p2A2r2
0 � 2pAr0 þ 4p2r2

0 � 9
p ; (12b)

respectively. When the limit of r0 ! þ1 is taken into

account, we have

t11sffiffiffiffiffiffiffiffi
k=g

p ¼ 1ffiffiffiffiffiffiffiffiffi
2Ap
p log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5ep2 3A2 þ 1ð Þ

s
; (13a)

a11s

k
¼

ffiffiffi
2
p

p
ffiffiffi
5
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3A2 þ 1
p : (13b)

As can be seen, when r0=k is large enough (i.e.,

r0=k! þ1), NSA of the fundamental mode in the cylindri-

cal geometry will tend to that in the Cartesian geometry, i.e.,

Eq. (3) is recovered. This means the cylindrical effect on

NSA of the fundamental mode will vanish.

We show the normalized saturation time, ðg=kÞ1=2t1s,

and the normalized NSA, a1s=k, of the fundamental mode

with different Atwood number A and the initial radius of the

interface r0 in Figures 1 and 2. Here, r0=k ¼ 0.6, 0.7, 0.8,

0.9, 1.0, 1.5, 2.0, and þ1 are uniformly selected.

Figure 1 shows that the normalized saturation time of

the fundamental mode first drops swiftly and then decreases

tardily with A. For fixed A, the normalized saturation time of

the fundamental mode increases with the decreasing r0=k.

This means that with the decreasing A or r0=k, the time spent

on the linear growth of the fundamental mode becomes long,

especially for the small A (A � 0:1).

Figure 2 demonstrates that the normalized NSA of the

fundamental mode decreases monotonously with A for large

r0 (corresponding to the Cartesian geometry), while it first

increases weakly to a peak and then decreases strongly with

A for finite r0=k. Thus, there will appear a critical Ac1. For

A � Ac1, the NSA keeps increasing to a maximum with A;

otherwise, it keeps decreasing with A. Meanwhile, the Ac1

has a trend of increasing with decreasing r0=k. For a selected

A, the NSA of the fundamental mode increases with the

decreasing r0=k. It appears evident that r0 has a significant

influence on NSA of the fundamental mode particularly

when r0 < k. As can be seen, the normalized NSA of the

fundamental mode at A¼ 1 and r0=k ¼ 0:6 is 0.114, while

FIG. 1. The normalized saturation time of the fundamental mode,

ðg=kÞ1=2t1s, versus arbitrary A for different initial radius of the cylindrical

interface. The result of large r0 corresponds to that of the Cartesian geome-

try. The initial perturbation amplitude of the interface is fixed as

e=k ¼ 0:001. The insert is a local graph.
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that at A¼ 1 for large r0 is only 0.1. Furthermore, at A¼ 0

and r0=k ¼ 0:6, the NSA of the fundamental mode is 0.333,

while the corresponding result in the Cartesian geometry is

just 0.201. Accordingly, the cylindrical effects (especially

small r0=k) play an important role in the NSA of the funda-

mental mode for arbitrary A.

Note that Figure 2 merely shows the NSA of the funda-

mental mode for j� 4. For the j < 4 configuration, the

NSA of the fundamental mode cannot entirely be predicted

by the weakly nonlinear analysis up to the fourth-order.

From the NSA definition of the fundamental mode, it is the

negative feedback (reduction effect) to the growth of the fun-

damental mode that results in the occurrence of the NAS of

the fundamental mode. For the fundamental mode, just the

third harmonic provides a feedback that is either a positive

one when a3;1 > 0 or a negative one when a3;1 < 0. The a3;1

for j from 1 to 3 versus variable A is shown in Figure 3. It is

clear that a3;1 is above zero at j¼ 1 for arbitrary A, and a3;1

is less than zero only when either both j¼ 2 and A � 0:74 or

both j¼ 3 and A � 0:11. Accordingly, when the weakly non-

linear analysis is performed just up to fourth-order, the cor-

rection to the fundamental mode from the third harmonic is

not always a negative feedback for different j and A, which

generates failure of the NSA of the fundamental mode for

some configurations.

For the further insight into the NSA of the fundamental

mode, we forward the perturbation analysis up to the fifth-

order, among which the fifth-order results related to the

interface are given in the Appendix, and mode coupling fac-

tor a5;1 is shown in Figure 4. Figure 4 reads that although

a5;1 > 0 at j¼ 1 for arbitrary A, the positive or negative sign

of a5;1 at j¼ 2 and 3 changes with A. For j¼ 2, a5;1 < 0

when A � 0:04; whereas for j¼ 3, a5;1 < 0 when A � 0:4.

Thus, with the order of the corrections increasing, the nega-

tive feedbacks to the fundamental mode will cover the whole

space of the parameters including j and A. Furthermore, the

later the first negative feedback stemming from the higher-

order harmonic appears, the larger the NSA of the fundamen-

tal mode is. We, therefore, can predict that for the fixed A,

the NSA of the fundamental mode increases with the

decreasing j, especially for the case of the lower-mode num-

bers (such as, j < 4 case). In fact, this trend has been

denoted in Figure 2.

IV. NSA OF THE SECOND HARMONIC

The concept of the NSA of the fundamental mode in

Sec. III will be extended for the second harmonic in this section.

The NSA of the second harmonic is defined as the linear growth

amplitude of the second harmonic ð�e2btÞ at the saturation time

ðt2sÞ when the growth of the second harmonic is reduced by

10% in comparison to its corresponding linear growth.

The saturation time t2s of the second harmonic with cor-

rections up to the fourth-order can be obtained from the

following:

a2;2e2e2bt2s � a2 t2sð Þ
a2;2e2e2bt2s

¼ 1

10
: (14)

Substituting Eqs. (7a), (8c), (7c), and (7g) to this equation,

the saturation time of the second harmonic with the correc-

tions up to the fourth-order can be determined as

t2s ¼
ffiffiffiffiffiffiffiffiffi
r0

Agj

r
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
84r2

0 Ajþ 1ð Þ
5e2 123A3j3 þ 135A2j2 þ 11Aj3 � 173Ajþ 78j2 � 228ð Þ

s
: (15)

Then, the NSA of the second harmonic with corrections up to the fourth-order is determined as a2s ¼ a2;2g2
Lcðt2sÞ ¼ a2;2e2e2bt2s ,

i.e.,

a2s ¼ �
42r0 Ajþ 1ð Þ2

5 123A3j3 þ 135A2j2 þ 11Aj3 � 173Ajþ 78j2 � 228ð Þ : (16)

Adopting mode number j ¼ 2pr0=k, the normalized saturation time and NSA of the second harmonic are

t2sffiffiffiffiffiffiffiffi
k=g

p ¼ 1ffiffiffiffiffiffiffiffiffi
2Ap
p log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42r2

0 2pAr0 þ 1ð Þ
5e2 492p3A3r3

0 þ 270p2A2r2
0 þ 44p3Ar3

0 � 173pAr0 þ 156p2r2
0 � 114

� �
s

; (17a)

FIG. 2. The normalized NSA of the fundamental mode, a1s=k, versus arbi-

trary A for different initial radius of the cylindrical interface. The result of

large r0 corresponds to that of the Cartesian geometry.
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a2s

k
¼ � 21r0 2pAr0 þ 1ð Þ2

5 492p3A3r3
0 þ 270p2A2r2

0 þ 44p3Ar3
0 � 173pAr0 þ 156p2r2

0 � 114
� � ; (17b)

respectively. When taking the limit of r0 ! þ1 into

account, we have

t12sffiffiffiffiffiffiffiffi
k=g

p ¼ 1ffiffiffiffiffiffiffiffiffi
2Ap
p log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21

5e2p2 123A2 þ 11ð Þ

s
; (18a)

a12s

k
¼ � 21A

5p 123A2 þ 11ð Þ : (18b)

As can be seen, when r0=k is large enough (i.e.,

r0=k! þ1), NSA of the second harmonic in the cylindrical

geometry will tend to the corresponding NSA in the

Cartesian geometry. This means the cylindrical effect on

NSA of the second harmonic to vanish.

The normalized saturation time, ðg=kÞ1=2t2s, and the nor-

malized NSA, a2s=k, of the second harmonic with different

Atwood number A and the initial radius r0 of the interface

are shown in Figures 5 and 6. Here, r0=k¼ 0.6, 0.7, 0.8, 0.9,

1.0, 1.5, 2.0, and þ1 are taken into account in Figure 5 and

r0=k¼ 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 10, 50, 250, and þ1
are considered in Figure 6.

Comparing Figures 5 and 1, one finds that the normal-

ized time ðg=kÞ1=2t2s of the second harmonic has the same

trend with A or r0 as that of the fundamental mode. With the

same A and r0, the ðg=kÞ1=2t2s is constantly larger than

ðg=kÞ1=2t1s. As for the NSA of the second harmonic, it is found

from Figure 6 that the NSA first decreases to some value quickly

and then increases slowly with A for arbitrary r0. Therefore, there

also exists a critical Ac2. When A � Ac2, the NSA decreases

with A; otherwise, it increases with A. An interesting thing is that

the Ac2 is related with r0. For smaller r0 (r0 � 2:0k), the Ac2

keeps a constant (0.4 or so); otherwise, the Ac2 abates with the

decreasing r0. In addition, for smaller r0 (r0 � 2:0k), the r0

affects NSA for arbitrary A, while for the larger r0, the r0 has a

more distinct influence on NSA for A � 0:6 than A � 0:6.

Comparing the NSA of the second harmonic with that of

the fundamental mode, one sees that the NSAs of the first two

harmonics can be determined with the reductions of the

higher-order harmonics. On the one hand, for arbitrary A, in

view of the positive growth of the fundamental mode, the NSA

of the fundamental mode stands above zero; while for the neg-

ative growth of the second harmonic (a2;2 < 0), the NSA of

the second harmonic is less than zero. On the other hand, with

the increasing A, the absolute values of the NSAs of the first

two harmonics increase to some maximum and then decrease.

For the NSA of the fundamental mode, the critical Ac1, which

corresponds to the maximum value of the NSA of the funda-

mental mode, tends to zero with the increasing r0=k; whereas

for that of the second harmonic, the critical Ac2 tends to 0.3 or

so with the increasing r0=k. Meanwhile, the absolute value of

the NSA of the fundamental mode is always larger than that of

the second harmonic for the selected A and r0=k.

It should be noted that, for the NSAs of the first two har-

monics, the above discussed case that the acceleration is in

the form �ger (i.e., g> 0) and the lighter (heavier) fluid

locates at insider (outside) the interface can readily be

extended to the reversed case where g< 0 and A< 0. As a

result, the results of the NSAs of the first two harmonics

FIG. 3. The coupling factor a3;1 for mode numbers j¼ 1 (solid line), 2

(dashed line), 3 (dotted line) with different A.

FIG. 4. The coupling factor a5;1 for mode numbers j¼ 1 (solid line), 2

(dashed line), 3 (dotted line) with different A. The insert is just the graph

concerning j¼ 2 and 3.

FIG. 5. The normalized saturation time of the second harmonic, ðg=kÞ1=2t2s, ver-

sus arbitrary A for different initial radius of the cylindrical interface. The result of

large r0 corresponds to that of the Cartesian geometry. The initial perturbation

amplitude of the interface is fixed as e=k ¼ 0:001. The insert is a local graph.
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include those for the case where g> 0 and A> 0, and those

for the latter case where g< 0 and A< 0.

V. CONCLUSION

In this investigation, we have analytically explored the

NSAs of the first two harmonics in the classical RTI (irrota-

tional, incompressible, and inviscid fluids) with a discontinu-

ous profile in cylindrical geometry for arbitrary Atwood

numbers with nonlinear corrections up to the fourth-order.

The prediction of the NSA of the fundamental mode with cor-

rections up to the third-order from classical weakly nonlinear

theory7–11 is recovered when the initial radius of the interface

normalized by perturbation wavelength tends to infinity.

For the NSA of the fundamental mode in the cylindri-

cal geometry, it has a different variable trend with Atwood

number A from the NSA in the Cartesian geometry. The

NSA of the fundamental mode in Cartesian geometry

decreases monotonously with increasing A; while cylindri-

cal effects taken into account, it first slightly increases to a

maximum and then decreases with A. Accordingly, there

will be a critical Ac1 which is small. When A � Ac1, the

NSA keeps increasing generally with A; while when

A > Ac1, the NSA keeps decreasing quickly with increasing

A. It is also found that the smaller the normalized initial ra-

dius of the interface r0=k is, the larger the Ac1 is. Again, the

r0 plays a vital role in NSA of the fundamental mode. The

NSA of the fundamental mode increases with decreasing

r0=k, especially when r0 is compared to k. For the NSA of

the second harmonic, it first decreases quickly with increas-

ing A, reaching a minimum, and then increases slowly,

and hence, there is another critical Atwood number Ac2.

When A � Ac2, the NSA of the second harmonic decreases

monotonously with increasing A; otherwise, it increases

monotonously with increasing A. The Ac2 decreases with

decreasing r0=k. Furthermore, the r0 can reduce the NSA

of the second harmonic for arbitrary A at r0 � 2k while

increase it for A � 0:6 at r0 � 2k. Our analytic results show

that not only the Atwood number but also the initial radius of

the interface strikingly influences the NSA of the RTI. Thus, it

should be included in applications where the NSA plays a role,

such as inertial confinement fusion ignition target design.
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APPENDIX: COUPLING FACTORS OF THE FIFTH
HARMONIC

Mode coupling factors of the fifth-order results related

to the perturbation interface are

a5;1 ¼
165A4j4 � 1044A3j3 þ A2 452j2 � 1907ð Þj2 þ A 110j2 þ 3253ð Þjþ 35j4 � 1742j2 þ 6100

5376r4
0

;

a5;3 ¼
�21612A4j4 � 42569A3j3 þ 4239A2j4 � 840A2j2 � 8718Aj3 þ 43772Ajþ 1008j4 � 19587j2 þ 24875

29568r4
0

;

a5;5 ¼
400A4j4 þ 1240A3j3 � 296A2j4 þ 1411A2j2 � 590Aj3 þ 696Ajþ 21j4 � 306j2 þ 125

384r4
0

:

FIG. 6. The normalized NSA of the second harmonic, a2s=k, versus arbitrary

A for different initial radius of the cylindrical interface. The initial radius r0

is taken as 0.6k, 0.7k, 0.8k, 0.9k, 1.0k, 1.5k, and 2.0k in (a) and 2.0k, 10k,

50k, and 250k in (b). The result of large r0 corresponds to that of the

Cartesian geometry.
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