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1.  Introduction

Fiber Bragg gratings (FBGs) offer optical sensors for strain 
and temperature that are lightweight, small in size, immune 
to electro-magnetic interference, highly sensitive, etc [1]. 
Most prominently, by virtue of wavelength encoding, up to 
100 FBGs may be deployed in series along a fiber to realize 
a quasi-distributed measurement of strain or temperature. 
Therefore, FBGs have been widely applied for sensing and 
structural health monitoring (SHM) [2, 3].

So far, FBGs have experienced three major technical 
advances in their applications to strain sensing and struc-
tural damage detection. First, in the most common current 

application, the FBG is used as a point-wise sensor, which 
collects only the central/peak wavelength shift in the reflec-
tion intensity spectrum, to measure the average strain over 
the grating length of the FBG. Although limited information 
on the structural response is gained from this FBG, a quasi-
distributed measurement of strain can be achieved by virtue 
of wavelength encoding, and thus an FBG sensing net can be 
realized for SHM.

The second development is the realization of truly dis-
tributed strain measurement over the grating length. In this 
sensing application, complete reflection spectrum information 
of the FBG, involving not only the shift but also the distortion 
of the spectrum, is used to reconstruct the strain profile over 
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the grating length. To save cost, this approach is mainly based 
on the intensity spectrum approach [4–10]. Meanwhile, phase 
spectrum [11] and complex spectra (i.e. intensity and phase 
spectra) approaches [12, 13] have also been proposed. As a 
result, an FBG could be used as a line-wise sensor to obtain 
the local strain gradient in addition to the local strain of the 
structures.

Third, in recognition that structural defects always accom-
pany nearby stress concentrations, which induces a high strain 
gradient and remarkably affects the profile of the reflection 
spectrum, FBGs have been further used to detect structural 
damage [14–20]. In this application, FBGs are imbedded into 
the structure, near the defect or damage zones. The empir-
ical correlation can then be investigated experimentally or 
theoretically between the reflection intensity spectra and the 
indices characterizing the various known defects. In this way, 
an empirical database is established and then used for damage 
identification. However, because the reflection intensity spec-
trum is affected not only by the size and shape of the defect 
itself but also by its distance to the deployed FBG sensors, the 
database could be extensive in general. Therefore, the FBG-
based defect detection has been limited mainly to recognize 
the existence of damage.

The present work is devoted to the development of a theo-
retical approach for reconstructing structural damage from 
the reflection intensity spectra of FBGs, which is also an 
extension of the FBG-based strain profile reconstruction. By 
this approach, all of the defect geometry, not only the size 
and shape but also the location of the defect, is theoretically 
deduced from the reconstructed strain profiles or directly 
from the measured reflection intensity spectra of FBGs, rather 
than determined from an empirical damage database. Indeed, 
the latter involves only the direct problem of damage detec-
tion, while our damage reconstruction constitutes its inverse 
problem, as described in detail in section 3. Although many 
investigations have studied the direct problem, the inverse 
problem has rarely been studied. To the best of our knowl-
edge, only Taketa et al [21, 22]. have attempted to address this 
inverse problem of reconstructing the damage patterns near 
the notch and hole of composite laminates. Some preliminary 
assumptions, however, regarding the damage geometry such 
as the defect shape or the size of the damage zone were made 
in their inversion calculations. The feasibility of the damage 
reconstruction based on FBGs still requires a systematical 
study. Our work is to develop a general approach for damage 
reconstruction, without a preliminary assumption regarding 
the defect geometry,

In addition to above-mentioned intention on enriching 
FBG sensing technology and application, the present work 
is also motivated by an desire to devise an automatic and 
remote technique for nondestructive evaluation (NDE), with 
damage imaging capabilities, meeting the in-situ and on-time 
monitoring requirements of SHM. Structural damage identi-
fication plays a vital role in both SHM and the conventional 
regular inspection. Damage reconstruction is the highest 
level of damage identification owing to its capability of not 
only recognizing the existence of damage in a structure but 
also determining the shape, size, and location of the defect, 

hence realizing damage imaging. Ultrasound, x- or gamma-
rays, etc, are the most popular NDE techniques with damage 
reconstruction/imaging capabilities, applied broadly in mate-
rial and structural damage inspections and medical imaging. 
In these NDE techniques, damage reconstruction is based on 
the transmission, diffraction, refraction scattering, and reflec-
tion of acoustic/elastic and electromagnetic waves, respec-
tively [23–28]. Damage images are generated by 1D or 2D 
transducer scans in these dynamical approaches. Therefore, 
they rely on manual operation in general and, thus, are applied 
only in the regular inspection. Even then, for the structural 
sites human can not reach at, such as the interior of nuclear 
reactor and deep water structures, damage inspection is diffi-
cult to conduct using these NDE techniques. SHM is superior 
to the conventional regular inspection in saving maintenance 
cost and in increasing structural safeguarding capabilities 
[29]. However, since the point-wise strain, velocity, accelera-
tion, etc, are main measurands of structural response, damage 
identifiability of SHM is inferior to the regular inspection. 
Especially, damage reconstruction is not realized by the pre-
sent SHM technique nowadays. Our damage reconstruction 
is a static approach, based upon the inversion from the part 
information on the static nonhomogeneous distributed strain 
field around the structural defect near the FBGs, which is 
obtained from the reflection intensity spectra of the FBGs 
that can be collected in an automatic and remote way. Hence, 
this will provide us with a novel NDE technique with damage 
imaging capabilities and suitable to SHM. If applied at the 
hotspots of engineering structures, it will greatly enhance 
the damage identifiability of SHM. The present approach 
combines the superiors of SHM and the conventional NDE 
techniques.

Mechanical damage reconstruction is a typical inverse 
problem in elasticity. Several theories and algorithms have 
been formulated for the reconstruction of cracks or voids, 
e.g. the reciprocity gap (RG) functional, error in constitutive 
equation (ECE) functional, adjoint state and topological deriv-
ative [30]. Damage reconstruction can be made either from 
solving the observation equations, which relate the complete/ 
field measurements of both traction and displacement on the 
full boundary surface of structures to the unknown damage 
quantities, or from the minimization of a cost functional 
that embodies a definition of the ‘best fit’ between the par-
tial measurement data and simulated data. Indeed, the latter 
is an approximation inversion. More measurement informa-
tion generates more accurate damage reconstruction. The 
complete field measurement on the full boundary, however, 
is difficult to conduct and the partial or discrete measurement 
is practical. In the present approach, although truly distrib-
uted strain measurements can be realized along the gratings of 
FBGs, it is still limited information, compared with the com-
plete field measurement. Thus, a basic issue arises that is how 
many FBGs are needed for reconstructing a structural defect 
within a practically allowable precision. This is just the issue 
of damage identifiability. Besides, the damage identifiability 
is affected also by the damage mode (voids or cracks) and 
the relative distance of FBGs to the defect center, scaled by 
the defect size. In the present work, the damage identifiability 
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was evaluated by changing these factors. As a starting point 
for this research, our work was confined to the plane problem.

In what follows, the wave-guide theory of an optic fiber 
on the reflection intensity spectrum of FBGs is outlined in 
section  2, which is the basic optical theory of our damage 
reconstruction. Then, the direct and corresponding inverse 
photo-elastic problems of damage reconstruction, together 
with the relevant formulas, are described in section 3, and an 
optimization approach for the solution to the inverse photo-
elastic problem is presented in section 4. Next, numerical and 
experimental proof-of-concept validations of our approach, 
which evaluate the damage identifiability, are presented in 
sections  5 and 6, respectively. Finally, our work is summa-
rized in section 7.

2.  Reflection intensity spectra of FBGs

An FBG can be characterized by the core refractive index of 
the guided mode that has its axial non-uniformity described 
by the following function [5]:

�
⎡
⎣⎢

⎤
⎦⎥

δ Δ π
Λ

ϕ= + + +n z n n z n z z z( ) ( ) ( )cos
2

( ) ,0
0

(1)

where z is the axial coordinate of the fiber, and δn(z) indi-
cates the ‘dc’ perturbation, which is spatially averaged over a 
grating period, relative to the unperturbed constant core refrac-
tive index n0, and involves the effects of the grating fabrica-
tion process and possible external influences such as strain or 
temperature. In addition, Δn(z) denotes the index modulation 
amplitude, and ϕ(z) stands for the index modulation phase that 
reflects a possible chirp to the unperturbed grating period Λ0.

Based on mode-coupling theory, quantitative informa-
tion about the reflection spectrum of a single-mode FBG can 
be obtained by solving the following differential equations, 
called mode-coupling equations [31]:
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where R(z) and S(z) are the field amplitudes of the forward and 
backward guided modes, respectively, ̂σ is a general ‘dc’ self-
coupling coefficient, and κ is the ‘ac’ coupling coefficient. For 
the single-mode FBG, ̂σ and κ are defined as
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λ
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z

z

2
( )

1
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d
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and

� κ π
λ

Δ= n z( ), (4)

where λ is the wavelength. Here, δ is the detuning parameter, 
expressed as
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with the Bragg wavelength λB = 2n0Λ0, which is also called the 
design wavelength.

For non-uniform FBGs, since ̂σ  and κ are z-dependent 
coefficients, solving equation  (2) in general requires direct 
numerical integration. However, for uniform FBGs, ̂σ  and 
κ are constant coefficients, and a closed-form analytical 
solution to equation  (2) can be obtained when appropriate 
boundary conditions are specified at the ends of the grating 
of length L. Thanks to this analytical solution for uniform 
FBGs, another approach, termed the T-matrix approach, 
was proposed [32] to solve equation (2) approximately for 
non-uniform FBGs. The T-matrix approach is a piecewise-
uniform approach in which an FBG can be viewed as an 
assembly of many piecewise-uniform sections. Thus, for each 
section, the closed-form solution for uniform FBGs could be 
used, resulting in a 2   ×   2 T-matrix that relates the input, 
transmission, and reflection field amplitudes for the given 
section. Consequently, the overall solution can be obtained 
by multiplying all of these matrices. This approach is faster, 
easier to implement, and gives a solution that is almost indis-
tinguishable from one based on the direct numerical integra-
tion approach. Therefore, we use the T-matrix approach in 
our work.

As shown in figure 1, we divide the grating into N uniform 
sections and define Ri and Si as the field amplitudes after light 
traverses the ith section. Thus, we initialize R0 = R(L/2) = 1 and 
S0 = S(L/2) = 0 and calculate RN = R (−L/2) and SN = S(−L/2). 
Propagation through the ith section is described by a matrix 
Ti defined by

�
⎡
⎣⎢

⎤
⎦⎥
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i

i
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(6)

This so-called T-matrix has the following full expression [31]:
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(7)

where Δz is the length of the uniform sections and

� ̂γ κ σ= −2 2 (8)

in which the coupling coefficients ̂σ and κ are locally fixed 
values of the ith section. Thus, with all of the T-matrices for 

Figure 1.  Divisions of an FBG grating.
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the individual sections being known, one can gain the overall 
amplitudes

�
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= ⋅R

S
R
S

T ,N

N

0

0
(9)

with the overall T-matrix

� Τ = ⋅ ⋅ … ⋅ … ⋅−T T T T .N N i1 0 (10)

Then, the power reflection coefficient ρ = SN/RN = T21/T11 and 
the reflectivity ρ=r 2 can be calculated.

When the grating of an FBG is subject to an external longi-
tudinal strain with profile ε(z), the strain effect on the refraction 
index can be taken into account by modifying equation (1) as

�
⎡
⎣⎢

⎤
⎦⎥

δ δ Δ π
Λ

ϕ ϕ= + + + + +ε εn z n n z n z n z z z z( ) ( ) ( ) ( )cos
2

( ) ( ) ,0
0

(11)

where δnε(z) and ϕε(z) describe the strain effects on the mean 
refractive index and grating period, respectively [5]. They are 
related to the strain profile ε(z) as follows:

� δ ε= −εn z Pn z( ) ( )e 0 (12)

and

�
ϕ π ΔΛ π

Λ
ε= −

Λ
= −ε z

z
z z

d ( )

d

2
( )

2
( ),

0
2

0
(13)

where we used ΔΛ Λ ε=z z( ) ( )0 . Here, Pe  =  n( / 2)0
2  

ν ν− −P P[ (1 ) ]12 11  is the effective photo-elastic coefficient of 
the fiber core in which ν is Poisson’s ratio, and P11 and P12 
represent the photo-elastic coefficients of the fiber core mate-
rial. Accordingly, δn(z) and ϕ(z) in equation (3) are replaced 
by δn(z) + δnε(z) and ϕ(z) + ϕε(z), respectively.

3.  Direct and inverse problems in damage 
reconstruction

3.1.  Elastic

Now, we consider elastic plane-stress problems. Figure  2 
shows a damaged plate with unit thickness that occupies an 
area Ω bounded by external boundary line S and defect contour 
Γ. Given the elastic properties of the plate body, the geometry 
of S and Γ, and the boundary conditions, solving the strain or 
stress field over Ω is then a standard elastic boundary-value 
problem. The corresponding governing equations without any 
body forces are given as follows:

� σ =xStatic equilibrium equations ( ) 0,ij j, (14)

� σ ε= Cx x xConstitutive relations ( ) ( ) ( ),ij ijkl kl (15)

� ε = +( )u ux x xCompatibility equations  ( )
1

2
( ) ( ) ,ij i j j i, , (16)

where σij, Cijkl, and εkl are the components of the stress, elas-
ticity, and strain tensors, respectively; ui is a component of 
the displacement vector; x represents the position vector; and 
the comma in the subscripts indicates a partial derivative. In 
addition, the boundary conditions on 1 × S are, for instance, 
the displacements ξi and traction ϕi prescribed respectively on 
1 × Su and the complementary portion  = ×  S 1 (S\ S )t u :

� ξ= ×u Sx x x( ) ( )              (   on 1  )i i u (17)

and

� σ ϕ= = ×t nx x x x( ) ( ) ( )             (   on 1 S  ),i ij j i t (18)

where ti and ni are the components of traction and the normal 
vectors of S, respectively. Here, 1 × Γ is a free surface.

When several FBGs are glued on Ω adjacent to the defect, 
as depicted in figure 2, their axial strain will be induced after 
the excitation of equation  (18) and the constraints of equa-
tion (17) are imposed. The corresponding strain profiles can 

Figure 2.  Plane-stress problem of damage reconstruction.
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then be obtained from the above elastic boundary problem. 
For our damage reconstruction, one strategy is to inversely 
determine the geometry of the defect Γ, including its loca-
tion, size, and shape, through equations  (14)–(18) using the 
measured strain profiles of the FBGs. Thus, we define two 
problems:

	 (a)	Direct elastic problem: solving equations  (14)–(16) to 
determine the strain profiles of the FBGs near the known 
defect with the prescribed geometry and elastic property 
of the structure as well as the boundary conditions given 
by equations (17)–(18).

	(b)	Inverse elastic problem: solving equations  (14)–(16) to 
determine the location and geometry of the unknown 
defect when the strain profiles of the FBGs glued nearby 
are measured, with the prescribed geometry and elastic 
property of the structure as well as the applied boundary 
conditions given by equations (17)–(18).

3.2.  Photo-elastic

Furthermore, after solving the direct elastic problem, one 
can calculate the reflection intensity spectra of the FBGs 
through equations (3)–(13). In fact, the combination of equa-
tions (3)–(18) constitutes the photo-elastic problem. For our 
damage reconstruction, another strategy is to determine the 
location and geometry of the unknown defect, through equa-
tions  (3)–(18), directly from an inversion of the measured 
reflection intensity spectra of the FBGs glued nearby. Thus, 
corresponding to the elastic problems, we also define:

	 (a)	Direct photo-elastic problem: solving equations (3)–(16) 
to determine the reflection intensity spectra of the FBGs 
glued near the known defect, with the prescribed geometry 
and elastic property of the structure as well as the applied 
boundary conditions given by equations (17) and (18).

	(b)	Inverse photo-elastic problem: solving equations  (3)–
(16) to determine the location and geometry of the 
unknown defect when the reflection intensity spectra of 
the FBGs glued near the defect are measured, with the 
prescribed geometry and elastic property of the struc-
ture as well as the applied boundary conditions given 
by equations (17) and (18).

As mentioned above, there are two strategies for dealing 
with our damage reconstruction. In the first strategy, the pro-
files of the axial strain of the FBGs could be measured based 
on an inversion study of their reflection intensity spectra, as 
presented in section  1. That is to say, we need a two-step 
inversion process for our damage reconstruction: the reflec-
tion intensity spectra of FBGs—strain profiles of gratings—
and the location and geometry of a defect. In the second 
strategy, however, the strain profiles of FBGs play the role of 
intermediate functions that influence the reflection intensity 
spectra according to equations (12) and (13), and thus only a 
one-step inversion study is required, saving much computa-
tion time. In fact, the two strategies give almost the same solu-
tion, as illustrated in section 5. Hence, the one-step inversion 
is adopted in our work.

4.  Optimization approach for damage 
reconstruction

In general, directly solving inverse problems is a complex 
task due to their nonlinearity and the limited measurement 
information, so they are often transformed to optimization 
problems and solved in an indirect way. This method is also 
adopted here for our damage reconstruction.

4.1.  Parameterized characterization of damage

We assume that the defect geometry can be adequately char-
acterized by means of a finite number B of scalar parame-
ters, collectively denoted by the B-vector ∈ Rb B. For a plane 
void, or a hole, as depicted in figure 3(a), the contour Γ of 
the arbitrary shape could be represented approximately by an 
equiangular polygon. For this polygon, (rx, ry) are the coordi-
nates of its central point in the coordinate system XOY, and 

…l l l( , , , )n1 2  is the vector of the corresponding characteristic 
lengths, i.e. the radii of polygon vertices, where n is the total 
number of sides or vertices of the polygon. Thus, the void 
could be characterized by n + 2 parameters, and the corre-
sponding parameter vector is = …r r l l lb ( , , , , , )x y n1 2 . However, 
for a plane crack, as depicted in figure 3(b), the parameterized 
characterization is relatively simple, and only a four-param-
eter vector b is needed, i.e. θ= r r lb ( , , , )x y c , where (rx, ry) are 
the coordinates of the crack center, lc is half the crack length, 
and θ is the crack inclination angle.

4.2.  Optimization scheme

For a given choice of the parameter vector b within some 
admissible set ⊆B RB and the prescribed boundary condi-
tions, we first obtain the strain field of the structure and then 
calculate the reflection intensity spectra of the FBGs from the 
solution to the direct photo-elastic problem. Therefore, solving 
the inverse photo-elastic problem amounts to finding values 
of b such that the simulated reflection intensity spectra agree 
with the measured spectra with a certain precision. This can 
be formulated as the minimization of the objective functional

� ∫∑ λ λ ε ϕ λ= −
λ

λ

=

⎡⎣ ⎤⎦E g r x Lb b( ) ( ) ( , ( , , , )) d ,
j

M

j j j j
p

1 jl

ju

(19)

where M is the total number of the FBGs, gj(λ) represents 
the measured reflection intensity spectrum of the jth FBG, λjl 
and λju are the lower and upper limits of the spectrum width, 
respectively, and p is a norm. Moreover, λ ε ϕr x L b( , ( , , , ))j j j  
is the corresponding simulated spectrum with ε ϕx L b( , , , )j j  
being the simulated axial strain profile over the length 
Lj of the grating under the boundary excitation ϕ for an  
estimation of b.

Discretizing the reflection intensity spectrum by dividing 
the spectrum width λj2 − λj1 into N equal zones, the objective 
functional (19) may be rewritten as

� ⎡⎣ ⎤⎦∑ ∑λ λ
λ λ ε ϕ=

−
−

= =

E
N

g k r k x L b( ( )) ( ( ), ( , , , ))
j

M
ju jl

k

N

j j j j

1 1

2
(20)
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using p = 2. A dimensionless form of equation (20) is given by

� ⎡⎣ ⎤⎦∑ ∑λ λ
λ

=
−

= =

E
E

N
g k( ( ))

.

j

M
ju jl

k

N

j
1 1

2 (21)

The inverse problem is now reduced to determining the 
parameter vector b by minimizing the objective functional E . 
This problem can be solved iteratively based on a suitable opti-
mization algorithm, until E  is less than a prescribed value δ, i.e.

� δ<E . (22)

Indeed, E  stands for a dimensionless error functional that is a 
measure of the distance between the simulated and measured 
reflection intensity spectra.

In our work, a genetic algorithm (GA) was used as the 
optimization algorithm to avoid possible convergence to local 

extreme points. The basic concepts of GAs were developed by 
Holland [33], who developed a search heuristic that mimics 
the process of natural evolution. GAs belong to the larger 
class of evolutionary algorithms (EAs), which generates solu-
tions to optimization problems using the techniques of inherit-
ance, mutation, selection, and crossover [34].

Figure 4 presents the major steps of the GA optimization 
algorithm for our damage reconstruction. Initially, the GA gen-
erates a group of random starting solutions (b vectors), and using 
the finite element and T-matrix methods, the strain profiles of 
the gratings and the corresponding reflection intensity spectra 
are calculated, respectively, for each b vector. Subsequently, 
these spectra are substituted into equations  (20) and (21) to 
determine their error values, which are also used here as fitness 
functions in the GA. If the error between the target or meas-
ured spectra and the calculated spectra is less than the allowed 
error δ, the optimization program is terminated. Otherwise, the 

Figure 3.  Parameterized characterization of plane damage: (a) void and (b) crack.
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selection and crossover operations are performed, followed by 
the mutation process, which changes one or several values of 
the components of the b vector in the sample strings to other 
values within the search space, preventing the generation of a 
local optimal solution. This iterative process is repeated until 
either equation (22) is satisfied or the specified number of iter-
ation loops has been reached.

5.  Numerical proof-of-concept validation

The proof-of-concept validation of our approach was based on 
a numerical simulation of the damage reconstruction. Effects 
on the damage identifiability were evaluated pertaining to the 
details of the deployment of the sensors, including the total 
number of sensors, distances to the defect, and configuration. 
The defects considered are plane voids and cracks.

5.1.  Voids

A plate with a hole in it was selected as the tension sample, 
as shown in figure 5. The plate was rectangular with length 
Ls  =  260 mm and width Bs  =  80 mm. Considering the later 

Figure 4.  Flow chart of the GA for optimization of damage reconstruction.

Figure 5.  A sample plate with a hole for the damage reconstruction simulation.

Table 1.  Properties of FBGs used for numerical proof-of-concept 
validation.

Parameter Value

Modulation amplitude of refractive index Δn 1  ×  10–4

Effective refractive index n0 1.468
Poisson’s ratio ν 0.16
Grating length L (mm) 10
Center wavelength λB (nm) 1535.528
Photo-elastic coefficient P11 0.113
Photo-elastic coefficient P12 0.252
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experimental validation comparison and for the sake of conve-
nience in the damage fabrication, a central circular hole with 
radius R = 15 mm was chosen as the known target damage. 
This choice did not lead to any loss of generality because the 
simulation was performed starting with all initial damage 
parameters selected randomly.

The plate was isotropic with Young’s modulus E = 70 GPa 
and Poisson’s ratio ν = 0.3. In the simulation, a uniform tensile 
loading q = 20 MPa was imposed on one end of the plate with 
the other end being fixed. The thickness of the plate t was used 
as the length unit, and the problem was treated as a plane-
stress problem. Three FBGs were deployed near the hole: 

Figure 6.  Effect of the total number of the FBGs on the relative errors in the reconstructed damage parameters, compared with the target ones.

Figure 7.  Comparison between the target and reconstructed reflection intensity spectra for the three FBGs for CASE3: (a) FBG1, (b) FBG2, 
and (c) FBG3.
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FBG1 and FBG3 were in the horizontal direction, and FBG2 
was symmetrically vertical to the 45° line. The locations of 
FBG1, FBG2, and FBG3 are denoted by a, b, and c, respec-
tively, as depicted in figure 5. These are the closest distances 
between the FBGs and the center of the defect. The FBGs had 
the same properties with the fixed modulation amplitude of 
refractive index

� Δ Δ=n z n( ) . (23)

The ‘dc’ perturbation of refractive index and the index 
modulation phase were set as δn(z) = 0 and ϕ(z) = 0, respec-
tively. All of the FBG parameters are listed in table 1.

Because the target hole is centrosymmetric, we first made 
the damage reconstruction with centrosymmetric equiangular 

Figure 8.  Comparison between the target and reconstructed strain profiles over the gratings of three FBGs in CASE3: (a) FBG1, (b) FBG2, 
and (c) FBG3.

Figure 9.  Effect of the sensor to defect distance on the relative errors in the reconstructed damage parameters, compared with the target ones.

Meas. Sci. Technol. 25 (2014) 125109



G Huang et al

10

polygons to approximate the target defect, for the sake of 
reducing the computational work, and then we repeated the 
calculation with arbitrary equiangular polygons. The initial 
damage parameters = …r r l l lb ( , , , , , )x y n1 2  of the centrosym-
metric equiangular polygon were randomly selected as shown 
in figure 5.

5.1.1.  Damage reconstruction with centrosymmetric equian-
gular polygons.
Effect of the total number of the FBGs.  Three cases were 
considered in the simulation. In CASE1, only FBG1 was 
used, both FBG1 and FBG3 were used in CASE2, and all 

three sensors, FBG1, FBG2, and FBG3, were used in CASE3. 
The dimensionless distances of these sensors were the same 
and were set as a/R = b/R = c/R = 5/3. Ten damage param-
eters were selected in all three cases. The selected damage 
parameters were the two coordinate parameters of the poly-
gon center, (rx, ry), and eight centrosymmetric characteristic 
length parameters, ⋅ ⋅ ⋅l l l( , , , )1 2 8 , as depicted in figure 5. The 
target reflection-intensity spectra were calculated through 
solving the direct photo-elastic problem for the prescribed tar-
get damage.

Figure 6 indicates the relative errors between the recon-
structed and target damage parameters for CASE1, CASE2, 

Figure 10.  Relative errors of the reconstructed damage parameters compared with the target damage parameters.

Figure 11.  Dependence of the relative errors of the reconstructed damage parameters on the target crack inclination angle compared with 
the target ones.

Meas. Sci. Technol. 25 (2014) 125109



G Huang et al

11

and CASE3. In general, it can be seen that the damage iden-
tifiability, which is implied by the relative errors, increases 
with increasing numbers of FBGs. The maximum errors 
are 16.77%, 6.59%, and 4.89% for CASE1, CASE2, and 
CASE3, corresponding to l6, l7, and l7, respectively. The 
results demonstrate that the increase in measured informa-
tion about the reflection intensity spectra of the FBGs leads 
to higher damage identifiability, as expected. It can also be 
noted that although the initial characteristic length parameters 

⋅ ⋅ ⋅l l l( , , , )1 2 8  were selected randomly, they tended to converge 
to the common target value R, within acceptable precision. 
Using only three FBGs in this simulation, we could reach a 
high identifiability, with an error of less than 5%. Even though 
single FBG1 is used, the error is not more than 17%, for this 
symmetrical case. That is owing to the line-wise truly dis-
tributed strain information measured from the FBG sensor. It 
includes the information of multiple orders of strain gradients, 
in contrast to the conventional sensor, and so relates the defect  
more closely.

Note that there is some randomness in the distribution 
of the relative parameters with respect to different damage 
parameters. That is the inherency of GA. It generates solu-
tions vibrating near the optimal one but cannot converge to it, 
unless followed by another deterministic optimization algo-
rithm, such as gradient algorithm. Besides, the orientation 
with respect to the loading direction and the sensor to defect 
side distance also affect the distribution of relative errors, cor-
responding to different damage parameters.

Figures 7(a)–(c) represent a comparison between the 
target (calculated from the target defect) and reconstructed 
reflection intensity spectra of the three FBGs in CASE3, 
corresponding to figure 6, showing a good convergence of 
the simulated spectra to the target spectra. Figures 8(a)–(c) 
display the corresponding reconstructed strain profiles over 
the gratings of the three FBGs, compared with the target 
strain profiles (calculated from the target defect). A good 
coincidence is also noted in figure 8, which gives an indi-
rect illustration that the damage identifiability of the one-
step (reflection-intensity-spectrum-based) and two-step 
(strain-based) inversions are approximately equivalent in our 
damage reconstruction. It is worthy noting that although the 
distortion of the reflection spectra in figures 7(a)–(c) is not 
obvious, the remarkably nonuniform strain distributions are 
inverted with a good precision, as shown in figures 8(a)–(c). 
This sensibility of the reflection spectrum to strain gradient 
plays a crucial role in the present approach to gain high 
damage identifiability.

Effect of the FBG distances to the defect.  In this simu-
lation, the deployment configuration of the FBG sensors 
corresponds to CASE3 in the above simulation. Three dif-
ferent sensor distances to the defect center were selected. 
In addition to CASE3 with a/R  =  b/R  =  c/R  =  5/3, we 
selected CASE4 as a/R  =  b/R  =  c/R  =  2 and CASE5 as 
a/R = b/R = c/R = 7/3. The other simulation input data were 
the same as those of CASE3, and again ten damage param-
eters were selected.

Figure 9 shows the relative errors between the recon-
structed and target damage parameters for CASE3, CASE4, 
and CASE5. Note that, in general, the damage identifiability 
decreases with increasing sensor distance to the defect center. 
The maximum errors are 4.89%, 10.55%, and 18.14%, cor-
responding to l7, l1, and l4 for CASE3, CASE4, and CASE5, 
respectively. The result could be readily understood from elas-
ticity mechanics because the remarkable strain gradient comes 
mainly from the disturbed strain field around a defect, rela-
tive to the undisturbed strain field of the intact structure, which 

Figure 12.  Experimental setup for validation: (a) tested plate and 
(b) experimental setup.
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tends to disappear with increasing distance to the defect. In the 
present case of plane problem, for instance, the disturbed strain 
field decays with (r/R)−2, where r is the the distance to the defect 
center and R is the defect size, i.e. the radius of the circular 
void. Therefore, our approach is a local one and its applicable 
premise is that the remarkable disturbed strain field informa-
tion must be captured by FBG sensors. For the given defect 
size, the damage identifiability decreases with the increasing 
sensor to defect distance, as shown by figure 9. While, if the 
defect is close to the sensor, it can be reconstructed better even 
when its size is small. That is to say, earlier damage may be 
constructed by the present approach, as long as its relative dis-
tance to the FBG sensor is small. Thus, the present approach 
is applicable to monitor the evolution of damage to hotspots of 
structures, which are known important sites of stress concen-
tration where damage appears preferentially.

5.1.2.  Damage reconstruction with arbitrary equiangular 
polygons.  The simulation was extended by using arbitrary 

equiangular polygons instead of centrosymmetric polygons. 
The sample as well as the loading used for the numerical 
proof-of-concept validation is given in figure 3(a). This sam-
ple is the same as the sample shown in figure 5, except that 
four FBG sensors were deployed centrosymmetrically about 
the defect with the same distance: a/R = b/R = c/R = d/R = 2 
(corresponding to CASE4 in section 5.1.1). The total number 
of damage parameters was still ten, and the other parameters 
used for simulation were the same as those in section 5.1.1.

Figure 10 presents the relative errors between the recon-
structed and target damage parameters. The maximum error 
is 7.36%, corresponding to l7, illustrating that good damage 
identifiability is achievable in our approach using general 
equiangular polygons to approximate the target void.

5.2.  Cracks

The dimension and loading of the sample used for the simula-
tion of the reconstruction of a crack are shown in figure 3(b), 

Figure 13.  Comparison between the measured and reconstructed reflection intensity spectra for (a) FBG1, (b) FBG2, and (c) FBG3, 
deployed in the sample with a hole.

Table 2.  Properties of FBGs used for experimental validation (void).

Parameter

Sensors

FBG1 FBG2 FBG3

Modulation mode of refractive index Gaussian Gaussian Gaussian 
Central modulation amplitude of refractive index Δn 1.53  ×  10–4 1.75  ×  10–4 1.87  ×  10–4

Apodization factor aG 7.51 11.32 11.57
Effective refractive index n0 1.369 1.519 1.355
Poisson’s ratio ν 0.17 0.17 0.17
Grating length L (mm) 10.2 10.9 11.0
Center wavelength λB (nm) 1535.660 1535.660 1535.620
Photo-elastic coefficient P11 0.113 0.113 0.113
Photo-elastic coefficient P12 0.252 0.252 0.252
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which is the same as figure 3(a) except that the target void 
was replaced by a target crack. Moreover, the material of the 
sample was the same, and the same four FBG sensors were 
deployed centrosymmetrically about the center of the crack, 
with a dimensionless distance a/lc = 2. The total number of 
damage parameters was four, and their initial values were 
selected randomly.

Figure 11 shows the variation of the relative errors of the 
reconstructed damage parameters with the target crack incli-
nation angle compared with the target damage parameters. 
In the simulation, the position of the target crack was kept 
unchanged, and half the crack length was fixed at 10 mm. 

Better identifiability is achieved near the 0° and 90° crack 
inclination angles, while bigger errors occur near the 45–60° 
crack inclination angles. This difference is due to the fact that 
sensors are farther from the crack-tip field in the latter case. 
However, all relative errors are within 9%, showing a satisfac-
tory crack reconstruction based on our approach.

The above numerical proof-of-concept validation demon-
strates that although the complementary information (from 
FBGs) about the strain field of the structure is limited, the 
nearby defect could be reconstructed with a high identifi-
ability based on our approach. It effectively monitors the 
damage evolution in the hotspots of structures, as long as the 

Figure 14.  Comparison between the reconstructed damage and real damage: (a) relative errors of the damage parameters and (b) contour.
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total number of sensors is suitable and the sensors are not 
located too far from the defect, depending on its size.

6.  Experimental validation

To readily understand our methodology, plates with holes 
and cracks like those used in the numerical simulation were 
selected as structural samples for experimental validation. 
Note, however, that the application of this method is not lim-
ited to these structures.

6.1.  Sample plate with holes

The tested sample plate with a hole as well as the three 
FBGs deployed around the defect, corresponding to CASE3 

in section  5.1.1, was photographed (see figure  12(a)). 
The sample was made of steel with Young’s modulus 
E = 200 GPa and Poisson’s ratio ν = 0.3. The sample was 
190 mm long (Ls), 80 mm wide (Bs) and 3 mm thick (t).  
A hole was prefabricated, with radius R  =  15 mm, as a 
known target defect.

To install the FBG sensors, we polished the specimen sur-
face firstly using abrasive paper with a grain size of 800 # and 
then cleaned it using alcohol. When the surface was dry, we 
positioned the FBG and pasted loosely the cabling optical fibers 
outside the ends of the grating sections onto the specimen with 
adhesive tape to immobilize the sensor and fiber. Finally, we 
glued uniformly the grating sections  onto the specimen sur-
face using liquid cyanoacrylate adhesive (502). In addition, 
before the test, the free reflection spectra of the FBGs under 

Figure 15.  Tested cracked plate samples: (a) θ = 90° and (b) θ = 45°.
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unloading state were measured by an optical sensing inter-
rogator (sm125, Micron Optics Inc.) with high wavelength 
accuracy (error less than 1 pm). The free reflection spectra 
were then used for the inversion of the property parameters of 
FBGs based on the T-matrix. They are listed in table 2. These 
FBGs had Gaussian-distributed modulation amplitudes of the 
refractive index:

� Δ Δ= − −n z n a z L L( ) exp { [ ( / 2) / ] },G
2 (24)

where Δn is the central index modulation amplitude, and 
aG is the width of the Gaussian depth (i.e. the apodization 
factor). In addition, the ‘dc’ perturbation of refractive index 
δn(z) = 0, and the index modulation phase ϕ(z) = 0. The dimen-
sionless distance of the FBGs to the center of the hole was 
a/R = b/R = c/R = 5/3.

As shown in figure 12(b), a static load was imposed by a 
material testing machine (PLG-100) with a loading accuracy 
of 0.1%. At the same time, the reflection intensity spectra of 
the FBG sensors were recorded by sm125. After the test, the 
damage reconstruction was carried out based on our approach 
using centrosymmetric equiangular polygons.

Figure 13 shows a comparison between the measured and 
reconstructed reflection intensity spectra for the three FBGs, 
with loading q  =  20 MPa, indicating a good agreement 
between them. The corresponding reconstructed damage 
parameters and defect contour are indicated in figures 14(a) 
and (b), compared with the real ones. The maximum relative 

error is 5.49%, corresponding to l5, illustrating that high 
damage identifiability is achievable through our approach.

6.2.  Cracked plate sample

Figures 15(a) and (b) show the two tested cracked plate sam-
ples. Their material and dimension are the same, but the crack 
inclination angles are 90° and 45°, respectively. The samples 
were made of aluminum with Young’s modulus E = 70 GPa 
and Poisson’s ratio ν = 0.3. The samples were 260 mm long, 
80 mm wide, and 2 mm thick. A crack was prefabricated for 
each sample, with a fixed half-crack length lc  =  15 mm, as 
the known target defect. Around the crack, four FBGs were 
deployed centrosymmetrically in the horizontal direction 
for each sample at a fixed distance a  =  25 mm. They were 
installed in the same way as the sample plate with holes pre-
sented above. The grating properties of the FBG sensors were 
also inverted based on T-matrix that are listed in tables 3 and 
4, respectively, for the samples shown in figures 15(a) and (b).

Figures 16(a)–(c) show the results of the experimentally 
reconstructed damage parameters compared with the target 
parameters for the two samples subjected to the loading 
q = 20 MPa. From figure 16(a), it is noted that the maximum 
relative error is 6.1%, corresponding to the damage parameter 
θ for the sample with θ = 90°. This result is somewhat different 
from the tendency of the simulated one as indicated in figure 11, 
where the maximum error occurs near θ = 45°. This difference 
might be due to the test error. Figures 16(b) and (c) indicate 

Table 3.  Properties of FBGs used for experimental validation and deployed in the cracked sample with θ = 90°.

Parameter

Sensors

FBG1 FBG2 FBG3 FBG4

Modulation mode of refractive index Gaussian Gaussian Gaussian Gaussian 
Central modulation amplitude of refractive index Δn 1.91  ×  10–4 2.0  ×  10–4 2.0  ×  10–4 2.0  ×  10–4

Apodization factor aG 11.0 17.36 11.0 15.56
Effective refractive index n0 1.370 1.512 1.420 1.406
Poisson’s ratio ν 0.17 0.17 0.17 0.17
Grating length L (mm) 9.3 10.7 9.0 10.3
Center wavelength λB (nm) 1550.430 1550.070 1550.400 1550.072
Photo-elastic coefficient P11 0.113 0.113 0.113 0.113
Photo-elastic coefficient P12 0.252 0.252 0.252 0.252

Table 4.  Properties of FBGs used for experimental validation and deployed in the cracked sample with θ = 45°.

Parameter

Sensors

FBG1 FBG2 FBG3 FBG3

Modulation mode of refractive index Gaussian Gaussian Gaussian Gaussian 
Central modulation amplitude of refractive index Δn 1.85  ×  10–4 1.98  ×  10–4 1.96  ×  10–4 1.80  ×  10–4

Apodization factor aG 15.46 13.67 15.88 9.74
Effective refractive index n0 1.490 1.46 1.445 1.469
Poisson’s ratio ν 0.17 0.17 0.17 0.17
Grating length L (mm) 10.6 10.5 10.4 11.6
Center wavelength λB (nm) 1551.185 1550.230 1550.230 1550.340
Photo-elastic coefficient P11 0.113 0.113 0.113 0.113
Photo-elastic coefficient P12 0.252 0.252 0.252 0.252

Meas. Sci. Technol. 25 (2014) 125109



G Huang et al

16

comparisons between the simulated and real defect contours, 
showing the damage imaging capability. Figures 17(a)–(d) and 
18(a)–(d) depict the comparisons between the reconstructed 

reflection intensity spectra and measured spectra for the four 
FBGs, deployed in the two samples, respectively. There is a 
good agreement between the simulated and measured spectra.

Figure 16.  Relative errors of the experimentally reconstructed damage parameters, compared with the target damage parameters, and the 
corresponding defect geometries for the samples cracked at θ = 45° and θ = 90°: (a) relative errors of the damage parameters, (b) contour, 
θ = 45°, and (c) contour, θ = 90°.
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All the experimental results presented above illustrate 
that satisfactory damage identifiability is achievable, which, 
together with the theoretical simulation, validates our 
approach for reconstructing the damage in the planar cases.

7.  Conclusion

An optimization approach for damage reconstruction based on 
the reflection intensity spectra of FBGs has been developed. 

Figure 17.  Comparison between the measured and reconstructed reflection intensity spectra for (a) FBG1, (b) FBG2, (c) FBG3, and  
(d) FBG4, deployed in the sample cracked at θ = 90°.

Figure 18.  Comparison between the measured and reconstructed reflection intensity spectra for (a) FBG1, (b) FBG2, (c) FBG3, and  
(d) FBG4, deployed in the sample cracked at θ = 45°.

Meas. Sci. Technol. 25 (2014) 125109



G Huang et al

18

Our approach extends FBG-based strain profile reconstruction 
to damage reconstruction. It incorporates the finite element 
and T-matrix methods for the direct photo-elastic problem 
and the GA for the corresponding inverse problem. Both the 
numerical and experimental results show that, by using sev-
eral FBG sensors, our method is capable of reconstructing the 
location, size, and shape of the defect in structural hotspots 
within practically permitted errors. Indeed, it provides us with 
a photo-elastic method to devise an automatic and remote 
damage-imaging technique, thus realizing in-situ and on-time 
inspection of structural damage and enhancing the damage 
identification of SHM. Therefore, our approach enriches FBG-
based sensing technology and its application to engineering.

The study presented in the current work was preliminary. 
It needs to be extended from 2D planar defects to 3D defects. 
The latter work involves more damage parameters and more 
complex elastic boundary value problems, so that the reduc-
tion of computational complexity is a crucial issue. This work 
is under way and the corresponding results will be reported 
later. In addition, the disturbance arising from structural vibra-
tion and noise is a very important issue to address in prac-
tical application. Since the present damage reconstruction is 
a static approach, it is required to develop data processing 
technology to deal with this issue in order to extract the static 
reflection spectra of FBGs from the time series of the meas-
ured reflection spectra.
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