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Abstract To reveal the radical recombination process in the scramjet nozzle flow and study the

effects of various factors of the recombination, weighted essentially non-oscillatory (WENO)

schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reac-

tions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical

method is verified with the measurements obtained by a shock tunnel experiment. The overall model

length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static

pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved.

The fraction Damkohler number is defined as functions of static temperature and pressure to ana-

lyze the radical recombination progresses. Preliminary results indicate that the energy releasing pro-

cess depends on different chemical reaction processes and species group contributions. In

hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during

the chemical equilibrium shift. The contrast and analysis of the simulation results show that the rad-

ical recombination processes influenced by inflow conditions and nozzle scales are consistent with

Damkohler numbers and potential dissociation energy release. The increase of inlet static temper-

ature improves both of them, thus making the chemical non-equilibrium effects on the nozzle per-

formance more significant. While the increase of inlet static pressure improves the former one and

reduces the latter, it exerts little influence on the chemical non-equilibrium effects.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

The supersonic combustion ramjet (scramjet) engine is the key
to air-breathing hypersonic flight. Internationally, the scramjet
engine has been widely investigated, and there is continuing

interest in its performance.1 As a main component of the
scramjet, the nozzle makes high enthalpy flow fully expand
from the combustion chamber and produces most of thrust,
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Fig. 1 General configuration of a hypersonic vehicle.

1414 X. Zhang et al.
whose magnitude and direction have decisive effects on the
scramjet performance.2 Thus related research is necessary.

Due to high speed, a thermal and chemical non-equilibrium

phenomenon is visible in the external and internal flow fields of
a hypersonic vehicle, and different regions require different
levels of chemical and thermal modeling.3 One of the charac-

teristics of the scramjet nozzle flow is the chemical non-equilib-
rium flow. The scramjet operating temperature is extremely
high and a fuel-sufficient combustion is difficult because of

the exceedingly high speed. Radical recombination and kinetic
afterburning exist in the nozzle flow,4,5 which causes some
chemical energy released during the nozzle flow. Because of
this effect, the distributions of the wall pressure get a change

and the nozzle performance is improved.
Previous studies on the chemical non-equilibrium nozzle

flow mostly focused on calculation methods and effects on

nozzle performance, mainly based on a hydrogen-fueled
scramjet nozzle. The chemical non-equilibrium process in the
nozzle was rarely discussed, especially the radical recombina-

tion as its effects on nozzle performance appeared only in
high-temperature conditions. A computer model for describing
quasi-one-dimensional flow was used by Sangiovanni et al.6 to

study the role of hydrogen/air chemistry in nozzle performance
for a hypersonic propulsion system. The study showed that the
finite-rate chemistry should not be neglected in nozzle perfor-
mance simulations, because the beneficial chemical process

persisted throughout the entire nozzle length. Thomas and
Wolfgang7 used a finite element code to model the chemical
reactions considering the finite-rate chemistry and the vibra-

tional relaxations. Different test cases were computed, and
the results were compared with the measured data. Stallker
et al.4 thought that kinetic afterburning could be taken as

occurring when the combustion reaction was interrupted by
the nozzle expansion. The reactions were not completely
quenched and proceeded to produce substantial heat release

in the nozzle. Wang’s study8 indicated that the nozzle could
supplement the combustion in a supersonic combustor so that
the performance of the nozzle could be increased.

The high temperature makes the gas dissociate partially in

the scramjet combustion, and the radical components recom-
bine in the nozzle due to the decrease of temperature with
some energy released to increase the nozzle performance. This

paper aims at analyzing the phenomenon of radical recombi-
nation in the nozzle flow and studying the effect on the scram-
jet nozzle performance, based on a perfect combustion at the

exit of a kerosene-fueled scramjet combustor.
2. Numerical simulation and verification

2.1. Physical model

As shown in Fig. 1, the vehicle studied is a fully integrated
scramjet9 which employs the entire windward surface of the
forebody in the inlet compression process and the entire wind-
ward surface of the afterbody in the exhaust expansion process.

A representative entire-cowl two-dimensional nozzle is designed
by the cubic spline curve method. The geometric parameters of
the nozzle used in experiments and numerical simulations are:

nozzle total length L = 0.497 m, nozzle entrance height
Hin = 0.047 m, nozzle exit height Hout = 0.241 m, and nozzle
width W= 0.06 m.
2.2. Numerical method

The scramjet nozzle expansion process is modeled in sufficient
details to adequately simulate the pressure/temperature history
in the nozzle, and thereby is able to isolate the role of chemical

reaction mechanisms. Since the emphasis of this study is on
nozzle chemistry, the effects due to viscosity and mixing are
neglected in this model. On the basis of the assumptions, the

governing equations are made from the two-dimensional Euler
equations with the conservation of mass in Cartesian coordi-
nates, applying 17 species and 26 elementary reaction models:

@U

@t
þ @E
@x
þ @F
@y
¼ S ð1Þ

where the conservative vector U ¼ ½q; qu; qv; qe; q1; q2;
� � � ; qn�1�

T
, E and F are convective terms, and

S ¼ ½0; 0; 0; 0; r1; r2; � � � ; rn�1�T is a source term; q is the den-
sity; u and v are the velocity components in x-direction and

y-direction; e is the specific internal energy; qi and ri are the
density and mass production rate of each species, andPn

i¼1ri ¼ 0;
Pn

i¼1qi ¼ q.
The governing equations are decoupled by the method pro-

posed in Refs.10,11. Firstly, the equations are mathematically
transformed by

qe� ¼ qe�
Xn
i¼1

qih
0
i ðTÞ ¼ 0:5qðu2 þ v2Þ þ p

c� 1
ð2Þ

where e* and c have no precise physical meanings, but they are
equivalent to the internal energy and specific heat ratio of per-
fect gas in mathematical forms; p is the pressure and h0i is the

standard state specific enthalpy of species i. The variable e in
the conservative vector U is replaced with e*, and the source
term gets a new transformation of

S� ¼ 0; 0; 0;�
Xn
i¼1

rih
0
i ðTÞ; r1; r2; � � � ; rn�1

" #T
ð3Þ

Then, the equations are divided into two parts, flow equa-
tions and chemical equations, according to the operator split-
ting method as follows:

@U

@t
þ @E
@x
þ @F
@y
¼ 0 ð4Þ

@U

@t
¼ S� ð5Þ

To ensure the second-order accuracy of the solution, Strang
splitting is used to decouple the equations. While the equiva-
lent of specific heat ratio is introduced, the flow equations
are similar to the Euler equations of perfect gas, and upwind

WENO schemes12,13 are applied.



Table 1 17 species and 26 steps kerosene–air reaction mechanism.14

No. Reaction A n Ea No. Reaction A n Ea

1 N2 + C12H23) 12CH+ 11H+ N2 4.35 · 109 0 30000 12 CO+ OH= CO2 + H 1.51 · 107 1.28 �758
/N2 0.8/ C12H23 0.8/ 13 CH+ O = CO+H 3.00 · 1012 1 6000

2f CH+ H2 + N2) 2NH+ CH 1.00 · 1015 0 78000 14 CH+ OH= CO+ H2 3.00 · 1013 0 0

/CH 1.0/ H2 0.1/ N2 1.0/ 15 CH+NO=NH+ CO 1.00 · 1011 0 0

2b CH+ 2NH)N2 + H2 + CH 1.95 · 1015 0 0 16 N2 + 2CH= C2H2 + N2 1.00 · 1014 0 0

/CH 1.0/ NH 2.0/ 17 C2H2 + O2 = 2CO+H2 3.00 · 1016 0 19000

3 H2 + OH=H2O +H 1.17 · 1011 1.3 3626 18 N2 + O =N+ NO 6.50 · 1013 0 75000

4 O + H2 = OH+H 2.50 · 1015 0 6000 19 N+ O2 = NO+ O 6.30 · 109 1 6300

5 H + O2 = OH+O 4.00 · 1014 0 18000 20 N+ OH= NO+H 3.00 · 1011 0 0

6f N2 + O2) 2O+N2 1.00 · 1018 0 122239 21 NH+NO=N2O+H 2.00 · 1015 �0.8 0

6b H2 + 2O) O2 + H2 1.00 · 1018 0 0 22 N2O+ OH =N2 + HO2 3.20 · 1013 0 0

7 H2 + 2H= 2H2 2.00 · 1017 0 0 23 N2O + O = 2NO 6.00 · 1014 0 28200

8 H + O2 = HO2 1.00 · 1015 �1.01 0 24 N2O+ O =N2 + O2 6.00 · 1014 0 28200

9 H +HO2 = H2 + O2 6.50 · 1013 0 0 25 N2O + H=N2 + OH 1.50 · 1012 0 0

10 O + HO2 = OH+O2 2.50 · 1013 0 0 26 NH+O= NO+H 2.50 · 104 2.64 0

11 CO+HO2 = CO2 + OH 5.80 · 1013 0 22934

Note: rate coefficients are in the form of k = ATnexp(�Ea/(RT)); f represents forward reaction and b represents backward reaction.

Fig. 2 Comparison of experimental and calculated ignition delay

of kerosene.
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2.3. Reaction mechanism

The 17 species and 26 steps kerosene–air chemical reaction
models shown in Table 1 are employed to calculate by Arrhe-
nius’ equation, where k is the rate constant, T is the absolute

temperature, A is the pre-exponential factor, Ea is the activa-
tion energy, and R is the universal gas constant. In Kundu’s
study,14 the ignition delay times of the models were close to

the experiment values and the models were suitable for the cal-
culation of supersonic combustion. Chang and Lewis15 used
the reaction models in the study of scramjet numerical simula-

tion and reasonable results were achieved.
A direct comparison is made between results of calculated

and experimental data of ignition delay with the gas parame-

ters close to those in a nozzle. Fig. 2(a) shows the predicted
and experimental data of ignition delay obtained by Freeman
and Lefebvre16 versus the reciprocal of the inlet mixture tem-
perature varied from 920 K to 1040 K for an equivalence ratio

of 0.5 and a pressure of 0.1013 MPa. Although the predicted
ignition is much quicker at lower temperature, the agreement
between experiment and prediction is not far-off at higher tem-

perature. Fig. 2(b) shows the comparison of predicted delays
and data measured by Mikolaitis et al.17 in the temperature
range of 1200–2000 K and there is a good agreement between

the calculated and experimental data. The comparisons verify
that the mechanism is applicable to simulate the nozzle flow.

2.4. Experimental verification

A ground experiment was carried out using a shock tunnel18,19

to verify the feasibility of the numerical results. A double det-
onation driver20 was applied to produce high enthalpy gas

steadily to simulate the condition of the scramjet nozzle at a
high Mach number. As shown in Fig. 3, the equipment is
almost the same as a conventional shock tunnel, but the differ-

ence is the detonation in the driven section. The detonation gas
was obtained with the same temperature, pressure, and compo-
nents of the scramjet, by controlling the fuel ratio, as well as

the pressure and temperature at the end of the detonation tube.
The stagnation pressure and stagnation temperature can be
acquired accurately in the driven section so that the compo-
nents of the gas are accessible. The gas is accelerated to a

desired speed by the Laval nozzle.



Fig. 3 Principle of producing high enthalpy gas by the double detonation method.

Table 2 Test conditions.

Parameter Value

Stagnation pressure (kPa) 677

Stagnation temperature (K) 3300

Mass fraction of N2 (%) 69.31

Mass fraction of O2 (%) 12.28

Mass fraction of H2 (%) 9.21

Mass fraction of C2H2 (%) 3.07

Mass fraction of CO2 (%) 6.14

Fig. 4 Calculated field for the test.

Fig. 5 Pressure distributions on the nozzle wall.
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The test conditions shown in Table 2 are the operating
parameters of the driven section achieving a Mach number
of 2.2 at the test nozzle inlet. The calculated field for the test
contains the Laval nozzle and the test nozzle as shown in

Fig. 4, and the structured grids are generated after indepen-
dence check. The mass fractions of the gas in the chemical
equilibrium state are calculated by the equilibrium constant

method. The adiabatic and slip condition is applied to the solid
wall boundary.

In Fig. 5, the pressure distributions on the curved and flat

nozzle walls calculated with the chemical frozen or non-equi-
librium model are compared with the experimental measure-
ments. As single expansion-ramp nozzle flow is asymmetric,
the pressure distributions on the curved and flat walls are

totally different. The pressure on the flat wall decreases along
the flow direction, while the pressure on the curved wall drops
off quickly at the entrance. For this reason, the predicted value
of the curved-wall pressure is in poor agreement compared
with experimental data near the entrance. The calculated result

with the non-equilibrium models is closer to the measured
value particularly in the front of the nozzle where a greater
contribution to the trust is made. In general, the experimental
data make an effective inspection of the numerical method.

3. Analysis of dissociation energy releasing processes

Since the gas rapidly expands in the nozzle, the chemical equi-

librium being assumed at the exit of the combustor cannot be
maintained. The radical components recombine along with the
expanded flow and the dissociation energy release in this way.

The equilibrium shift is estimated to analyze the chemical
non-equilibrium processes in the nozzle. The parameters at
the nozzle exit can be calculated approximately by the

one-dimensional theory of steady compressible fluid flow with
the entrance parameters known.



Fig. 6 Fractions-time variations in the chemical equilibrium

shift.
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The equilibrium shift is calculated with the initial pressure

and temperature at the nozzle exit, and the initial values of
the fractions are the values at the entrance. Fig. 6 shows the
fractions-time variation curves under the condition with an

inlet of Ma = 2.2, T = 2700 K, and p = 100 kPa. The varia-
tions of H2O, CO2, and N2 have been given in Fig. 6, and they
reflect the chemical reaction progresses containing elements of
H, C, and N, respectively. At time t= 0 ms, the gas in chem-

ical equilibrium at the entrance cannot stay at the equilibrium
state under conditions of exit. The fractions of H2O, CO2, and
N2 start to increase due to the chemical equilibrium shift and

the increasing rates gradually slow down as the Fig. 6 shows.
The fraction of H2O reaches the equilibrium value much ear-
lier, which means that the chemical reactions containing H

progress more quickly.
The chemical time scale of one component sc,i is the time

when the component reaches 50% of the shift process, which

is defined as follows:

x
sc;i ;out
i ¼ xin

i þ 50%ðxeq;out
i � xin

i Þ ð6Þ

where xi is the fraction of species i, superscript ‘‘in’’ and ‘‘out’’
represent nozzle entrance and exit, and superscript ‘‘eq’’ repre-
sents chemical equilibrium. Namely, the change of the
Fig. 7 Variations of DI and ge
component fraction reaches 50% of the change of the chemical

shift at that time. The sc values of H2O, CO2, and N2 are
marked in Fig. 6. As shown in Fig. 6, sc; H2O is much smaller
and that explains that hydrogen chemical reaction is much fas-

ter than the others.
The Damkohler number is defined in a chemical non-equi-

librium process at very high velocities of the fluid and the
chemical reaction flow is divided into three models, i.e., the

chemical frozen, equilibrium, and non-equilibrium models. In
the scramjet nozzle flow, the influence of convective terms in
the governing equations is much more significant than that

of diffusive terms, so the first Damkohler number is accepted
and corresponds to the ratio of the flow time scale sf to the
chemical time scale sc as follows:

DI ¼
sf
sc

ð7Þ

If DI fi1, there is enough time to complete the chemical

reaction during the flow process and it is chemical equilibrium
flow. When DI fi 0, the residence time in the flow field is short
for the chemical reaction and it is chemical frozen flow. When

DI is close to 1, sf and sc are in the same order of magnitude
and the flow is chemical non-equilibrium.

The flow time scale sf is defined as follows:

sf ¼ L=�v ¼ L

ðvin þ voutÞ=2 ð8Þ

where �v is the average velocity; vin and vout are the velocity of
nozzle entrance and exit.

Fig. 7 shows the variations of DI numbers with T and p of
the nozzle inlet when the nozzle inlet Mach is 2.2. Three kinds
of DI numbers including H2O, CO2, and N2 are given to com-

pare the different chemical reaction processes containing H, C,
or N. All the DI numbers increase quickly as the inlet temper-
ature increases as Fig. 7(a) shows. The values are of the same

order of magnitude with 10�3 when the inlet temperature is
2000 K, while they increase to the order of magnitude of
10�1 when the inlet temperature is 3000 K. That means the

chemical reaction is frozen when the inlet temperature is
2000 K, while it cannot be neglected when the inlet tempera-
ture is 3000 K by the definition of DI numbers. The DI num-
bers increase with the inlet pressure increasing as shown in

Fig. 7(b), but the relative growth of DI numbers caused by
pressure is not as big as that caused by temperature.
q with T and p (Ma = 2.2).



Fig. 9 Pressure contour (Ma = 2.2, p= 100 kPa, T = 2700 K).

1418 X. Zhang et al.
In all conditions calculated, DI;H2O is one order of magni-
tude larger than DI;CO2

and DI;N2
. That indicates the chemical

reaction process containing hydrogen requires less time, and

the process is faster than the others in the nozzle flow.
The amount of energy released from radical recombination

is the most when reaching chemical equilibrium at the nozzle

exit. The definition of geq is the ratio of the decrease of the spe-
cific enthalpy when reaching chemical equilibrium to the spe-
cific kinetic energy of the inlet as follows:

geq ¼ Dh
0:5v2

¼
Pn

i¼1x
in
i hiðToutÞ �

Pn
i¼1x

out;eq
i hiðToutÞ

0:5v2
ð9Þ

where geq indicates the relative amount of the most energy that
can be released during the flow. Fig. 7 also shows the variation

of geq with the inlet static temperature and pressure. The value
of geq increases rapidly with the increase of the temperature,
while it decreases with the increase of the pressure. That is

because higher temperature promotes dissociation while higher
pressure inhibits it. The increase of the inlet temperature not
only accelerates the recombination, but also increases the
potential energy. Therefore, it should enhance the effect of

chemical non-equilibrium significantly.
The chemical reaction processes containing H, C, or N have

different reaction rates as previously stated, which have differ-

ent contributions to the energy released. All the species are
divided into four groups: H group (H, H2O, OH, H2, and
HO2), C group (CO, CO2, CH, and C2H2), N group (N,

NO, N2O, N2, and NH), and O group (O and O2). Fig. 8 shows
the variations of the energy contribution ratios of each group
with the inlet static temperature. H group and C group are
major contributors, and the ratio of H group increases with

increasing temperature. The contribution ratio of N group
always approximates 5%, so the reactions containing N have
less chemical energy released.

4. Influences of various factors on radical recombination

The chemical non-equilibrium effect on the nozzle is caused by

radical recombination in the case of complete combustion at
the inlet. d is defined to quantify the chemical non-equilibrium
effect on nozzle performance and it is the relative increment of
Fig. 8 Variations of the energy contribution ratios with the inlet

static temperature (Ma = 2.2, p= 100 kPa).
the nozzle thrust values calculated with the chemical non-
equilibrium model to those with the frozen model as follows:

d ¼ FCh
x � FFr

x

FFr
x

ð10Þ

where Fx is the nozzle thrust, superscripts ‘‘Ch’’ and ‘‘Fr’’ rep-
resent chemical non-equilibrium model and chemical frozen
model. Use the numerical methods described previously to

simulate the nozzle flow with the chemical non-equilibrium
and frozen models and get the nozzle thrust value by integra-
tions of the wall pressure. Fig. 9 presents the calculation results

of the pressure contour in chemical non-equilibrium flow.
Eq. (11) gives the definition of g, which is the ratio of the

decrease of the specific enthalpy between the inlet and the out-
let to the specific kinetic energy of the inlet. This is quantifica-

tion of the chemical energy released during the nozzle flow. ei is
defined the same as in Eq. (12) to describe the progress of the
chemical equilibrium shift to species i. Species i is closer to

equilibrium, when ei is closer to 100%.

g ¼ Dh
0:5v2

¼
Pn

i¼1x
in
i hiðToutÞ �

Pn
i¼1x

out
i hiðToutÞ

0:5v2
ð11Þ

ei ¼
xout
i � xin

i

xeq
i � xin

i

ð12Þ
4.1. Influences of inlet static temperature and pressure

Fig. 10 demonstrates the variations of d, g, and ei with

static temperature and pressure of the nozzle inlet. When
Ma= 2.2 and p= 100 kPa, d increases from less than
0.03% to nearly 5% with the increase in static temperature
from 2000 K to 3000 K as shown in Fig. 10(a). Thus the chem-

ical non-equilibrium effects on nozzle performance cannot be
neglected at higher temperature. Simultaneously g increases
in lockstep with d, while ei has a gentle increase relatively. That
reflects the chemical non-equilibrium effects are closely related
to the chemical energy released during the nozzle flow. eH2O

increases from 13.4% to 22.8%, while eCO2
and eN2

increase

from 1%–2% to nearly 15%. The acceleration of recombina-
tion progress is one reason to explain the increase of chemical
energy released with the temperature increasing, and the other
one is the increase of potential dissociation energy as previ-

ously noted. Both of them result in more significant chemical
non-equilibrium effects.

WhenMa = 2.2 and T = 2700 K, ei increases with the inlet

static pressure increasing from 75 kPa to 175 kPa as Fig. 10(b)
shows, but d and g remain unchanged essentially, because the



Fig. 10 Variations of d, g, and ei with the inlet static temperature and pressure.

Fig. 11 Variations of d, g, and eH2O with the inlet static

temperature (p= 100 kPa, Ma = 2.2).

Fig. 12 Variations of d, g, sf, and eH2O with the inlet Mach

(T = 2700 K, p= 100 kPa).

Radical recombination in a hydrocarbon-fueled scramjet nozzle 1419
potential dissociation energy decreases with the increase of the
pressure. Therefore, the inlet pressure has little influence on the
chemical non-equilibrium effects on nozzle performance.
4.2. Influence of nozzle scales

Another nozzle model with a 2L length obtained by doubling
the scale of the original one is used to analyze the influence of

nozzle scale on radical recombination. As the inlet static tem-
perature has significant influences and the chemical reaction
process containing hydrogen is faster, Fig. 11 gives variations

of d, g, and eH2O with the inlet static temperature. The varia-
tions of d, g, and eH2O for the 2L nozzle are the same as those
for the L nozzle, but the values are always higher. With the

increase of the nozzle scale, sf and DI numbers increase. There-
fore, the chemical reactions progresses get better at the nozzle
outlet and the chemical non-equilibrium effects on nozzle per-

formance are more significant.
4.3. Influence of inlet Mach

With the increase of the nozzle inlet Mach, sf and DI numbers

decrease, so the chemical reactions have less time. As Fig. 12
shows, the variations with the inlet Mach from 1.6 to 2.4,
eH2O and g both decrease with increasing inlet Mach, which

means that the chemical reactions progresses get worse. There-
fore, the chemical non-equilibrium effects on nozzle perfor-
mance are weakened.
5. Conclusions

(1) Radical recombination is one reason that makes the
scramjet nozzle flow chemical non-equilibrium and

affects the nozzle performance. The relative impact of
chemical non-equilibrium on nozzle performance
exceeds 1% which cannot be neglected when the inlet

static temperature reaches 2500 K in this paper.
(2) Reactions with H are much faster in the chemical equi-

librium shift in a hydrocarbon-fueled scramjet nozzle.

The DI of H2O is generally several times larger than
those of CO2 and N2. Reactions with N have the least
potential chemical energy, which is less than 5% of total
normally.
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(3) The increase of the inlet static temperature not only

improves the chemical reaction progresses, but also
increases the potential dissociation energy which can
be released. d, used to quantify the effect on the nozzle

performance, increases from less than 0.03% to nearly
5% with the temperature from 2000 K to 3000 K
according to calculated results.

(4) The increase of the inlet static pressure can accelerate

the chemical reactions but reduce the fraction of radical
components, so the two opposite effects make the non-
equilibrium effect on the nozzle performance change

slightly with the pressure.
(5) There is more adequate chemical reaction time due to

the increase of the nozzle scale, so the radical recombi-

nation progress is improved. While there is less time
due to the increase of the nozzle inlet Mach, the effect
on nozzle performance is weakened.
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