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ABSTRACT
A physically enhanced model is proposed for roll waves based on the shallow water equations and k − ε turbulence closure along with a modification
component. It is tested against measured data on periodic permanent roll waves, and the impact of turbulence is demonstrated to be essential. It is
revealed that a regular inlet perturbation may lead to periodic permanent or natural roll waves, when its period is shorter or longer than a critical
value inherent to a specified normal flow. While a larger amplitude or shorter period of a regular inlet perturbation is conducive to the formation
of periodic permanent roll waves, their period remains the same as that of the perturbation, while their amplitude increases with the perturbation
period and is independent of the perturbation amplitude. An irregular inlet perturbation favours the formation of natural roll waves, so does a larger
amplitude of the perturbation.

Keywords: k − ε turbulence model; natural roll waves; periodic permanent roll waves; shallow water equations; turbulent Reynolds
stress

1 Introduction

Roll waves are successive hydraulic bores that usually occur in
shallow flows down an inclined slope (Balmforth & Mander,
2004; Brock, 1967; Dressler, 1949). Although roll waves
can develop on laminar fluid films and non-Newtonian flu-
ids (Benjamin, 1957; Liu & Mei, 1994; Tamburrino & Ihle,
2013; Yih, 1963), the present work focuses on roll waves of
clear water in the turbulent regime. Generally, roll waves are

undesirable for man-made conduits because they can trigger
excessive intermittent pressures and stresses (Dressler, 1949).
Moreover, roll waves are ubiquitous in debris flows, and sub-
stantially contribute to their destructive power and affect the
deposition of debris (Iverson, Logan, LaHusen, & Berti, 2010;
Zanuttigh & Lamberti, 2007). Therefore, roll waves are of
practical significance, and merit systematic investigations.

Since the first observation by Cornish (1934), numer-
ous investigations have been carried out to enhance the
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understanding of roll wave dynamics, including analytical
research, laboratory experiment and mathematical modelling.
Experimental studies of roll waves are rare, and only Brock
(1967) conducted systematic experiments in laboratory flumes.
This work comprised two kinds of experiments: the first
concerned roll wave trains that develop naturally in a uni-
form flow, whilst the second reproduced periodic permanent
roll waves to compare with theoretical analyses. To accel-
erate the formation of roll waves in a finite length, small
disturbances (perturbations) were imposed at the flume inlet.
Such small disturbances increased downstream and devel-
oped into roll waves. For periodic permanent roll waves,
the apparatus at the inlet of the channel was set to oscil-
late at the desired period. However, the perturbation charac-
teristics for natural roll waves were not described by Brock
(1967).

To date, mathematical modelling of roll waves is far from
mature and few mathematical models have been used to model
roll waves (Zanuttigh & Lamberti, 2002), while there have been
a number of analytical investigations (Balmforth & Mander,
2004; Dressler, 1949; Dressler & Pohle, 1953; Iwasa,
1954; Jeffreys, 1925; Kranenburg, 1992; Liu, Chen, Li, &
Singh, 2005; Needham & Merkin, 1984; Richard & Gavrilyuk,
2012; Yu & Kevorkian, 1992). Most of these investigations
are based on traditional shallow water equations (SWEs)
(Dressler, 1949; Dressler & Pohle, 1953; Jeffreys, 1925; Liu
et al., 2005; Zanuttigh & Lamberti, 2002), in which turbu-
lent Reynolds stress is almost exclusively ignored without
justification, except the rather simplistic estimation with a
constant-viscosity (Balmforth & Mander, 2004; Kranenburg,
1992; Needham & Merkin, 1984). Arguably this was moti-
vated by the fact that turbulent Reynolds stress is generally
negligible in fluvial flows over mild beds. However, roll waves
advancing downstream can be intensely turbulent (Cornish,
1934; Dressler, 1949), and large-scale vortexes arise behind
the shocks (Richard & Gavrilyuk, 2012). Theoretical analyses
(Jeffreys, 1925; Stoker, 1958) show that perturbations to the
uniform flow would grow and result in roll waves over steep
slopes if the Froude number F = U/

√
gh cos θ > 2 (where h

is the flow depth in the normal direction of slope; U is the
depth-averaged streamwise velocity; θ is the angle of the bed
slope and g is the gravitational acceleration). Other analyses
indicate that the critical Froude number for roll wave forma-
tion depends on the channel shape, friction law and velocity
distribution (Dressler & Pohle, 1953; Iwasa, 1954) and varies
around 2. Dressler (1949) constructed a periodic discontinu-
ous solution to describe stationary roll waves. However, serious
discrepancies exist between Dressler’s solution and Brock’s
(1967) experiments, especially for steep slopes (Brock, 1970).
Dressler’s theory presents a zero thickness across the shocks
while the thickness is demonstrated to be finite in experi-
ments. Besides, the wave amplitude from Dressler’s theory
largely exceeds the measured data. Zanuttigh & Lamberti (2002)
numerically modelled the evolution of natural roll waves using

traditional SWEs with the weighted-average-flux method (Toro,
2001). They conducted comparisons with experimental data
from Brock (1967) on bore height and average wave period.
Regretfully, the model by Zanuttigh & Lamberti (2002) was
not evaluated against the very detailed observed data of the
wave profile of periodic permanent roll waves (Brock, 1967),
and accordingly the modelling study of natural roll waves is
open to question. Based on Dressler’s (1949) and Brock’s (1970)
work, Liu et al. (2005) developed an analytical treatment for roll
wave dynamics, focusing on the influence of shear stress on soil
erosion. To further investigate roll wave dynamics, Needham
& Merkin (1984) attempted to introduce a constant turbulent
viscosity into the SWE model. Unfortunately, such a simplifi-
cation fails to improve the results accurately (Yu & Kevorkian,
1992). Recently, the Richard–Gavrilyuk equations (RGE) were
proposed to study roll waves (Richard & Gavrilyuk, 2012), in
which two types of enstrophies are incorporated to represent
the dispersion due to the non-uniform velocity distribution in
the vertical. One was a small-scale enstrophy ϕ generated near
the bed, and the other was a large-scale enstrophy � associated
with roller eddies in the hydraulic jumps. The solutions of the
RGE model were in reasonable agreement with the experimental
profiles of periodic permanent roll waves measured in Brock’s
(1967) experiments. However, the RGE model hinges upon the
prior specifying of the flow depth and velocity at a critical point
(Richard & Gavrilyuk, 2012, Section 3.3). In the evaluation of
the RGE model, the observed data from Brock’s experiment was
used to specify the flow depth and velocity at the critical point.
But for cases without observed data, the RGE model does not
work at all. The RGE model is able to resolve sufficiently devel-
oped, stationary roll waves only, but not the formation processes
of roll waves. Moreover, the dispersion that accounts for the ver-
tical non-uniformity of velocity is confused with turbulence in
the RGE model. It is important to note that the dispersion has
nothing to do with turbulence (Rodi, 1993).

The present paper presents a physically enhanced SWE
model incorporating the impacts of turbulent Reynolds stress
(SWE-TM). The standard depth-averaged k − ε turbulence
model proposed by Rastogi & Rodi (1978) is introduced to
determine the Reynolds stress along with a modification com-
ponent. To solve the governing equations an operator-splitting
framework is applied. For the hyperbolic system, a second-order
accurate Godunov-type finite volume method is used along
with the Harten-Lax-van Leer Contact Wave (HLLC) approx-
imate Riemann solver for the homogeneous equations (Toro,
2001). The non-homogeneous parabolic equations are solved
using an implicit discretization with the double-sweep method.
The SWE-TM model is tested against Brock’s (1967) experi-
mental data on periodic permanent roll waves. It is compared
with typical existing SWE models, including: (a) a tradi-
tional SWE model without accounting for either turbulence
closure or dispersion; (b) a SWE model incorporating the stan-
dard depth-averaged k − ε turbulent closure (SWE-T); (c) a
SWE model incorporating the standard depth-averaged k − ε
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turbulent closure and dispersion (SWE-TD) and (d) the RGE
model due to Richard & Gavrilyuk (2012). Then the present
SWE-TM model is deployed to investigate the formation pro-
cess and evolution of both periodic permanent roll waves and
natural roll waves, and the impacts of the perturbations imposed
at the channel inlet are evaluated.

2 Mathematical equations

2.1 Governing equations

It is justified to employ the shallow water equations in roll
waves modelling even though they are based on the assumption
of hydrostatic pressure, because the impact of this assump-
tion is small relative to the other physical influences in rapidly
varied flow such as hydraulic jumps (Gharangik & Chaudhry,
1991). The general one-dimensional shallow water equations
comprise the mass and momentum conservation equations over
arbitrary slopes. As turbulence Reynolds stress and dispersion
are incorporated, these equations read

∂h
∂t

+ ∂(hU)

∂x
= 0 (1)

∂hU
∂t

+ ∂

∂x

(
hU2 + 1

2
g′h2

)
= gh sin θ + ∂hTR

∂x
− ∂D

∂x
− τb

ρ

(2)

where t is the time; x is the streamwise coordinate parallel to
slope; g′ = g cos θ ; TR is the depth-averaged Reynolds stress;
D is the dispersion momentum transport; τb is the bed fric-
tion stress and ρ is the density of water. On the right-hand
side (RHS) of Eq. (2), the first (SG) and second (STR ) terms
indicate the effects of gravity and turbulent Reynolds stress,
respectively, while the third term (SD) represents dispersion. In
Eqs. (1) and (2), the effects of the bottom slope are fully incor-
porated (Bouchut, Mangeney-Castelnau, Perthame, & Vilotte,
2003; Savage & Hutter, 1991), albeit often ignored in most
shallow water flow models.

2.2 Model closure

To close the governing equations, auxiliary relationships and
equations have to be introduced to determine the bed friction,
dispersion and Reynolds stress. The bed friction stress τb is
estimated by

τb = ρCf U|U| (3)

where Cf is the friction coefficient. The dispersion momen-
tum transport D accounts for the effect of vertical non-uniform
distribution of velocity, which is defined as follows:

D =
∫ z0+h

z0

[ū(z) − U]2dz = βhU2, (4a)

β = 1
h

∫ z0+h

z0

[
ū(z)
U

− 1
]2

dz (4b)

where ū(z) is the streamwise velocity distribution in vertical; z0

is the zero velocity level; β is the momentum flux correction
(Kranenburg, 1992; Zanuttigh & Lamberti, 2007), which can be
evaluated when the velocity distribution is specified. Although
the flow structure of the weak hydraulic jump was studied exper-
imentally (Misra et al., 2008), the velocity distribution in roll
wave remains poorly understood. Based on a power law dis-
tribution and log law distribution for the streamwise velocity
(Duan & Nanda, 2006; Iwasa, 1954; Jin & Steffler, 1993; Wu,
2007), one can readily derive

βpower = 1
m(m + 2)

(5a)

βlog =
−η0 ln η0(ln η0 − 2)

+2η0(1 − η0)(1 − ln η0) − (η0 − 1)3

(η0 − 1 − ln η0)2 (5b)

where m is typically around 7 and η0 = z0/h is the dimension-
less zero bed elevation. Equation (5a) and (5b) represents the
momentum flux correction in relation to the power law and log
law distribution, respectively. According to Brock (1967), the
value of β is about 0.02 for a smooth channel and 0.05 for a
rough channel, which agree with Eq. (5a) and (5b).

In a traditional turbulence closure model, the depth-averaged
Reynolds stress TR is determined following Boussinesq’s eddy-
viscosity concept (Rastogi & Rodi, 1978)

TR = T0 = 2νt
∂U
∂x

− 2
3

k (6)

where k is the depth-averaged turbulent kinetic energy; νt =
Cμk2/ε is the depth-averaged eddy viscosity; ε is the depth-
averaged turbulent dissipation rate and Cμ is an empirical
coefficient. Here, the standard depth-averaged k − ε turbulence
model due to Rastogi & Rodi (1978) is used

∂(hk)
∂t

+ ∂(hUk)
∂x

= ∂

∂x

(
νt

σk
h
∂k
∂x

)
+ hPk + hPkb − εh (7)

∂(hε)

∂t
+ ∂(hUε)

∂x
= ∂

∂x

(
νt

σε

h
∂ε

∂x

)
+ h

ε

k
(Cε1Pk

− Cε2ε) + hPεb (8)

where Pk is the production of turbulence due to the horizontal
velocity gradients, defined as Pk = 2νt(∂U/∂x)2; Pkb and Pεb

are the production terms from non-uniformity of vertical pro-
files, related to the friction velocity u∗ by Pkb = C−1/2

f u3
∗/h and

Pεb = C
Cε2C1/2
μ C−3/4

f u4
∗/h2 (Rastogi & Rodi, 1978), where

u∗ = √
τb/ρ. The values of the relevant coefficients are listed

in Table 1 (Launder & Spalding, 1974).
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Table 1 Coefficients in the standard depth-averaged
k − ε turbulence model

Cμ Cε1 Cε2 σk σε C


0.09 1.44 1.92 1.0 1.3 3.6

It is recognized that the standard k − ε turbulence closure
model is valid for fully developed, high-Reynolds-number tur-
bulent flows (Rodi, 1993), but the turbulence in roll waves
over steep slopes may not be fully developed. For example, in
Brock’s (1967) experiments, the value of the Reynolds number
R = rU/ν is typically of the order of 1.0E3 at the trough of the
roll waves, where r is the hydraulic radius and the water viscos-
ity ν = 1.0E − 6 m2 s−1. Equally importantly, errors may arise
from the depth-averaging process of the k − ε model, this is
critical as the flow structure along the flow depth varies dramat-
ically in roll waves. It follows that a modification component to
the standard depth-averaged k − ε closure for turbulence is war-
ranted, which is shown to be necessary below for the test cases
related to the experiments by Brock (1967). Ni (2010) proposed
the following Reynolds stress-like relationship:

Ta = 2αhu∗
∂U
∂x

(9)

where α is an empirical coefficient to be calibrated using
observed data. It is referred to as dispersion by Ni (2010), which
however is not justified. The dispersion momentum transport D
is always non-negative according to the definition Eq. (4a) and
(4b), yet it could be either positive or negative if modelled by
Eq. (9). In this connection, the approximation (i.e. Eq. 2.4) to
the integration of momentum flux by Kranenburg (1992) is open
to question. It follows that Eq. (9) should rather be regarded
as an empirical modification to the turbulent Reynolds stress in
Eq. (6). Accordingly,

TR = T0 + Ta (10)

The modification in turbulent stress is evaluated below for
specific cases of roll waves.

Briefly, in a traditional SWE model, TR = D = 0. In the
SWE-T model, TR = T0 by Eq. (6) and D = 0. In the SWE-TD
model, TR = T0 by Eq. (6) and D by Eq. (4), and in the SWE-TM
model, TR = T0 + Ta by Eq. (10) and D = 0.

2.3 Numerical scheme

Equations (1), (2), (7) and (8) constitute a fourth-order system,
and can be written in a conservative form as follows:

∂U
∂t

+ ∂F
∂x

= S (11)

U =

⎡
⎢⎢⎣

h
q
hk
hε

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h
hU
hk
hε

⎤
⎥⎥⎦ (12a)

F =

⎡
⎢⎢⎣

hU
hU2 + 1

2 g′h2

hUk
hUε

⎤
⎥⎥⎦ (12b)

S = Ss + Sf + Sd =

⎡
⎢⎢⎣

0
gh sin θ

0
0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0

−τb

ρ
hPk + hPkb − εh

h ε
k (Cε1Pk − Cε2ε) + hPεb

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂hTR

∂x
− ∂D

∂x
∂

∂x

(
νt

σk
h
∂k
∂x

)
∂

∂x

(
νt

σε

h
∂ε

∂x

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12c)

where U represents the conservative variables; F is the flux vari-
ables; S is the RHS term comprising the gravitational term in Ss,
the friction and the source terms of the k − ε model in Sf , and
also the turbulent Reynolds stress and dispersion as well as the
diffusion terms of the k − ε model in Sd.

An operator-splitting algorithm is introduced to solve
Eq. (11). In the first sub-step, the hyperbolic operator is dealt
with,

Up
i = Uj

i − �t(Fi+1/2 − Fi−1/2)
j

�x
(13)

where �t is the time step; �x is the spatial step; i is the spa-
tial node index; j is the time step index; p represents the state
updated from Eq. (13); and Fi+1/2 and Fi−1/2 are the inter-
face fluxes computed using the HLLC Riemann solver (Toro,
2001). The Monotonic Upstream-Centered Scheme for Con-
servation Laws (MUSCL) method is employed to achieve the
second-order accuracy in space for the Riemann state recon-
struction. Here, the variables k and ε are passive scalars and
solved as the third component (contact wave) in the HLLC
solver (Toro, 2001), similar to the solution of sediment concen-
tration in a coupled shallow water hydrodynamic and sediment
transport model (Cao, Pender, Wallis, & Carling, 2004).

Following Eq. (13), a second sub-step is necessary to update
the conservative variables (h, q, hk, hε) to a new time step.
This involves the solution of a non-homogeneous parabolic
system comprising the RHS term in Eq. (11). An implicit dis-
cretization of the dispersion and diffusion terms is implemented
for stability. To take advantage of the double-sweep method
for the resulting algebraic equations, linearization is introduced
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where necessary. Thus

Uj +1
i = Up

i + �t(Ss + Sf )
p
i + �tSj +1

di (14)

In Eq. (14), the second-order terms in Sj +1
di are discretized as

∂

∂x

(
C

∂φ

∂x

)∣∣∣∣
j +1

i
= 1

�x

[
Cp

i+1/2

(
∂φ

∂x

)∣∣∣∣
j +1

i+1/2

−Cp
i−1/2

(
∂φ

∂x

)∣∣∣∣
j +1

i−1/2

]
(15)

where φ is a general variable representing U, k or ε, and C
indicates the coefficient in line with φ. The inter-cell values
Cp

i+1/2 = (Cp
i+1 + Cp

i )/2 and Cp
i−1/2 = (Cp

i + Cp
i−1)/2 are the

linearized coefficients, and (∂φ/∂x)j +1
i+1/2 = (φ

j +1
i+1 − φ

j +1
i )/�x,

(∂φ/∂x)j +1
i−1/2 = (φ

j +1
i − φ

j +1
i−1 )/�x.

Further, the first-order terms in Sj +1
di relate to dispersion (if

β �= 0.0) and k. Both terms are discretized with a linearization
of the velocity and flow depth as necessary, i.e.

∂D
∂x

∣∣∣∣
j +1

i
= ∂

∂x
(βhU2)

∣∣∣∣
j +1

i

= 1
2�x

[
(βhU)

p
i+1Uj +1

i+1 − (βhU)
p
i−1Uj +1

i−1

]
(16a)

∂

∂x

(
2hk
3

)∣∣∣∣
j +1

i
= 1

3�x

[
hp

i+1kj +1
i+1 − hp

i−1kj +1
i−1

]
(16b)

Indeed, the two terms discretized in Eq. (16a) and (16b) are
purely functions of the state variables. Theoretically, it would
be natural to place both terms in the left-hand side (LHS)
of Eq. (2) for solution. However, this will make the well-
established HLLC Riemann solver (Toro, 2001) not directly
applicable for the hyperbolic part of the equations. The present
work aims to keep the LHS of the equations the same as that
of the traditional SWEs, while all the “extra” terms involved in
the Reynolds stress and dispersion are put on the RHS for easier
modelling. This idea is in principle quite similar to that imple-
mented in the recent work on a double-layer averaged model
(Li, Cao, Pender, & Liu, 2013).

The numerical scheme for the homogeneous hyperbolic sys-
tem is explicit and stability is controlled by the Courant number

Cr = (U ± √
g′h)max�t
�x

≤ 1 (17)

3 Case study – periodic permanent roll waves

Brock (1967) conducted experiments on two types of roll waves
in laboratory flumes, as briefed above. The experimental obser-
vations on periodic permanent roll wave are employed to test the
models in this section. Two flumes were used by Brock (1967)

Table 2 Summary of experimental cases about periodic perma-
nent roll waves

Case tan θ Q (m3 s−1) hn (mm) Fn Cf T (s) lp (m)

1 0.0502 9.72 × 10−4 7.98 3.71 0.0032 1.218 32.3
2 0.934 29.0
3 0.0846 6.52 × 10−4 5.28 4.63 0.0036 1.12 21.7
4 0.796 17.3
5 0.1201 8.02 × 10−4 5.33 5.6 0.0035 0.695 16.3
6 1.015 21.1

to produce periodic permanent roll waves. One was 36.6 m long
with slopes of 0.0502 and 0.0846, and the other was 24.4 m long
with a slope of 0.12. The widths of both flumes were 11.75 cm.
In this section, numerical simulations are conducted using the
same conditions as in Brock’s (1967) experiments (summarized
in Table 2). The initial water depth is 0.0 m. The amplitude of
the perturbations imposed at the inlet of the channel is equal to
0.5% of the normal flow depth following Zanuttigh & Lamberti
(2002). A steady water discharge Q is fed at the inlet and the
water depth is set as

hin = hn + ham sin(2π t/T) (18)

where T is the perturbation period imposed at the inlet of the
channel; hn is the normal depth and the perturbation ampli-
tude ham = 0.5%hn. The Froude number Fn at the inlet of the
channel refers to the normal conditions. In Table 2, lp indicates
the distance required for the perturbations to fully develop into
periodic permanent roll waves, as computed by the SWE-TM
model. We set the computational reach long enough to ensure
that the forward wave does not reach the downstream boundary
within the time of computation, thus the downstream boundary
condition can be simply set at the initial static state. A dimen-
sionless water depth h∗ is defined as h∗ = h

/
hn. For all the

cases in the present work, the spatial step is set to be 0.001 m
to achieve grid independence, and the Courant number is 0.5.

To quantify the difference between numerical solutions and
measured data, the dimensionless discrepancy is defined with
the L1-norm

L1 =
∑

abs(ĥ − h∗)∑
ĥ

(19)

where ĥ is dimensionless measured water depth scaled with hn.

3.1 Performances of the SWE, SWE-T and SWE-TD models

The SWE, SWE-T and SWE-TD models are assessed by com-
parison with measured data for Case 5 (Table 2). The dispersion
term in the SWE-TD model is simulated based on the momen-
tum flux correction β in Eq. (5). Figure 1 shows the dimen-
sionless water depth in a single permanent roll wave computed
from the SWE, SWE-T and SWE-TD models, along with the
measured data from Brock (1967), where l is the wavelength.
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Figure 1 Comparison between the computed water depth from the
SWE, SWE-T and SWE-TD models and measured data from Brock
(1967)

Apparently the SWE model performs poorly compared with
measurements. Though the SWE-T model features improved
performance over the SWE model, the deviations are still con-
siderable from the measured data, characterizing that it is insuf-
ficient to accurately resolve the wave profile by incorporating
the impact of turbulent Reynolds stress based on the standard
depth-averaged k − ε model. One might argue that dispersion
may play a considerable role. However, the computed flow
depth around the wave crest from the SWE-TD model decreases
excessively without any improvement in the crest location. The
model performance gets even worse after incorporating turbu-
lent Reynolds stress and dispersion simultaneously. Even if β

is tuned by multiplying a factor from 0.05 to 0.8 to reflect the
uncertainty arising from the assumed power or logarithmic dis-
tribution of the mean velocity, the solutions cannot be improved
(not shown). It follows that including dispersion is not a viable
way to improve the modelling of permanent roll waves, echoing
the suggestion by Kranenburg (1992). Rather, it is suggested
that a modification to the Reynolds stress based on the standard
depth-averaged k − ε turbulent model is implemented, which
is essentially the SWE-TM model as calibrated and assessed
below using the experimental data of Brock (1967).

3.2 Performance of the SWE-TM model

Calibration for α

The empirical coefficient α in Eq. (9) should be calibrated under
different conditions. As the Froude number is in general the
critical factor in roll wave formation (Jeffreys, 1925; Stoker,
1958), it is appropriate to relate the coefficient α to the Froude
number Fn (Table 2) imposed at the inlet of the channel from
normal conditions. The value of critical Froude number is 2.0
for a rectangular channel with an unvarying friction coefficient
(Brock, 1967) and α is set to be 0.0 if Fn ≤ 2.0. The parameters

Table 3 Calibrated values of α

Fn α

≤ 2.0 0.0
3.71 2.8
4.63 4.5
5.6 7.0

in the standard depth-averaged k − ε model are kept unchanged
(Table 1). The coefficient α is calibrated for Cases 1, 3 and 5 as
listed in Table 3, based on the minimization of the L1-norm. A
fitting relationship between α and the Froude number Fn can be
readily derived,

α =
{

0.1867F2
n + 0.5096Fn − 1.766 if Fn > 2.0

0.0 if Fn ≤ 2.0
(20)

Figure 2 shows the comparisons between the computed water
depth of a single permanent wave by the SWE-TM model and
measured data of Brock (1967) using the calibrated values of α.
The water depth increases gradually from the trough to the crest,
and then drops sharply to the minimum. The solutions of SWE-
TM model agree well with measured data, not only in the water
depth but also in the location of wave crest. The improvement
is obviously substantial compared to those models shown in
Fig. 1.

Impacts of coefficients in the k − ε turbulence model

It is interesting to find out how the coefficients in the k − ε tur-
bulence model affect the results of the SWE-TM model using
the calibrated α. Indeed, the dissipation rate ε is dictated by
small-scale eddies and to date remains one of the fundamental
quantities that could not be modelled accurately in the context
of turbulence modelling. Thus uncertainty is inevitable in mod-
elling the ε equation (Shi, 1994). Moreover, Rastogi & Rodi
(1978) pointed out that the k − ε model in the depth-averaged
version is simplified and empirical, and sensitive to the coeffi-
cients. From our numerical tests, the results are more sensitive
to the coefficient C
 than the others (not shown). Therefore,
C
 is tuned to demonstrate its impact on roll waves within the
SWE-TM model.

Specifically, the value of C
 is tuned for Case 1 (Table 4).
The corresponding values of the L1-norm are listed in Table 4,
which show that an increased value of C
(= 4.5) results in
improved agreement with the observed data, as indicated by
the reduced value of L1-norm. This is also seen in Fig. 3 that
shows the computed water depth in comparison with the mea-
sured data. Nevertheless, for Cases 3 and 5 (results not shown),
the most favourable value of C
 is still 3.6 in the standard depth-
averaged k − ε model (Table 1). Therefore, Case 1 is a special
case, which requires a tuned value of C
 for agreement with
observed data within the SWE-TM model.
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(a)

(c)

(b)

Figure 2 Comparison between the computed water depth from the SWE-TM model using calibrated α and measured data from Brock (1967)

Table 4 Values of L1-norm in
relation to different values of C
 for
Case 1

Case 1

C
 2.2 3.6 4.5

L1−norm (%) 6.68 5.82 5.33

Figure 3 Comparison between the computed water depth from
SWE-TM model using tuned C
 for Case 1 and measured data from
Brock (1967)

3.3 Model verification

To verify the SWE-TM model, other cases in Brock’s (1967)
experiments are studied with the calibrated relationship Eq. (20)
for α and the standard depth-averaged k − ε model (Table 1).
The SWE-TM model is also compared with the SWE, SWE-T
and RGE model for Cases 2, 4 and 6.

Figure 4 illustrates the water depth in a single permanent roll
wave computed from the SWE, SWE-T, SWE-TM and RGE
models along with the measured data. There are considerable
discrepancies between the measurements and computed results
from SWE and SWE-T models in water depth and location of
the wave crest. Most notably, the SWE-TM model performs the
best. Echoing Fig. 4, the values of the L1-norm in Table 5 show
improved performance of the present SWE-TM model over the
RGE model of Richard & Gavrilyuk (2012) except for Case
2, which is in essence attributable to a single observed water
depth (to the immediate right-hand side of the observed crest)
that apparently deviates from the overall trend characterized by
the other observed water depths.

3.4 Significance of turbulent Reynolds stress

It has been shown that inclusion of turbulent Reynolds stress in
the SWE-TM model does lead to improved performance in mod-
elling roll waves (Fig. 4). Physically, this is not surprising at all
because the turbulent Reynolds stress term STR(= ST0 + STa) in
the momentum conservation Eq. (2) is by no means negligible
compared with the gravitational term SG = gh sin θ . In relation
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(a)

(c)

(b)

Figure 4 Comparison between the computed water depth and measured data from Brock (1967)

Table 5 Values of L1-norm of SWE-TM
and RGE models

Case 2 Case 4 Case 6

SWE-TM (%) 4.41 4.65 6.43
RGE (%) 2.32 6.97 12.52

to Case 5 of the experiments by Brock (1967), which features
the largest bed slope (Table 2), Figure 5 shows the distribu-
tion of SG, ST0 and STa in a single permanent wave from the
SWE-TM model, where ST0 = ∂(hT0)/∂x and STa = ∂(hTa)/∂x,
physically representing the turbulent Reynolds stress based on
the standard depth-averaged k − ε model and the modification
component, respectively. Compared to the gravitational term
SG, the turbulent Reynolds stress terms ST0 and STa are negli-
gible from the trough to the peak of the waves. However, both
are considerable downstream the wave crest, where large vor-
texes arise (Richard & Gavrilyuk, 2012). Physically, turbulent
Reynolds stress is critical in shaping the wave crest. It is noted
that in the profiles of ST0 and STa , a minor fluctuation is dis-
cernible around the roll wave crest, which arise because both
the water depth and velocity see an inflection. It is also recog-
nized that Fig. 5 is based on computational modelling calibrated
using observed data of the water depth. Detailed measured data
of the turbulent structure of roll waves is warranted to facilitate
further enhanced understanding of the phenomenon.

Within the present SWE-TM model, the modification com-
ponent is estimated empirically based on existing experimental
data of Brock (1967). Thus the model is applicable within the

Figure 5 Computed Reynolds stress compared with the gravitational
terms in a single permanent roll wave from the SWE-TM model

range of the maximum bed slope in the Brock’s experiments
(Table 2). Applications to higher bed slopes warrant sufficient
caution, and further experiments are certainly necessary for
extending the model’s applicability.

3.5 Sensitivity analysis

It is interesting to evaluate the sensitivity of the computed solu-
tions of the SWE-TM model to coefficients α involved in the
modification to Reynolds stress (Eq. 9) and C
 in the standard
depth-averaged k − ε turbulent closure model. Both coefficients
are tuned by 30% based on the standard values from Eq. (20)
and C
 = 3.6 (Table 1). Here, Cases 2, 4 and 6 are considered.
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(a)

(c)

(b)

Figure 6 Impacts of α on water depth in the SWE-TM model

Table 6 Values of L1-norm in relation to different values of α

Case 2 Case 4 Case 6

α 1.88 2.69 3.50 3.22 4.60 5.98 4.86 6.94 9.02

L1−norm (%) 4.54 4.41 4.52 5.92 4.65 4.89 6.86 6.43 6.95

Figure 6 shows the impacts of α on computed water depth
from the SWE-TM model. Qualitatively, α affects the roll wave
profile in two ways, i.e. the value and location of the crest. In
general, a larger α leads to a reduced peak water depth and
moves the crest upstream, and vice versa. However, the changes
are essentially negligible. Table 6 shows the values of the L1-
norm in relation to the tuned values of α, which suggests that
the calibrated α as expressed by Eq. (20) are justified.

The impacts of C
 on the computed water depth from the
SWE-TM model are shown in Fig. 7 and Table 7. With the
decrease of C
 , the impact of turbulence is enhanced and the
peak water depth becomes smaller. However, C
 would not
affect the location of the roll wave crest. For Cases 4 and 6,
C
 = 3.6 is appropriate, while the value of C
 needs to be tuned
larger for Case 2 (Table 7), which is once again attributable
to a single observed water depth apparently deviating from the
overall trend characterized by other observed water depths.

3.6 Formation process of periodic permanent roll waves

Periodic permanent roll waves often generate from regular per-
turbations advancing a sufficiently long distance with a constant

slope. Practically, however, the distance with a constant slope
may not be long enough for perturbations to fully develop into
periodic permanent roll waves, and as a result the perturba-
tions evolve to premature roll waves. It is therefore interesting
to understand the formation processes of period permanent roll
waves.

The present SWE-TM model can be used to solve not only
the fully developed, stationary roll waves (as shown above),
but also the formation processes of roll waves. The present
computational tests not only echo, but also extend the observa-
tions of Brock (1967). In contrast, the RGE model (Richard &
Gavrilyuk, 2012) cannot resolve the formation processes of roll
waves, because it hinges upon a relationship at a critical point,
which is prescribed using observed data.

Case 5 is considered as an example. Figure 8 illustrates the
formation processes of periodic permanent roll waves computed
from the SWE and SWE-TM models. Indeed, small regular per-
turbations at the inlet of the channel increase downstream and
finally develop to periodic permanent roll waves, as described
by Brock (1967). Also, as shown in Fig. 9, the wave profile
remains the same at a given station and the wave properties do
not change with stations after developing into a periodic perma-
nent form (x = 18, 26 m), which agrees well with Brock (1967).
Equally importantly, the present computational tests indicate
that the wave period is essentially the same as that of the pertur-
bation imposed at the inlet during the formation and evolution
of periodic permanent roll waves, which has not been specified
by Brock (1967). Additionally, the wave amplitude of the SWE-
TM model is smaller than that from the SWE model (Fig. 8), as
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(a)

(c)

(b)

Figure 7 Impacts of C
 on water depth in the SWE-TM model

Table 7 Values of L1-norm in relation to different values of C


Case 2 Case 4 Case 6

C
 2.5 3.6 4.7 2.5 3.6 4.7 2.5 3.6 4.7

L1−norm (%) 5.04 4.41 4.14 4.99 4.65 5.71 7.67 6.43 8.39

a result of the turbulent Reynolds stress. The propagation speed
and stationary wavelength are indistinguishable between these
two models.

It takes a certain distance for perturbations to fully develop
into periodic permanent roll waves (Brock, 1967). The present
computational tests show that larger perturbation amplitude
imposed at the inlet is conducive to the formation of periodic
permanent roll waves. Specifically, the distance required for per-
turbations to grow into periodic permanent roll waves decreases
with the increase of the inlet perturbation amplitude, which
echoes Brock’s (1967) observation. If the dimensionless pertur-
bation amplitude ham/hn imposed at the inlet of the channel is
set to be 0.5, 1.0, 2.0 and 5.0% for Case 5, the formation dis-
tances of periodic permanent roll waves is equal to 16.3, 15.2,
14.0 and 10.4 m, respectively. This is illustrated in Fig. 10a,b for
ham/hn = 5.0% and 0.5%. However, the amplitude and period
of the periodic permanent roll waves are independent of the per-
turbation amplitude at the inlet, which has not been revealed by
Brock (1967). As shown in Fig. 11a,b, the amplitude and period
are always equal to 10.6 m and 0.695 s, respectively, irrespective
of the inlet perturbation amplitude.

(a)

(b)

Figure 8 Formation process of periodic permanent roll waves in
Case 5

Furthermore, the shorter the inlet perturbation period, the
shorter the distance required for the formation of periodic per-
manent roll waves. This is given in Table 2, and also illustrated
in Fig. 10b,c for Cases 5 and 6. However, the period of periodic
permanent roll waves is always equal to the inlet perturbation
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Figure 9 Computed water depths at different cross sections from the
SWE-TM model

period imposed (0.695 and 1.015 s, respectively), as shown in
Fig. 11b,c. Furthermore, the present computational tests show
that the amplitude of periodic permanent roll waves increases
with the increase of the inlet perturbation period, which has
not been revealed by Brock (1967). When the inlet perturba-
tion period is set to be 0.695 s (Case 5), 0.775, 0.855, 0.935
and 1.015 s (Case 6) for the case with slope tan θ = 0.1201, the
amplitudes of the periodic permanent roll waves is, respectively,
equal to 10.6, 11.3, 11.9 12.5 and 13.0 mm. This is shown in
Fig. 11b,c for Cases 5 and 6.

4 Case study – natural roll waves

Roll waves are generally non-periodic and non-permanent in
engineering practice due to the uncontrolled disturbances. Brock
(1967) conducted a serious of experiments to investigate nat-
ural roll waves, in addition to periodic permanent roll waves.
Zanuttigh & Lamberti (2002) numerically modelled the evo-
lution of natural roll waves using traditional SWEs without
considering the impacts of turbulence. However, their numerical
study is open to question because their model was not verified
by observed data, though detailed measured data are available
for periodic permanent roll waves (Brock, 1967). Likewise, the
RGE model (Richard & Gavrilyuk, 2012) cannot simulate the
development of natural roll waves. This subsection aims to
investigate natural roll waves by using the present SWE-TM
model. In this regard, it is noted that Brock’s experiments were
constrained by the limited dimensions of the flumes. Thus for
the computational study, the channel extends downstream to a
length of 350 m to reveal the features of natural roll waves over
a long distance. The downstream boundary conditions are set in
a similar way as for the modelling of periodic permanent roll
waves.

4.1 Threshold period for natural roll waves

For periodic permanent roll waves, the inlet paddle was oscil-
lated at the desired period T (Brock, 1967). In contrast, the
perturbation conditions at the inlet were not described for natu-
ral roll waves in Brock (1967). The present computational tests

(a)

(b)

(c)

Figure 10 Computed water depths at t = 80 s related to different inlet perturbation amplitudes and periods
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(a)

(b)

(c)

Figure 11 Computed water depths of periodic permanent roll waves at x = 24.0 m related to different inlet perturbation amplitudes and periods

reveal for the first time that a regular inlet perturbation may
lead to either periodic permanent or natural roll waves, when
its period is shorter or longer than a critical value Tc inherent
to a specified normal flow. Apart from this, when the perturba-
tion period is slightly shorter than Tc, instabilities and irregular
waves may be spotted during the initial stage but periodic per-
manent roll waves ultimately generate after advancing a long
distance. Physically, it is suggested herein that the shallow flow
over a steep slope bear inherent waves with a frequency spec-
trum that is determined by the prescribed normal flow depth and
velocity along with the bed slope and its roughness. Migrat-
ing downstream, the perturbations of sufficiently short periods
imposed at the inlet of the channel are well accommodated by
the inherent waves, and resonance occurs so that the pertur-
bations are enhanced, gradually grow and finally develop into
periodic permanent roll waves. In contrast, the perturbations
of long periods imposed at the inlet cannot be accommodated
by the inherent waves of a specific frequency spectrum. In
general, the perturbations are out of phase with the inherent
waves. The interactions in between lead to irregular waves of
disparate crests and troughs, and ultimately natural roll waves
form. According to this mechanism, natural roll waves will form
if an irregular, random perturbation is imposed at the inlet, i.e.
Eq. (21), as demonstrated below.

The critical inlet perturbation period Tc from the present
computational tests are summarized in Table 8. In fact, the basic
conditions in Table 8 are the same as in Table 2, except the
period and amplitude of the regular perturbations imposed at the
inlet of the channel. Indeed, the critical period Tc is case specific,
depending on the prescribed normal flow depth, velocity along

Table 8 Summary of natural roll waves cases

Q hn Tc
Case tan θ (m3 s−1) (mm) Fn Cf (s) ham/hn

1 0.0502 9.72 × 10−4 7.98 3.71 0.0032 4.69 0.5%
3 0.0846 6.52 × 10−4 5.28 4.63 0.0036 2.12 0.5%
5 0.1201 8.02 × 10−4 5.33 5.6 0.0035 2.20 0.5%

with the bed slope and its roughness. It seems hard to formu-
late a relationship for the critical period Tc based on the limited
number of cases with observed data (Table 8), for which further
investigations are warranted.

In relation to Case 5 along with an inlet perturbation period
T = 3.0 s (longer than Tc), Figure 12 shows the computed water
depths from the SWE-TM model at t = 80.0 s. The free surface
varies gently in the upstream region near the inlet of the chan-
nel until instabilities occur. These small instabilities magnify
spontaneously as they propagate downstream, and finally evolve
into natural roll waves. Figure 13 illustrates the computed water
depth versus time from the SWE-TM model at cross sections
x = 30.0 m and 70.0 m. Minor visible instabilities are spotted at
x = 30.0 m, and these develop into large-amplitude natural roll
waves as they propagate downstream. The wave front reaches
the cross sections x = 30.0 and 70.0 m, respectively at t = 22.7
and 52.5 s.

4.2 Statistical properties of natural roll waves

Natural roll waves were generated in flume experiments and
their average properties were measured at several cross sections

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
],

 [
Pr

of
es

so
r 

L
iu

 Q
in

gq
ua

n]
 a

t 1
6:

39
 1

2 
N

ov
em

be
r 

20
14

 



Journal of Hydraulic Research (2014) Modelling roll waves with shallow water equations 13

Figure 12 Computed water depths at t = 80.0 s from the SWE-TM
models with T = 3.0 s

Figure 13 Computed water depths from the SWE-TM model, char-
acterizing the formation of large-amplitude natural roll waves down-
stream from wavelets in the upstream

along the channel (Brock, 1967). Here, the SWE-TM model is
deployed to resolve natural roll waves. As the inlet perturba-
tion characteristics were not described for natural roll waves by
Brock (1967), regular and irregular perturbations are, respec-
tively, imposed at the inlet. A steady water discharge Q is fed
at the inlet. The water depth in relation to a regular inlet per-
turbation is represented by Eq. (18), with a period longer than
the critical period Tc (Table 8). The water depth related to an
irregular perturbation is set as

hin = hn + ham Random(−1, 1) (21)

where Random(−1, 1) is a function that generates random num-
bers between −1 and 1. Here, Case 5 is considered to investigate
the statistical properties of natural roll waves. The effects of the
inlet perturbation characteristics are examined by computational
tests as summarized in Table 9.

Table 9 Summary of computational tests for Case 5

Test Perturbation characteristics ham/hn(%) Tc

1 Regular 0.5 3.5 s
2 5.0 3.5 s
3 Irregular 0.5 N/A
4 5.0 N/A

Figure 14 Comparison of h̄′
max from numerical results and measured

data from Brock (1967)

Figures 14–16 show the computed dimensionless aver-
age wave properties h̄′

max = h̄max/hn, h̄′
min = h̄min/hn and T̄′ =

T̄ sin θ
√

g/hn in line with l sin θ/hn from the present SWE-TM
model in relation to different inlet perturbation characteristics
and the numerical solutions of Zanuttigh & Lamberti (2002),
along with the measured data from Brock (1967). Here h̄max,
h̄min and T̄ are, respectively, the average maximum depth, mini-
mum depth and wave period, and l is the distance from the inlet
along the channel. In calculating the average properties of nat-
ural roll waves, the duration for averaging is set to be 100 s,
which is long enough so that any longer duration does not affect
the results.

During the formation process of natural roll waves, the
dimensionless average maximum depth h̄′

max and period T̄′

increase and the dimensionless average minimum depth h̄′
min

decreases, which are qualitatively consistent with Brock’s
(1967) observations. Also, the present computational tests
demonstrate that natural roll waves may feature stable aver-
age properties (i.e. h̄′

max and h̄′
min) after advancing a sufficiently

long distance (Figs. 14 and 15), which was not revealed in
Brock’s (1967) experiments that were inevitably constrained by
the limited dimensions of the flumes. In this regard, the present
computations are preliminary, and further studies are warranted.

The present computational tests show that an irregular pertur-
bation at the inlet is conducive to the formation of natural roll
waves, as the distance from the inlet to the onset of detectable
instabilities is considerably shorter than its counterpart with a
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Figure 15 Comparison of h̄′
min from numerical results and measured

data from Brock (1967)

Figure 16 Comparison of T̄′ from numerical results and measured
data from Brock (1967)

regular perturbation of the same amplitude. Also, the larger the
amplitude of the inlet perturbation, either regular or irregular,
the shorter the distance required for the onset of discernible
instabilities, which qualitatively agrees with Brock’s (1967)
observations.

Quantitatively, in the tests with regular inlet perturbations,
the computed h̄′

max and T̄′ start to increase and h̄′
min begins to

decrease at a cross section considerably downstream its coun-
terpart in Brock’s (1967) experiments. In the tests with irregular
inlet perturbations (especially one of a larger amplitude) the sta-
tistical properties are closer to the measured data than those
with regular inlet perturbations, yet the discrepancies between
the computed results and observed data are still appreciable.
Physically, this is because the inlet perturbation characteristics
in Brock’s (1967) experiments were not specified for use in the
present computations, though these could significantly affect the

Figure 17 Comparison of h̄′
max from numerical results and measured

data from Brock (1967) for different bed slopes

Figure 18 Comparison of h̄′
min from numerical results and measured

data from Brock (1967) for different bed slopes

formation of natural roll waves as stated by Brock (1967). Com-
paratively, the computed h̄′

max and T̄′ from Zanuttigh & Lamberti
(2002) seem to agree with observed data (Brock, 1967) similarly
well to those from the present SWE-TM model with irregu-
lar perturbations (Figs. 14 and 16), but h̄′

min from Zanuttigh &
Lamberti (2002) deviates significantly from the measured data
(Fig. 15), especially its mean growth rate along the channel. The
fact that turbulence is totally ignored in Zanuttigh & Lamberti
(2002), in addition to the difference in inlet perturbation char-
acteristics, may have led to the disparate results compared with
those of the present SWE-TM model.

The scaling l/hn in Figs. 14–16 was proposed by Brock
(1967). Apart from this scaling, in response to the comments
by Montuori (2005), Zanuttigh and Lamberti suggested that the
dimensionless average wave properties versus l sin θ/hn could
be unified for different bed slopes. This is examined here as
per Cases 1, 3 and 5. Shown in Figs. 17–19 are h̄′

max, h̄′
min
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Figure 19 Comparison of T̄′ from numerical results and measured
data from Brock (1967) for different bed slopes

and T̄′ from the SWE-TM model with irregular inlet perturba-
tions of amplitude ham = 5.0%hn and also Zanuttigh & Lamberti
(2002), along with the measured data from Brock (1967). It
is seen from Figs. 17–19 that the average wave properties
are roughly unified during the early growth stage of the nat-
ural roll waves (i.e. well before the maximum and minimum
depths become stable). However, in the long term when the
observed data from Brock (1967) did not cover, the dimen-
sionless average maximum and minimum depths and period
segregate from each other for different bed slopes. This holds for
the numerical results from either the present SWE-TM model
or Zanuttigh & Lamberti (2002). Therefore, the dimensionless
average properties of natural roll waves are dictated by more
complex mechanisms in addition to the impact of the bed slope,
which merits further investigation.

5 Conclusions

A physically enhanced shallow water hydrodynamic model,
SWE-TM, is proposed for roll waves, which explicitly incor-
porates turbulent Reynolds stress based on the standard depth-
averaged k − ε model along with a modification component.
The present model is applied to investigate both periodic per-
manent and natural roll waves. The following conclusions are
drawn:

• The SWE-TM model features improved performance over
the SWE, SWE-T, SWE-TD and RGE models, as com-
pared with measured data on periodic permanent roll waves
(Brock, 1967). This clearly certifies the significance of turbu-
lent Reynolds stress for roll waves modelling. The SWE-TM
model can be used to simulate not only the final pattern of
periodic permanent roll waves, but also the formation pro-
cesses of periodic permanent and natural roll waves, which
cannot be resolved by the RGE model (Richard & Gavrilyuk,

2012). More systematic observations of roll waves are war-
ranted to further modify the present SWE-TM model, which
should facilitate physically enhanced modelling of complex
flows over steep slopes.

• A regular inlet perturbation may lead to periodic permanent
(Figs. 8– 11) or natural roll waves (Figs. 12–15), when its
period is shorter or longer than a critical value inherent to a
specified normal flow. An irregular, random inlet perturbation
favours the formation of natural roll waves (Figs. 14 and 15).

• A larger amplitude or shorter period of the inlet perturba-
tion is conducive to the formation of periodic permanent
roll waves (Fig. 10), which concurs with Brock’s (1967)
observation. The amplitude of periodic permanent roll waves
is independent of the perturbation amplitude at the inlet
but increases with the increase of inlet perturbation period
(Figs. 10 and 11), while the period is the same as that of the
inlet perturbation (Fig. 9).

• A larger amplitude of the inlet perturbation is conducive
to the formation of natural roll waves (Figs. 14 and 15),
which is consistent with Brock’s (1967) observations. Dur-
ing the formation process of natural roll waves, the average
maximum depth and period increase whereas the average
minimum depth decreases (Figs. 14–16). Natural roll waves
may feature stable average maximum and minimum depths
after advancing a sufficiently long distance (Figs. 14 and 15).
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Notation

C = coefficient in Eq. (15) (–)
Cf = bed friction coefficient (–)
Cr = Courant number (–)
Cμ, Cε1, Cε2, C
 = coefficients of the k − ε model (–)
D = dispersion momentum transport

(m3 s−2)
F = vector defined in Eq. (11)
F = Froude number (–)
Fn = Froude number refers to the normal

conditions at the inlet (–)
g = gravitational acceleration (m s−2)
g′ = g cos θ (m s−2)
h = water depth in the normal direction

of slope (m)
ham = perturbation amplitude imposed at

the inlet of the channel (m)
h̄max = average maximum water depth (m)
h̄min = average minimum water depth (m)
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hn = normal depth (m)
hin = water depth at the inlet of the

channel (m)
h∗ = dimensionless water depth (–)
ĥ = dimensionless measured data (–)
h̄′

max = dimensionless average maximum
water depth (–)

h̄′
min = dimensionless average minimum

water depth (–)
i = index denoting the spatial node
j = index denoting the time step
k = depth-averaged turbulent kinetic

energy (m2 s−2)
L1 = norm to measure error (–)
l = distance along channel from the

inlet to a cross section (m)
lp = formation distance from the inlet

to the appearance of periodic
permanent roll waves (m)

m = coefficient in Eq. (5a) (–)
Pk = production term due to the

horizontal velocity gradients in
Eqs. (7) and (8) (m2 s−3)

Pkb = production term due to bed friction
effect in Eq. (7) (m2 s−3)

Pεb = production term due to bed friction
effect in Eq. (8) (m2 s−4)

p = index denoting the state after
calculating variables from Eq. (13)

Q = upstream discharge (m3 s−1)
q = conservative variable in Eq. (12a)

(m2 s−1)
R = Reynolds number (–)
r = hydraulic radius (m)
S = vector defined in Eq. (11)
Ss, Sf , Sd = source terms defined in Eq. (12c)

(m2 s−2)
SD, SG, STR = dispersion term, gravity term and

turbulent Reynolds stress term in
Eq. (2) (m2 s−2)

T = wave period (s)
T̄ = average wave period (s)
T̄′ = dimensionless average wave period

(–)
T0 = Reynolds stress closed by the

standard k − ε model (m2 s−2)
Ta = Reynolds stress closed by the

standard k − ε model with a
modification (m2 s−2)

Tc = critical perturbation period (s)
TR = depth-averaged Reynolds stress

(m2 s−2)
t = time (s)
U = vector defined in Eq. (11)
U = depth-averaged streamwise velocity

(m s−1)
u∗ = friction velocity (m s−1)

ū(z) = the streamwise velocity distribution
in vertical (m s−1)

x = streamwise coordinate (m)
z = vertical coordinate (m)
z0 = zero velocity level (m)
�x = spatial step in the x direction (m)
�t = time step (s)
α = coefficient to be calibrated in

Eq. (9) (–)
β = momentum flux correction (–)
βpower = momentum flux correction based on

power law distribution (–)
βlog = momentum flux correction based on

log law distribution (–)
ε = depth-averaged diffusion rate of

turbulent kinetic energy (m2 s−3)
ϕ = a small-scale enstrophy defined by

Richard and Gavrilyuk (s−2)
� = a large-scale enstrophy defined by

Richard and Gavrilyuk (s−2)
φ = variables in Eq. (15) (–)
η0 = dimensionless zero bed elevation

(m) (–)
θ = angle of bottom slope (rad)
l = wave length (m)
ν = kinematic viscosity of water

(m2 s−1)
νt = depth-averaged eddy viscosity

(m2 s−1)
ρ = density of water (kg m−3)
σk, σε = coefficients of the k − ε model (–)
τb = bed shear stress (kg m−1 s−2).
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