
Engineering Fracture Mechanics 133 (2015) 85–98
Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier .com/locate /engfracmech
A non-local approach to crack process modeling in ceramic
materials subjected to thermal shock
http://dx.doi.org/10.1016/j.engfracmech.2014.11.007
0013-7944/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: LSPM, CNRS UPR 3407, Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse
Tel.: +33 1 49 40 28 89; fax: +33 1 49 40 39 38.

E-mail address: jia.li@univ-paris13.fr (J. Li).
Jia Li a,⇑, Fan Song b, Chiping Jiang c

a LSPM, CNRS UPR 3407, Université Paris XIII, Villetaneuse, France
b State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
c Solid Mechanics Research Center, Beijing University of Aeronautics and Astronautics, Beijing, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 April 2014
Received in revised form 2 November 2014
Accepted 17 November 2014
Available online 22 November 2014

Keywords:
Non-local model
Multiple cracking
Thermal shock
Finite element analysis
Ceramics
In this paper, we present a non-local approach to fracture modeling in brittle or quasi-
brittle materials and its finite element implementation. The proposed fracture model is
constructed on the basis of the conventional maximal principal stress criterion for uniform
tensile loads and the Griffith–Irwin criterion for crack propagation prediction. Conse-
quently, the proposed fracture criterion can be used to predict both the crack initiation
and the crack growth. Moreover, we also showed that when the element size is much smal-
ler than the characteristic length scale of the material, the proposed fracture model is
mesh-independent. By using the proposed model, we carried out detailed numerical
simulations on cracking process of ceramic materials subjected to thermal shock loading.
The comparison with the experimental results shows that the periodic and hierarchical
structure of the crack pattern is faithfully reproduced by the numerical simulations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Fracture assessment in brittle or quasi-brittle materials is an essential but difficult task in computational mechanics.
Developing efficient and accurate finite element models to simulate tensile fracture behavior has been extensively studied
in the last two decades. Two types of fracture models, i.e., the damage-mechanics-based models and fracture-
mechanics-based models, are most frequently used in cracking simulations. The damage-mechanics-based models assume
that the fracture is caused by continuously varying damage in the solid. The crack propagation is described by reducing the
material stiffness and strength of the elements. The fracture-mechanics-based models are based on displacement disconti-
nuity between crack surfaces, usually represented by nonlinear interface elements. The constitutive behavior of such
elements is described by softening relations between traction and crack relative displacements, as assumed by the cohesive
crack model.

The damage-mechanics-based models have been very popular because of its computational convenience [1–6]. These
models present numerous advantages such as their capacity in dealing with default development before formation of
macro-cracks, the possibility to include micromechanics-based behaviors and the easy numerical implementation. One
drawback of the damage-mechanics-based models may be the large spread damage zones, which can hardly be regarded
as cracks. On the other hand, the fracture-mechanics-based models have also been largely investigated. Enormous success
, France.
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Nomenclature

r1 first principal stress
rc ultimate tensile stress
~rij non-local stress
~r1 non-local first principal stress
dP variation of potential energy
dE variation of kinetic energy
dl
!

crack growth vector
�p dimensionless crack length
�s dimensionless crack spacing
dS newly created crack surface
m Poisson’s ratio
a thermal expansion coefficient
q mass density
u, w space weighting functions
c specific heat
D damage
d side length of the triangle elements.
E Young’s modulus
Gc fracture energy per unit surface
h convective heat transfer coefficient
k thermal conductivity
KI stress intensity factor
KIc critical stress intensity factor
R radius of the non-local interaction area
r0 distance between the crack tip and the position where the non-local tensile stress is maximal
T temperature field in quenched specimens
T0 initial temperature of specimens
T1 water temperature in quenching bath
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has been achieved in fracture analysis with the cohesive model [7–11] or the extended-finite element method (XFEM) [12–
16]. The main advantages of these crack models remain in their strictness in analysis; the accurate solutions and easily
applied criteria.

Simulating multi-cracking phenomenon is a formidable challenge for numerical fracture mechanics. The ability to predict
both the crack initiation and crack growth, the mesh-independency of the numerical results, the stable, robust, accurate and
low-cost numerical algorithms are some essential exigencies for fracture models simulating such a phenomenon. Francfort
and Marigo [17] developed a so-called damage gradient model in which the damage zone converges to a crack as the length
parameter tends to zero. Efficient algorithms were developed in order to resolve complicated cracking problems [18,19].
Pijaudier-Cabot and Bazant [20,21] developed a practical nonlocal model in a continuum damage setting. The development
of nonlinear gradient models, initially developed in plasticity behavior description, has afterwards been transferred to dam-
age mechanics [22,23]. Another method involves lattice simulation that considers a solid as a network of bars or beams [24–
26]. Several attempts by modeling directly micro-cracks and their growth were reported in earlier researches by using the
boundary element method [27–29].

In the framework of notch fracture analysis, the so-called finite fracture mechanics was developed. Neuber [30] first pro-
posed the effective stress criterion based on average stress over a characteristic length related to the notch radius. The failure
criterion, proposed by Novozhilov [31] and expanded by Seweryn [32], suggests considering the mean normal stress along
the anticipated path of the failure. Pluvinage [33] proposed averaging the stress distribution over the entire process volume
to establish more accurate fracture criteria. Introduction of a length scale parameter in crack growth criteria was succes-
sively used to predict the crack initiation or to take the non-linear mechanisms into account for crack growth [34–39].
The principal advantage of this class of theories resides in their accuracy and simplicity. However, these analyses were suit-
able only for individual crack formation and evolution. On the basis of the finite fracture mechanics concept, Li et al. [40,41]
developed a Fast Fourier Transform (FFT) code, which is capable to simulate multiple crack onset and crack growth in brittle
materials.

In this paper, the ideas described in Li et al. [40,41] were essentially followed. However, the FFT modeling is appropriate
only for analyses of periodic structures under periodic loading; Moreover, the criterion proposed in Li et al. [40,41] is capable
to forecast the position, but not the orientation and length of the new crack. In the present work, this model is improved and
implemented to a finite element code. Thus the location, orientation and length of the newly created crack are explicitly
determined. We have demonstrated that the proposed fracture criterion can be used to predict both the crack initiation
and the crack growth. Moreover, its mesh-independency was also discussed through some numerical examples.
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Using the established non-local damage model, we carried out detailed numerical simulations on cracking process of the
ceramic specimens under thermal shock loading. The crack pattern formation under thermal shock is a very rapid and highly
complex process. In fact, the multi-cracking phenomenon such as that observed in thermal shock experiments is intrinsically
difficult to simulate. The proposed model in the present work allows a highly realistic cracking simulation. Comparison with
the experiments shows that the multi-cracking process was faithfully reproduced by numerical simulations. The predicted
crack paths and the characteristics of the crack patterns agree excellently with the experimental observation.

2. A non-local fracture criterion

In this section, we describe the establishment of the non-local fracture model for brittle and quasi-brittle materials.

2.1. Crack onset and crack growth criterion

The commonly used maximum stress fracture criterion for brittle material is the start point in constructing the non-local
fracture criterion, namely:
D ¼
0 r1 < rc

1 r1 P rc

�
ð1Þ
where D is the damage of the considered element; r1 is the first principal stress and rc is the ultimate tensile stress of the
material. According to this criterion, the element will be instantaneously broken when the first principal stress reaches the
material strength.

If this strength criterion is acceptable to predict the failure of a non-cracked structure, however, it is not suitable to pre-
dict fractures due to crack. In order to overcome this shortcoming, various methods have been proposed. Among these meth-
ods, the so-called non-local approach [20] is widely used. The non-local stress field can be calculated as follows:
~rij ¼
Z

V
uðx� yÞrijðyÞdy ð2Þ
where u(x � y) is a space weighting function which describes the mutual non-local interactions and depends only on the
distance between the source point x and the receiver point y. Mathematically, the normalization conditionR

V uðx� yÞdy ¼ 1 is required. Hereafter we adopt the following weighting function:
uðx� yÞ ¼ wðx� yÞR
V wðyÞdy

ð3Þ
Therefore, the non-local first principal stress in a 2D structure writes:
~r1ðxÞ ¼
~r11 þ ~r22

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r11 þ ~r22

2

� �2

þ ~r2
12

s
ð4Þ
By means of this non-local principal stress, the damage model (1) can be rewritten as follows:
D ¼
0 ~r1 < rc

1 ~r1 P rc

�
ð5Þ
It is clear that the main tasks in the construction of this non-local fracture criterion are how to determine the weighting func-
tion a(x � y) and the non-local interaction volume V. In 2D calculations and for simplicity, we define V as a circle of radius R
and centered at the source point x. For simplicity, a cone-shaped function is chosen as the weighting function w:
wðrÞ ¼
0 r > R
1� r

R r 6 R

(
ð6Þ
where r = kx � yk is the distance between the points x and y. Therefore, the single parameter to determine is R, the radius of
the non-local interaction area. To this end, we enforce the criterion (5) to be exact in two special stress states as follows:
1. It must be exact for fracture prediction under uniform tensile loading.

In this case, the non-local stress field is exactly equal to the local stress field. Therefore, the non-local fracture criterion (5)
is exactly equivalent to the local fracture criterion (1).

2. It must be exact for propagation prediction of a mode-I crack.

In this case, the crack grows if the Griffith–Irwin criterion KI P KIc is satisfied, where KI is the stress intensity factor of the
crack tip and KIc is its critical value [42,43]. We first prove that the non-local fracture criterion (5) can be connected to the
Griffith–Irwin criterion. Consider a mode-I loaded macro-crack. According to the Williams asymptotic solution [44], the
stresses at a point near the crack tip are modulated by the stress intensity factor KI as follows:
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r11 ¼ KIffiffiffiffiffiffi
2pr
p f 11ðhÞ f 11 ¼ cos h

2 1� sin h
2 sin 3h

2

� �
r22 ¼ KIffiffiffiffiffiffi

2pr
p f 22ðhÞ f 22 ¼ cos h

2 1þ sin h
2 sin 3h

2

� �
r12 ¼ KIffiffiffiffiffiffi

2pr
p f 12ðhÞ f 12 ¼ cos h

2 sin h
2 cos 3h

2

ð7Þ
where r and h are the polar coordinates of this point. The non-local principal stresses at a near-tip point (r0,h0) write:
~rijðr0; h0Þ ¼ KI

Z p

�p

Z R

0
uðr0; h0Þ 1ffiffiffiffiffiffiffiffiffi

2pr
p f ijðhÞr0dr0dh0 ð8Þ
According to (2), (4) and (8), the non-local first principal stress can be written as follows:
~r1ðr0; h0Þ ¼ KIRðR; r0; h0Þ ð9Þ
The function R(R, r0, h0) can straightforwardly be obtained from (4), (7) and (8). The geometrical quantities in (10) and (11)
are illustrated in Fig. 1. From Fig. 1, we have the following relationships between these quantities:
r cos h ¼ r0 cos h0 þ r0 cos h0 r sin h ¼ r0 sin h0 þ r0 sin h0
These relationships permit us to evaluate the non-local first principal stress field according to (8) and (9).
On one hand, if we assume that ~r1ðr0; h0Þ is the maximal value of the non-local principal stresses near the crack tip, this

point will be broken when ~r1ðr0; h0ÞP rc according to the damage criterion (5). On the other hand, from the Griffith–Irwin
criterion of fracture [42,43], the crack grows when the stress intensity factor KI attains its critical value KIc. Thus we obtain
the condition of the damage for this point:
rc ¼ KIcRðR; r0; h0Þ ð10Þ
This condition permits to determine the geometrical parameters R, r0 and h0. For a mode-I crack growth, it is clear that h0 = 0.
The parameters R and r0 can be evaluated by resolving numerically the following optimization problem:
FðRÞ ¼ rc � KIcmax
r0

RðR; r0Þ ¼ 0 ð11Þ
In fact, the parameters R and r0 are material-dependent. Especially the non-local action radius R is proportional to (KIc/rc)2.
This analysis leads us to establish the following non-local crack initiation and crack growth criterion: Find the point

where the non-local first principal stress is maximal, a new crack perpendicular to the maximal non-local first principal
stress will appear at this point if ~r1 P rc .

As the proposed non-local fracture criterion is exact for crack onset prediction under uniform tensile loading and for the
propagation prediction of a mode-I crack, the fracture prediction under other types of stress concentrations can just be con-
sidered as a natural interpolation between the two former special cases. Consequently, the proposed fracture criterion can be
applied to predict the crack onset as well as the crack growth with high accuracy.

Another feature of this criterion is that it does not need to handle the propagation of individual cracks in the solid. Con-
sequently, multi-crack problems can easily be assessed without evaluate individually each crack toughness.

In Table 1, we list the indicative values of R and r0 of some brittle materials estimated from (11) according to the above-
described method. The values of KIc and rc are extracted from [45].

From this table, we can give a reasonably accurate estimation of the values of R and r0 by using the following simple
formulas:
R ¼ 1:05
p

KIc

rc

� �2

r0 ¼ 0:4R

ð12Þ
R

r’ 
r θ’ 

θcrack 
(r0,θ0) 

Fig. 1. Non-local action zone.



Table 1
Non-local parameters R and r0 for some brittle materials.

KIc (MPa
p

mm) rc (MPa) R (mm) r0 (mm)

Glass 22 80 0.0256 0.0102
Epoxy (PMMA) 36 72 0.0835 0.033
Alumina 94 220 0.0631 0.025
Graphite cast iron 1220 500 1.925 0.79
Concrete 12.65 4 3.334 1.325
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2.2. Length of crack extension

The above-described fracture criterion predicts the apparition of a newly created crack. Under some special conditions,
we can evaluate the length of the new crack.

We consider the initial state of a loaded structure to be elasto-static. Next, we consider the same structure after the onset
of a new crack or the growth of a preexisting one. The energy balance between these two states writes:
dPþ dEþ GcdS ¼ 0 ð13Þ
Here, dP and dE are the changes respectively in potential and kinetic energy. The newly created crack surface is denoted dS
and Gc is the fracture energy per unit surface, the so-called toughness. In quasi-static analysis, we can assume that the initial
and final states are static and then dE = 0. Eq. (13) permits us to evaluate the new fracture surface during the cracking
process:
dS ¼ � dP
Gc

ð14Þ
In general, (14) is a transcendent equation that is difficult to resolve. This is because that first, dP is function of dS and sec-
ond, dS may depend on numerous parameters describing the shape of the newly cracked surface.

In 2D problems, the crack growth can be represented by means of a vector dl
!

that is perpendicular to the first principal
direction. The length of dl

!
can be divided into two part, namely jdlj

�!
¼ r0 þ dl, as shown in Fig. 2. Thus we can write:
dl ¼ � dPðdlÞ
Gc

� r0 ð15Þ
The solution of this transcendent equation by iteration gives us an estimation of dl
!

.

3. Finite element implementation

Since the material is considered as linearly elastic before its complete damage, the crack propagation evaluation is just a
sequence of linear analyses on the cracked structure. The linear feature of the present approach permits us to avoid compli-
cated non-linear analysis and therefore to construct stable and robust algorithms.

In the framework of the proposed criterion, the crack propagation can be realized by determining the crack growth vector
dl
!

. To this end, we find first the point where the non-local first principal stress is maximal; then we create a new crack of
length dl = r0 + dl, with dl in the crack growing direction and r0 in the opposite direction, see Fig. 2.

The simplest manner to create a crack along a line is to eliminate all elements in intersection with this line. Hereafter we
give the algorithm used in the finite element implementation:

1. For a given loading step, resolve the linear elastic problem by using the finite element method. Set an initial value of dl.
2. Calculate the total potential energy, noticed P1.
3. Calculate the non-local principal stress field; Find the point xd where the non-local principal stress is maximal. Deter-

mine the two possible crack growth directions, as shown in Fig. 3a.
4. If ~r1 � rc , go to step 1.
5. Otherwise compare the average non-local first principal stresses along the two directions in order to determine the

crack growth direction.
r0 

dl

1
~σ

lδ
Preexisting 
crack

Crack growth 
vector

Fig. 2. Crack growth vector.



(a) (b)

1
~σ

pre-existin  crackg

1
~σ

r0

dl 

Fig. 3. Creation of the new crack. (a) Position and possible directions of the crack path. (b) Crack growth vector and element elimination.
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6. In the crack growth direction, draw a line of length dl from xd. In the opposite direction, draw a line of length r0.
Remove the elements through which these lines pass, as shown in Fig. 3b.

7. Resolve the linear elastic problem with the new structure. Calculate the total potential energy, noticed P2; Check the
convergence |dl + r0 + DP/Gc| < e, where DP = P2 �P1 and e is a preset tolerance value. Go to step 1 if convergence is
attained.

8. Otherwise set dl = bdl + (1 � b)(�DP/Gc � r0), 0 < b < 1.
9. If dl P dl0, where dl0 is a preset value, set dl = dl0, go to 3.

10. Otherwise restore the removed elements at step 6 then go to step 6.

4. Validation of the non-local fracture criterion

As mentioned-above, the proposed non-local criterion is equivalent to the maximal principal stress criterion in the case of
uniform tensile loading and to the Griffith–Irwin criterion in the case of a mode-I crack. The validation for the first case is
trivial and does not need more comments. We focus our attention on the case of mode-I loaded cracks.

Consider a 2D square plate in PMMA (polymethylmethacrylate) with a central crack. The dimension of the specimen is
2W � 2W = 10 � 10 mm2 with a central crack of different sizes, namely a/W = 0, 0.02, 0.06, 0.1, 0.2, 0.4 and 0.5, here a = 0
represents a non-cracked plate. The mechanical properties of the material are: Young’s modulus E = 3000 MPa, Poisson’s
ratio m = 0.3, the ultimate stress rc = 72 MPa, the critical stress intensity factor KIc ¼ 36 MPa

ffiffiffiffiffiffiffiffiffi
mm
p

. With these material
parameters and by using the analysis in Section 2, we can calculate the non-local action radius R = 0.0835 mm and the dis-
tance between the crack tip and the position of the maximal non-local principal stress r0 = 0.033 mm.

The plate was meshed with three-node triangle plane stress elements. In order to investigate the influence of meshing, dif-
ferent sizes of the elements near the crack tip are used in the simulations, namely d = R/4, R/3, R/2 and R, where d is the side
length of the triangle elements. A pure tension along the normal direction of the crack was applied on the ends of the plate. By
calculating the non-local first principal stresses and then finding their maximal value, we can easily determine the remote
tensile stress at fracture according to the non-local fracture criterion (5). Then the stress intensity factor of such a central crack
can be found from any handbook of stress intensity factors [46]. We compare the stress intensity factors thus obtained to the
critical value KIc, and we can evaluate the accuracy of the method. The results of these calculations are shown in Fig. 4. In this
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Fig. 4. Normalized stress intensity factor KI/KIc and normalized remote stresses r1/rc as function of normalized semi-crack length a/W for mode-I loaded
cracks at fracture.
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figure, the stress intensity factors are normalized by the critical value KIc; the remote stresses at fracture are normalized by the
ultimate stress rc of the material and the semi-crack length a is normalized by the semi-plate width W.

From this figure, we can observe that for sufficiently long cracks (a/W > 0.05), the normalized stress intensity factor
KI/KIc ffi 1. Therefore, the stress intensity factors at fracture evaluated by using the present non-local fracture criterion equal
correctly the critical stress intensity factor of the material. Thus we demonstrate the equivalence between the proposed frac-
ture criterion and the Griffith–Irwin criterion KI P KIc. For short cracks, the present fracture criterion is no longer equivalent
to the Griffith criterion that is not suitable to predict the short crack growth. The critical stress intensity factor decreases as
the crack length decreases. Moreover, the remote stress at fracture tends to the material tensile strength as the crack length
tends to zero. In this case, the proposed fracture criterion degenerates to the maximum principal stress criterion for non-
singular stresses.

The mesh-independency of the crack prediction can be obtained by using sufficiently refined meshes. Apart from the
results calculated with d = R that represents quite a coarse meshing, the calculations with finer meshes, e.g. d = R/4, R/3
and R/2, provide us with nearly identical remote loads at fracture. In fact, the non-local action zone should contain enough
number of elements in order to guarantee a good accuracy on the calculation of non-local stresses. The element size d = R/2
offers already sufficient accuracy for the crack growth prediction;
5. Thermal shock problem

In this section, we describe the application of the proposed non-local criterion in evaluating the cracking process in cera-
mic specimens under thermal shock.

Ceramic materials are widely used in various industries due to their excellent high temperature mechanical properties,
corrosion resistance, wear resistance, erosion resistance, oxidation resistance, etc. However, their inherent brittleness and
insignificant ductility make them particularly vulnerable to thermal shock failure. In general, crack formation is considered
as the major reason of failure in thermo-structural engineering. Understanding the mechanisms of cracking process in
ceramics under thermal loads has been one of the most important tasks in the research of this field.

Researches on fracture of ceramic materials underwent thermal shock was initiated 60 years ago by Kingery [47]. He first
proposed a so called ‘‘critical stress’’ fracture criterion according to which cracks appear when the maximal thermal stress
reaches the ultimate stress of the material. Hasselman [48] proposed a different approach in which the driving force for crack
propagation is derived from the elastic energy stored in the body. In fact, these two different theories describe two different
step of the fracture procedure during a thermal shock, i.e., the initiation and growth of macro-cracks. The non-local fracture
model proposed in this work combines these theories in a single numerical framework that permits us to be able to predict
both the initiation and growth of cracks in ceramics under thermal shock. Therefore, we can also say that the proposed
method is congruent with the theories of Kingery and Hasselman and suitable to deal with fracture of ceramics subjected
to thermal shock.

Ceramic materials undergo fast failure process under thermal shock, which leads to complex crack patterns. The multiple
crack aspect in failure process renders the fracture assessment very difficult. Numeral difficulties can arise in simulating
thermal shock induced fracture by using conventional fracture and damage models. For this reason, few numerical works
have been reported in the literature so far due to the inherent complexities in multi-cracking modeling. Jiang et al. [49] car-
ried out experimental and numerical works in determining the crack patterns by taking the temperature-dependence of the
material parameters into account. On the basis of a variational approach, Bourdin et al. [50] developed a variational model
capable to perform complicated fracture analysis in brittle materials under thermal shock.

In this paper, we present the numerical results obtained by using the present non-local fracture criterion and compare
them with the experimental results.
5.1. Experiments

The experiments that we try to reproduce are those carried out by Jiang et al. [49]. In Jiang et al., 99% Al2O3 powder was
thermoformed into 50 mm � 10 mm � 1 mm thin specimens. The specimens were tightly tied together with metallic wires
in sets of five, with two additional thick ceramic plates on the outside to prevent the temperature distribution from being
disturbed by coolant accessing the interior surfaces of the specimens. Then they were heated to a temperature T0 ranged
from 300 �C to 600 �C. After that, the heated specimens were dropped into a water bath of T1 = 20 �C by free fall. The crack
pattern presents some typical characteristics. First, due to the small thickness of the specimens and the well-chosen temper-
ature range, true two-dimensional crack patterns are observed. Second, a great number of cracks appear and form a compli-
cated, periodic and hierarchical crack pattern. Third, the number of cracks increases whereas the crack spacing decreases as
the initial temperature increases. We also observe a tendency towards equal spacing between cracks.

According to Kingery [47], multiple cracks appear when the thermal tensile stress due to surface shrinkage attaints a crit-
ical level. These cracks will first grow simultaneously until the strain energy cannot support the simultaneous propagation of
all cracks. At this moment, some cracks stop to propagate, whereas the others keep growing [51]. This process can repeat
several times and then form a periodic and hierarchical crack pattern as observed in experiments.

In the following, we will attempt to reproduce these properties of crack patterns by direct numerical simulations.
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5.2. Temperature field

The temperature field during the quenching test is the source of the stress concentration in the specimens and therefore
must be firstly evaluated. The experimental conditions allow us to regard the temperature field as two-dimensional. Analyt-
ical solution exists for the thermal conduction of this kind of specimens. Establish a Cartesian coordinate system Oxy with
the origin at the center of the specimen and x and y coinciding with the specimen axes. The transient temperature field
T = T(x, y, t) at any instant t in the specimen can be expressed as follows:
T � T1
T0 � T1

¼
X1
m¼1

Xm exp �a2
m

at

L2
1

 !
cos am

x
L1

� �" # X1
m¼1

Ym exp �b2
m

at

L2
2

 !
cos bm

y
L2

� �" #
ð16Þ
where
Xm ¼ 2 sin am
amþsin am cos am

Ym ¼ 2 sin bm
bmþsin bm cos bm
with am and bm are the roots of the following transcendent equations:
tan am ¼ hL1
kam

tan bm ¼ hL2
kbm

ð17Þ
where L1 and L2 are respectively the semi-length and semi-width of the specimen; h is the convective heat transfer coeffi-
cient; a = k/qc; k, q, c are the thermal conductivity, density and specific heat, respectively.

After numerical solution of (17), the temperature field can directly be obtained from (16). We assume that the cracking
process does not influence the temperature field. This assumption is approximately justified by the fact that the cracks are
essentially oriented in the temperature gradient direction.

5.3. Finite element model and material parameters

The ceramic specimens were assumed to be linearly elastic, homogeneous and isotropic. Fukuhura and Yamauchi [52]
experimentally studied the temperature dependence of the Young’s modulus and the Poisson ratio for alumina and reported
that they remain approximately unchanged in the range 200–600 �C. An experimental report by De Smet and Bach [53]
showed that the fracture toughness KIC of two types of alumina differ slightly at 200 and 600 �C. Therefore, the mechanical
characteristics are assumed to be constant and not influenced by temperature variation. From available data, Young’s mod-
ulus E, Poisson’s ratio m, the ultimate tensile stress rc, the density q, and the energy release rate G of 99% Al2O3 ceramics are
listed in Table 2 [54,55]. The critical stress intensity factor is deduced from KIc ¼

ffiffiffiffiffiffi
GE
p

. The non-local action radius deduced
from (11) is R = 0.063 mm, r0 = 0.025 mm.

Conversely, the thermal parameters such like the thermal conductivity k, the specific heat c and the thermal expansion
coefficient a are temperature-dependent [56,57]. Consequently, adopting constant values in the quenching simulations is an
approximate and simplified assumption. The values used in the simulations are listed in Table 2.

The thermal parameter that has a key influence on cracking process during the quenching tests is the convective heat
transfer coefficient h. The available data give scattering estimations of this parameter and the mutual deviation is high up
to an order of magnitude (h � 104 � 105 W/(m2 K)) [56–60]. It is a common knowledge that this parameter depends on
numerous factors such as the temperature of the bath and specimen temperature [58–62]. In this work, the so-called
semi-inverse method described in Jiang et al. [49] is used to estimate the values of h at different temperature. This approach
consists in finding an appropriate value of h for a temperature T0 such that the calculated average crack spacing at the spec-
imen surface agrees with that observed in experiments then the crack length, their periodical and hierarchical characteristics
and their evolution are numerically predicted by using the proposed model with this h value. The values of h for different
temperatures T0 obtained by using this approach are listed in Table 3. For comparison, the h values estimated in Jiang
et al. [49] by using the same approach are also listed in the table. Comparing these results, we remark that the same variation
tendency is obtained in these two works, whereas in the present work, the variation of h is less pronounced than that
obtained in Jiang et al. [49]. The differences between the values obtained in these two studies are essentially due to different
assumptions adopted in these two works. We will return to this point in the next section.

The proposed non-local fracture model is an instantaneous damage model. An element is linearly elastic before its com-
plete failure. Therefore, only linear elasticity solution is required in finite element modeling. This aspect of the approach
Table 2
Mechanical and thermal parameters used in the simulations.

E (MPa) m rc (MPa) P (kg/m3)

370,000 0.3 220 3980
G (J/m2) k (W/(m K)) c (J/(kg K)) a
24.3 31 880 7.5 � 10�6



Table 3
Heat transfer coefficient h (W/(m2 K)) for different temperature T0.

T0 300 �C 350 �C 400 �C 500 �C 600 �C

Present work 65,000 90,000 82,000 70,000 60,000
Jiang et al. [49] 54,500 100,000 86,000 57,000 45,000
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avoids the costly and complicated algorithm for non-linear solution. However, iterations are needed for the determination of
the crack growth length dl according to (15). Nevertheless, no extraordinary accuracy is required in this calculation since the
real increment of dl is necessarily times of the element size when we use the element elimination technique. The conver-
gence tolerance on dl that we used is about the tenth of the element size.

By taking the symmetry of the specimen into account, only a quarter of it was meshed by finite elements. The specimen
was meshed with three-node plane stress elements. The side size of the elements is about d = 0.021 mm, e.g. about a third of
the non-local action radius R. The 2D finite element discretization of the specimen contains about 570,000 elements and
650,000 degrees of freedom. This is quite a refined discretization comparing with respect to the specimen size
(25 � 5 mm2). As the damage bands have a width of one element size, the damaged bands are very narrow and can be con-
sidered as sharp cracks. Using coarser discretization d = R/2 provided very similar numerical results. Based on our experi-
ence, the time interval in the simulation was set from 10�5 to 1 s. The time increment is 10�5 s at the beginning and
gradually increases to about 0.05 s at the end of the simulation.
6. Numerical results and discussions

6.1. Crack initiation at the specimen surface

As we have analysed, the crack initiation and growth depend uniquely on the level of the non-local first principal stresses.
Let us examine the distribution of the non-local first principal stress just before the crack initiation in the specimens. Fig. 9
shows its distributions along the longer edge of the specimen.

In an earlier analysis [49], this type of specimens is considered as infinitely long with perfect uniformly distributed stress
along the specimen edge. Consequently, the crack initiation is considered as instantaneous and simultaneous. However, even
though the material is considered as perfectly homogeneous in the simulation, the stress distribution is not perfectly uni-
form for specimens with finite size. Fig. 5 shows the maximal principal stress distribution along the longer edge of the spec-
imen. We observe clearly a maximal stress value at a point on the edge where the first crack should initiate before others.
Therefore, the crack initiations are not exactly simultaneous but successive one after another. From this point of view, the
successive crack initiation predicted by present method is physically more reasonable.

In Fig. 6, we show the positions of the first crack onsets and the non-local first principal stress distribution in the spec-
imen at this instant. When the non-local criterion is fulfilled at a point, a crack is created according to the proposed criterion
and the described algorithm. As a consequence, the stress relaxation takes place at the vicinity of this point. Then the algo-
rithm will find another position where the non-local principal stress is maximal and create a crack if the fracture criterion is
fulfilled. This procedure will repeat until the temperature gradient is no longer capable to produce sufficient stress concen-
tration to onset new cracks. Then a time increment will provide a new temperature map that may probably lead to new
cracking process.

In Fig. 7, the crack patterns obtained with numerical simulations are illustrated for different instants during the
quenching test. The different colors indicate the levels of the maximal principal stress such that the stress concentrations
can be distinguished. The removed elements are colorized in black, and then the crack formation by removing successively
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Fig. 5. Distribution of the non-local first principal stress along the specimen edge.
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Fig. 6. First crack onsets and stress redistribution on the specimen border.

(a): t=0.0017s 

(b): t=0.0127s 

(c): t=0.097s 

(d): t=0.717s 

Fig. 7. Simulation results on crack patterns at different times after quenching, T0 = 500 �C.
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the damaged elements can clearly be observed. These images confirm the scenario of the cracking process during the
quenching described in earlier works [49]. At the beginning, the thermal shock cracks initiate at a critical time (about
10�3 s after the quenching). All cracks appear within a very short time with a nearly equal spacing, then they propagate uni-
formly and rapidly (Fig. 7a). Then the propagation speed decreases gradually until some of them stop growing. Only a
reduced number of cracks continue to propagate such that the crack spacing increases until 2 or 3 times larger (Fig. 7b).
In the following steps, the crack growth may deviate and attempt to form equal crack spacing (Fig. 7c). The final simulation
crack patterns (Fig. 7d) are very similar to those observed in experimental results. This remark supports the cracking process
above described.

6.2. Direct comparison with the experiments

Fig. 8 illustrates the final crack patterns of the numerical simulations for different initial quenching temperatures. Even
though the random effects such as the ceramic micro-structural heterogeneity and the experimental non-deterministic fac-
tors have not been taken into account in the numerical simulations, we can confirm that the simulations of the present work
reproduce faithfully the crack patterns obtained from quenching tests.

Globally speaking, the simulation results shown in Fig. 8 reproduce all the essential characteristics of the real crack
patterns: Multiple cracks are obtained for different initial quenching temperatures; The cracks initiate on the contour and
(a) T0 =300°C 

(b) T 0 =350°C 

(c) T 0 =400°C 

(d) T 0=500°C 

(e) T0 =600°C 

Fig. 8. Comparison between the crack patterns in numerical models and in real specimens.

Table 4
Dimensionless crack length �p ¼ p=L2.

T0 = 300 �C T0 = 350 �C T0 = 400 �C T0 = 500 �C T0 = 600 �C

Numerical results 0.68 0.71 0.72 0.76 0.76
Test [49] 0.71 0.73 0.72 0.77 0.79



Fig. 9. Normalized crack spacing �s ¼ s=L2 vs normalized crack length �p ¼ p=L2.
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propagate into the interior of the specimens; Periodical and hierarchical crack structure is correctly reproduced; We also
observe a tendency towards equal spacing between cracks during all the cracking process as in real specimens.

6.3. Characteristic values of the crack patterns

In general, the numerical simulations provide more regular crack patterns comparing to those in real specimens. This is
because that the material heterogeneities in the real material at microscopic level have not been included in the modeling.
However, statistically speaking, the principal features of the crack patterns can be brought out from numerical results. In
Table 4, we compare the average lengths of the long cracks in numerical and experimental crack patterns. The term ‘‘long
crack’’ in the present work means that the dimensionless crack length �p ¼ p=L2 P 0:6, where p denotes the crack length.
Generally speaking, very good agreement is obtained between all the numerical simulations and the experiments.

Another useful comparison is made in Fig. 9 on the diagram ‘‘crack spacing vs crack length’’. According to Bahr et al. [63],
this diagram can serve as justification for applying a model to a real material. Fig. 9 shows the comparison between the
experimental and numerical results on such curves. In Fig. 9, the average crack spacing s has been determined by counting
the intersection points of cracks with a straight line in the depth p. These values were normalized by the semi-width of the
specimens to obtained the corresponding dimensionless values �s ¼ s=L2 and �p ¼ p=L2. The experimental results are obtained
from statistics over 5 specimens while the numerical results are issued from one simulation for each initial quenching tem-
perature. Because of the hierarchy feature of the cracks, the crack spacing decreases as the crack length increases. We can
remark that this tendency is respected by both the experimental and numerical results. However, the experimental curves
are smoother, indicating the less distinct hierarchy of crack lengths in real specimens, due to the randomness of initial flaws
and non-determinist aspects in experiments. In contrast, the numerical results exhibit several jumps and plateaux, indicat-
ing a more pronounced hierarchical feature as the random factors are not considered in the numerical models. Apart from
this point, it is shown that the numerical model and the experiments agree unexpectedly well.

7. Concluding remarks

In this work, a non-local failure model was proposed to predict crack initiation and crack growth in a 2D structure made
of brittle materials. It was then implemented into a finite element code. This non-local fracture model was successfully
applied to simulating the crack evolution in ceramic materials subjected to thermal shock. From the results of the numerical
simulations, the following conclusions can be formulated:

1. The proposed non-local fracture model is equivalent to the maximum principal stress criterion for a specimen under pure
tensile loading, and to the Griffith–Irwin criterion for the crack propagation. The other stress states can be considered as a
natural interpolation between these two extreme situations. This aspect ensures a good accuracy in crack onset and crack
growth predictions.

2. The implementation of the non-local fracture criterion into a finite-element code provides an efficient numerical tool for
cracking process prediction. The numerical results on the prediction of the critical loads at fracture and crack paths are
independent of meshing when the size of the element is sufficiently small.

3. The numerical simulation reproduced faithfully the multi-cracking process and the crack patterns in ceramic specimens
subjected to quenching tests. The periodical and hierarchical characteristics of the crack patterns were accurately pre-
dicted. The parameters describing the crack patterns such as the average crack spacing and the crack lengths were cor-
rectly estimated from the numerical results. The numerical simulations allow a direct observation on crack initiation and
growth in the specimens, which is quite a difficult task in experimental studies.
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