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The surface energy density of nanoparticles exhibits an obviously size-dependent behavior. However, how the
surface energy density changes with the diameter of nanoparticles is still ambiguous. Based on a recently devel-
oped continuum theory considering the size effect in nanomaterials, theoretical analysis is carried out for various
fcc metallic nanoparticles. Surface lattice contractions of nanoparticles are predicted and compared with the
existing experimental data. As a result, the surface energy density decreaseswith the increase of nanoparticle di-
ameter. Such a variation trend of surface energy density is contrary to the prediction of existing theoretical
models but well consistent with the previously atomistic simulations and density functional calculations. The re-
sults in this paper provide a further understanding of the surface effect of nanoparticles, which should be helpful
for the design of nanoscale devices or nanomaterials related to nanoparticles, such as NEMs and nanoparticle-
reinforced composites.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

As one of the typically nano-sized elements, nanoparticles find
their potential applications as building blocks in many miniature de-
vices such as conductors for flexible electronics [1], drug and gene
delivery vehicles [2] and reinforcing phases in advanced nanocom-
posites [3]. The physical and chemical properties of nanoparticles,
e.g., the surface energy density [4], melting temperature [5], chemi-
cal reactivity [6], and so on, are obviously different from the bulk
counterparts and exhibit a distinctly size-dependent behavior. Such
a special characteristic mainly arises from the large surface-to-
volume ratio [7].

Surface free energy density is the most importantly physical attri-
bute characterizing the nature of surface effect, which can be
interpreted as a reversible work per unit area involved in creating a
new surface [8]. For nanoparticles, a strong size effect of surface energy
density emerges when the particle diameter is less than a few nanome-
ters [9,10]. Due to the small size of nanoparticles, it is very difficult to
measure the surface energy density experimentally. Theoretical models
and numerical calculations are always being used to study the surface
energy density at nanoscale. However, two kinds of different opinions
exist.

From the thermodynamic perspective, a series of theoretical models
have been developed to characterize the size effect of surface energy
density [10–12], in which the surface energy density of fcc metallic
86 10 82543977.
n).
nanoparticles has a similar form to the classical Tolman's equation
charactering the size effect of surface tension in nano-droplets [13],

ϕ
ϕ0b

¼ 1

1þ 4δ
d

≈1−4δ
d

ð1Þ

where ϕ and ϕ0b represent the surface energy densities of nanoparticles
and bulk materials, respectively. d is the nanoparticle diameter. δ is the
Tolman length with the same order of magnitude as an atomic diameter
of nanoparticles [10]. As a result, the surface energy densityϕ is predicted
to increasemonotonicallywith the increase of nanoparticle diameter and
gradually tends to the bulk one ϕ0b, which makes fcc metallic nanoparti-
cles similar to liquid droplets [14]. The same conclusionhas beenmadeby
Ouyang et al. [15,16] and a recentMD simulationwith amodified analytic
embedded atommethod (MAEAM) for nickel nanoparticles [17].

Another group of investigations proposed a contrary opinion about
the size effect of nanoparticle surface energy density. With the help of
the Young–Laplace equation [18], surface energy densities of Ag and
Pd nanoparticles were deduced based on the experimental data of lat-
tice parameters [19–21], where the surface energy density of nanopar-
ticles was found much larger than those of the bulk materials. Nanda
et al. [22,23] studied further the surface energy density of Ag nanoparti-
cles using experimental data related to the evaporation temperature, in
which a surface energy density 7.2J/m2 was reported, close to 6.4J/m2

deduced from lattice contraction experiments [19], but much larger
than the bulk one 1.2–1.4J/m2 [24]. A theoretical prediction [25] by an-
alyzing the cohesive energies among atoms in Ag and Au nanoparticles
gave consistent results with Nanda et al. [23]. However, the detailed
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size-dependent feature of surface energy density was not considered in
the above literatures. Recently, a series of numerical calculations based
on the density functional theory (DFT) and EAM potential found that
surface energy densities of Ag, Al and Cu nanoparticles decrease mono-
tonically with the increase of nanoparticle diameters and finally ap-
proach the bulk values [26–28].

Which one of the above two viewpoints is true is still not clear. A fea-
sible approach to study the size effect of nanoparticle surface energy
density is to combine experimental data of size-dependent lattice con-
tractions [19,21,29–31] with the continuum mechanics model. Such a
technique has been adopted by many existing researches. The Young–
Laplace equation was used to describe spontaneous changes of nano-
particle lattice parameters, however, in which the surface energy densi-
ty was taken as a constant without considering effects of the particle
size and surface deformation [9,32,33]. Wolfer [34] applied the surface
elasticity theory [35] to fcc metallic nanoparticles, and the surface elas-
tic constants were determined directly by fitting the experimental data
with theoretical curves. The surface energy density of nanoparticles was
formulated in terms of lattice strains, but the size effect was not consid-
ered also [34].

Recently, an elastic theory for nanomaterials and nanostructures has
been developed by Chen and Yao [36], in which the dependence of the
surface energy density on nanoscale characteristic sizes and surface re-
sidual deformations (surface relaxation) is physically describedwithout
involving the surface elastic constants. The new theory is used in the
present paper in order to analyze the size effect of the surface energy
density of several fcc metallic nanoparticles. Qualitative and quantita-
tive comparisons among the theoretical predictions, existing calcula-
tions and experimental data are carried out. The size-dependent
characteristic of the surface energy density of nanoparticles is analyzed
and discussed. All the analyses provide a better understanding of the
surface effect in nanoparticles and should be helpful for the design of
novel nano-devices and nanomaterials.
2. Brief introduction of the new theory for nanomaterials

An elastic theory based on the surface energy density to characterize
the size effect in nanomaterials has been proposed by Chen and Yao
[36]. Consider a nano-solid with an initial (or reference) configura-
tion in a three-dimensional Euclidean space, which transforms into
a current configuration under an external loading. Assuming that
the material has an idealized crystal structure, a Lagrangian coordi-
nate system is imbedded in the deformed surface and attached to
the atoms [37], with the principal axes 1 and 2 parallel to the two
basic vectors of the surface unit cell, as shown in Fig. 1. a01 and a02
represent the lattice lengths in the two principal directions, respec-
tively. β denotes an angle between the two basic vectors. Due to a
spontaneous surface relaxation, the lattice lengths become ar1 and
ar2. Under an external loading, the lattice lengths further become
a1 and a2 in the current configuration. The Lagrangian surface energy
density ϕ0 in the reference configuration can be divided into a
Fig. 1. Schematic of a surface unit cell in the initial (
structural part ϕ0
stru related to the surface strain energy and a chem-

ical part ϕ0
chem originating from the surface dangling-bond energy,
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where ϕ0b is the bulk surface energy density and D0 is a critical size
(D0 = 3da for nanoparticles and 2da for nano-thin films, where da is
the atomic diameter). D is a characteristic scale of nanomaterials
(e.g., thickness, diameter, etc.). w1 is a parameter governing the
size-dependent behavior of ϕ0

chem, which will be discussed in the fol-
lowing text. Eb is the bulk Young's modulus, ξi = ari/a0i denotes the
surface relaxation parameter, εsi = (ai − ari)/ari is the surface strain
induced only by the external loading andm is a parameter describing
the dependence of bond lengths on the binding energy (m= −4 for
alloys or compounds and m = 1 for pure metals) [38].

The relationship between the Eulerian surface energy density ϕ in
the current configuration and the Lagrangian surface energy density
ϕ0 in the reference configuration satisfies the following equation:

ϕ ¼ ϕ0

Js
ð3Þ

where Js is a Jacobean determinant characterizing the surface deforma-
tion from the reference configuration to the current one. Eq. (3) can also
be found in Nix and Gao [37] and Huang and Wang [39].

In the current configuration, the potential energy function Π of
nano-solids can be written as

Π uð Þ ¼
Z

V−S
ψ εð ÞdV þ

Z
S
ϕdS−

Z
V−S

f � udV−
Z

Sp

p � udS ð4Þ

where ψ is the elastic strain energy density, f and p are the body force
and external surface traction; u and ε are the displacement and strain
induced by f and p. Variational analysis of Eq. (4) yields the equilibrium
equation and stress boundary conditions,

σ �∇þ f ¼ 0 in V−Sð Þ
n �σ � n ¼ p � n−γnn on Sð Þ
I−n⊗nð Þ �σ � n ¼ I−n⊗nð Þ � p−γt on Sð Þ

8<
: ð5Þ

where σ is the bulk Cauchy stress tensor, n is the unit normal vector
perpendicular to the boundary surface S of the nano-solid, I is a unit ten-
sor and γn and γt are the normal and tangential components of an addi-
tional surface-induced traction vector, respectively, which characterizes
reference), relaxed and current configurations.
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the force disturbance at boundaries due to the surface effect. Based on
an infinitesimal element, the virtual work method yields the surface-
induced traction [36],

γt ¼ ∇sϕ; γnn ¼ ϕ
1
R1

þ 1
R2

� �
n ¼ ϕ n �∇sð Þn ð6Þ

where∇s is a surface gradient operator, R1 and R2 are the principal radii
of curvature of a curved surface. Combining Eqs. (3), (5) and (6) leads to
the governing equations of the new theory [36],

σ �∇þ f ¼ 0 in V−Sð Þ
n �σ � n ¼ p � n−ϕ0 n �∇sð Þ

Js
on Sð Þ

I−n⊗nð Þ �σ � n ¼ I−n⊗nð Þ � pþ ϕ0 ∇s Jsð Þ
J2s

−∇sϕ0

Js
on Sð Þ

8>>>><
>>>>:

ð7Þ

In contrast to theG-M theory [35], the new theory no longer requires
the surface elastic constants. The Lagrangian surface energy density ϕ0

in the reference configuration serves as a uniquequantity characterizing
the surface effect of nanomaterials, which depends on the bulk surface
energy density and the relaxation parameter. Both parameters have
clearly physical meanings and are very easy to determine through ex-
periment and simple MD simulation.

3. The surface effect of nanoparticles

3.1. Radial shrinkage

Consider a spherical nanoparticle with its center at the origin of a
rectangular coordinate {x1, x2, x3} as shown in Fig. 2. A spherical coordi-
nate system {r, θ, φ} is also attached on the particle with the θ- and φ-
directions tangential to the particle surface and the r-direction normal
to the particle surface. The un-deformed nanoparticle with an initial ra-
dius r0 is regarded as the reference configuration. After spontaneous re-
laxation, the radius of the nanoparticle shrinks to r1, leading to a
negative displacement Δr = r1 − r0 in the radial direction.

The equilibrium equation of nanoparticles in the spherical coordi-
nate system is

dσ r

dr
þ 2 σ r−σθð Þ

r
¼ 0 ð8Þ
Fig. 2. Schematic of a perfectly spherical nanoparticle. (a) 3-D con
where σr and σθ are the radial and circumferential stress components,
respectively, satisfying the following constitutive relations,

σ r ¼ λþ 2μð Þεr þ λ εθ þ εφ
� �

; σθ ¼ σφ ¼ λþ 2μð Þεθ þ λ εr þ εφ
� �

ð9Þ

Here, εr=dur/dr and εθ= εϕ= ur/r represent the radial and circum-
ferential strain components, respectively; ur is the radial displacement;
and λ and μ are the Lame constants of bulk materials.

After spontaneous relaxation, the traction boundary condition can
be obtained as

σ rð Þr¼r1
¼ −γn ¼ −ϕ n �∇ð Þ ¼ −2ϕ

r1
¼ − 2ϕ

r0 þ Δr
ð10Þ

Substituting Eq. (9) into Eqs. (8) and (10) yields

d2ur

dr2
þ 2

r
dur

dr
−2ur

r2
¼ 0; λþ 2μð Þdur

dr
þ 2λur

r

� 	
r¼r1

¼ −2ϕ
r1

ð11Þ

The solution of Eq. (11) is

ur ¼ −2ϕ
3κ

r
r1

ð12Þ

where κ ¼ λþ 2μ
3 is the bulk modulus of nanoparticles.

Then we have the circumferential strain components and radial
shrinkage on the surface,

εsθ ¼ εsφ ¼ ur

r

� �
r¼r1

¼ − 2ϕ
3κr1

; Δr ¼ urð Þr¼r1
¼ −2ϕ

3κ
ð13Þ

where εθs, εφs are Eulerian surface strains in the current configuration.
One can see that the radial displacement Δr of the nanoparticle surface
has a similar form to that obtained from the classical Young–Laplace
equation [19,33].

Substituting Eq. (3) into (13) leads to

εsθ ¼ εsφ ¼ − 2ϕ0

3 Jsκr1
; Δr ¼ − 2ϕ0

3 Jsκ
ð14Þ
figuration; (b) radial shrinkage due to the lattice contraction.



Table 1
Material parameters of various fcc metallic nanoparticles [15,19,21,29,30,40].

ϕ0b (N/m) a0 (nm) Eb (GPa) κ (GPa) da (nm)

Ag 1.14 0.4086 78 100 0.2889
Au 1.5 0.4074 79 165 0.2884
Cu 1.79 0.3615 110 114 0.25
Pd 2.0 0.389 121 180 0.35
Pt 2.5 0.3916 168 230 0.36
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According to Eq. (2), it is interesting to find that the normal surface
displacement in the new theory depends not only on the surface defor-
mation but also on the particle size.

3.2. The surface energy density of nanoparticles

For a spherical nanoparticle experiencing only a spontaneous lattice
contraction, the surface deformation is isotropic [34]. Imaging an un-
deformed nanoparticle bounded by N square surface unit cells with
atomic spacings a01 = a02 = a0, where a0 is the bulk lattice constant.
After the isotropic surface relaxation, atomic spacings in the surface
unit cells are changed from a0 to ξa0 and the surface relaxation param-
eters in Eq. (2) become ξ1= ξ2= ξ, leading to the surface residual strain
εres = ξ − 1 and the Jacobean determinant Js = (1+ εres)2 = ξ2.

The structural part of the Lagrangian surface energy density of an fcc
metallic nanoparticle without loading can then be expressed as

ϕstru
0 ¼ Eba0

sin β
3þ 1

ξ
−3ξ

� �
ξ−1ð Þ2 ð15Þ

The corresponding chemical part can be written as

ϕchem
0 ¼ ϕ0b 1−c1

da
d0

� �
≈ ϕ0b

1þ c1
da
d0

ð16Þ

where da is the atomic diameter of the nanoparticle and c1= 3w1; d0=
2r0 is the diameter of the nanoparticle in the un-deformed configura-
tion. It can be found that Eq. (16) is exactly the original form of Tolman's
equation [13].

Thus, the Lagrangian surface energy density of an fcc metallic nano-
particle can be specially expressed as

ϕ0 ¼ ϕ0b

1þ c1
da
2r0

þ Eba0
sin β

3þ 1
ξ
−3ξ

� �
ξ−1ð Þ2 ð17Þ

The size-dependent feature of ϕ0 is contributed from the chemical
part [15], which is governed by the parameter c1.

Compared to existing theoreticalmodels [32–34], the surface energy
density of nanoparticles in the present model depends not only on the
particle size but also on the surface relaxation parameter.

4. Analysis of the size effect of nanoparticle surface energy density

For a nanoparticle bounded by N surface unit cells, surface areas be-
fore and after lattice contraction satisfy

S1
S0

¼ Nξ2a20 sin β
Na20 sin β

¼ ξ2 ¼ 4πr21
4πr20

¼ r21
r20

ð18Þ
which yields

ξ−1 ¼ Δr
r0

¼ Δa
a0

ð19Þ

Substituting Eq. (17) into Eq. (14) and noting the Jacobean determi-
nant Js = ξ2 result in the governing equation characterizing the size ef-
fect for nanoparticles,

ξ−1 ¼ − 2
3ξ2κr0

ϕ0b

1þ c1
da
2r0

þ Eba0
sin β

3þ 1
ξ
−3ξ

� �
ξ−1ð Þ2

2
664

3
775 ð20Þ

The surface relaxation parameter ξ can be achieved from Eq. (20),
which further leads to the lattice contraction Δa/a0. Several kinds of
fcc metallic nanoparticles are studied, such as Ag, Au, Cu, Pd and Pt,
with the material properties listed in Table 1. The bulk surface ener-
gy density ϕ0b is taken from Sheng et al. [40]. The bulk lattice con-
stant a0 is from the existing experimental studies [19,21,29–31].
The Young's moduli, bulk moduli and atomic diameters have been
given by Ouyang et al. [15] and Sheng et al. [40]. The value of param-
eter c1 will take 4, 2, 1,−1,−2 and−3, respectively, in order to an-
alyze why two opposite size-dependent behaviors were reported for
the surface energy density of nanoparticles. Detailed discussions on
the effect of parameter c1 will also be made in the following text.

Lattice contractions of Ag, Au, Cu, Pd and Pt nanoparticles obtained
from electron diffraction micrographs [19,21,29,30] are used to com-
parewith our theoretical predictions as shown in Fig. 3a–e, respectively.
One can see that nomatter parameter c1 is positive or negative, the lat-
tice contraction of different metallic nanoparticles is always increasing
with the decrease of nanoparticle diameters. For almost all the five
kinds of different metallic nanoparticles, theoretical predictions with a
negative c1 are always better consistent with the experimental data
than those with a positive c1. An optimum range − 2 ~ −1 for c1 can
be deduced from the quantitative comparisons. Deviations between
the theoretical predictions and experimental datamay be due to several
factors, such as sample preparations, absorbed and dissolved impurities
and measurement techniques [19,21,29,30].

According to Eq. (17), a negative c1 will lead to a reducing surface
energy density with the increase of nanoparticle diameters, and the
surface energy density of nanoparticles must be larger than the
bulk ones as shown in Fig. 4. Such a size-dependent behavior for
nanoparticles is consistent well with the previously numerical re-
sults [26–28] but opposite to the existing theoretical predictions
[10,15,16]. It suggests that the classical Tolman's equation for liquid
nano-droplets (c1 = 4) may not be appropriate for solid nanoparti-
cles [23]. Coincidentally, the chemical part of the present surface en-
ergy density with a negative c1 is analogous to the Tolman's equation
with a negative Tolman length [41–43].

The Lagrangian surface energy density of Ag nanoparticles pre-
dicted theoretically is further compared with the calculations using
the density functional theory (DFT) [26] as shown in Fig. 4. One should
be noted that the bulk surface energy density ϕ0b of Ag nanoparticles
here is 1.0J/m2, which is taken from the DFT calculations [26]. It is
found that, for a negative c1, the surface energy density decreases
with the increase of nanoparticle diameters, consistent well with the
DFT calculations, while an increasing behavior is exhibited for a
positive c1, contrary to the variation trend of DFT simulations. Even
in the cases with a negative c1, a quantitative difference between
theoretical results and DFT calculations is inevitable since the pres-
ently theoretical model assumes a perfectly spherical nanoparticle
in contrast to a nanocluster with a polyhedral shape in DFT calcula-
tion model [26]. The shape difference should be responsible for the
deviation between the theoretical and numerical results [12]. Both



Fig. 3. Comparisons of the theoretically predicted lattice contraction as a function of the nanoparticle diameter with the existing experimental data: (a) for Ag nanoparticles, (b) for Au
nanoparticles, (c) for Cu nanoparticles, (d) for Pd nanoparticles and (e) for Pt nanoparticles.
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the theoretical predictions and the numerical computations of the
normalized surface energy density tend to one when the diameter
of nanoparticles is large enough.

5. Conclusions

Based on the recently developed continuum theory characterizing
the surface effect in nanomaterials [36], the size effect of surface energy
density of nanoparticles is investigated. The lattice contraction of
different fcc metallic nanoparticles is first predicted theoretically and
compared with the experimental data, leading to a negative coefficient
in the chemical part of surface energy density. As a result, the surface
energy density of nanoparticles is found to increase with the decrease
of nanoparticle diameters, which is opposite to the existing theoretical
predictions but consistent with the previously atomistic and DFT simu-
lations. All the analyses in this paper should be helpful to clarify the am-
biguous argument on the size-dependent behavior of nanoparticle
surface energy density.



Fig. 4. Comparisons of the theoretically predicted surface energy density of Ag nanoparti-
cles with DFT simulation results [26].
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