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for example, contact switch (Loh and Espinosa 2012). In 
general, it is desirable to make sensors and actuators that 
have a minimum gap distance and a large surface area 
(Yang 2006). Smaller gap distance requires smaller actua-
tion voltage, less power consumption and less amount of 
energy stored in the system. If the stored energy is large, 
the discharge current densities during the contact of sus-
pended structure and substrate can be so large to ablate 
the active element or damage the electrode, which is the 
so-called burn-out phenomenon (Loh and Espinosa 2012). 
A straightforward solution to burn-out is the smaller gap 
distance. However, such solution comes at the expense of 
favoring the stiction failure mode. Use of dimples or cavi-
ties (Li et al. 2010; Yang 2006) to reduce contact area, or 
hydrophobic surface coating to reduce surface energy (Loh 
and Espinosa 2012; Maboudian and Howe 1997), or to 
operate the device in dry or vacuum environment to reduce 
capillary force (Wei and Zhao 2007; Wu et al. 2011), can 
not completely prevent stiction from occurring during the 
release process or in-use applications because of the pres-
ence of van der Waals (vdW) force (DelRio et  al. 2005). 
Stiction is a major failure mechanism for the microelectro-
mechanical systems (MEMS) structures and extensive stud-
ies have been done on this topic. Stiction is the competition 
result of the microstructure elastic energy and microstruc-
ture-substrate interfacial energy, i.e., the work of adhesion 
(de Boer and Michalske 1999; Knapp and de Boer 2002; 
Legtenberg et al. 1994; Maboudian and Howe 1997; Mas-
trangelo and Hsu 1993a, b; Zhang and Zhao 2011, 2012).

The presence of residual stress and its gradients in a 
microstructure, which in essence changes the stiffness 
and elastic energy of the microstructure (Zhang and Zhao 
2006), is a common phenomenon. As a direct outgrowth 
of silicon-based microelectronics, the manufacturing tech-
nique of using successively patterned deposition of thin-film 

Abstract  The competition between the adhesive force 
and the beam restoring force determines the stiction shape 
of a microbeam. The presence of residual stress changes 
the beam stiffness and thus leads to the change of the beam 
restoring force. This study presents a model of incorporat-
ing the residual stress effect for the beam stiction. The pre-
vious models of arc-shape and S-shape correspond to the 
zero residual  stress  case, which also prescribes the stiction 
shape. When the residual stress becomes large, arc-shape 
and S-shape significantly deviate from the actual stiction 
shape of a slender beam. With the assumed stiction shape of 
arc-shape and S-shape, suspension length is the only param-
eter needed to characterize the stiction shape and suspension 
length can also be used to uniquely determine the adhesion 
energy. However, there are infinite combinations of residual 
stress and adhesion energy which can result in the same 
suspension length. Besides suspension length, the beam 
rise above the substrate can also be used as a parameter to 
characterize the stiction shape. This study presents a method 
of using these two parameters to uniquely determine the 
residual stress and adhesion energy as an inverse problem. A 
computation technique of using the stiction shape symmetry 
to significantly reduce the computation is also demonstrated.

1  Introduction

Suspended micromechanical structures have been exten-
sively used in varieties of microsensors and microactuators, 
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polysilicon and sacrificial oxide layers is applied to fabri-
cate those MEMS structures (de Boer and Michalske 1999). 
Polysilicon is prone to have residual stress/gradients, which 
is strongly dependent on the deposition process and heat-
ing cycles, including doping or annealing (Yee et al. 2002). 
For a clamped-clamped microstructure (Legtenberg et  al. 
1994; Li et al. 2010; Maboudian and Howe 1997; Yee et al. 
2002; Zhang and Zhao 2012), the axial thermoelastic stress 
due to the temperature variation also has the impact on the 
microstructure stiction (Yee et  al. 2002). Even for a canti-
lever, when the stiction occurs with the S-shape configura-
tion, which in essence is also a clamped-clamped configu-
ration (de Boer and Michalske 1999; Mastrangelo and Hsu 
1993a; Zhang and Zhao 2011), thermoelastic stress is also 
shown to have an influence on the microstructure stiction 
(Rogers et  al. 2002). Residual stress can be the dominant 
factor in the microstructure deflection and stiction (Wong 
et  al. 2007). Large residual stress makes the deflection of 
a plate more like a membrane one (Komaragiri et al. 2005; 
Wong et  al. 2007). For example, Yang (2006) modeled the 
stiction of a microstructure with (large) residual stress as a 
membrane structure. The previous studies on the stiction of 
a mircostructure either assume the zero residual stress (de 
Boer and Michalske 1999; Legtenberg et al. 1994; Li et al. 
2010; Mastrangelo and Hsu 1993a, b; Zhang and Zhao 2004, 
2011, 2012), or the residual/thermoelastic stress is known as 
a measured quantity (Rogers et al. 2002; Wong et al. 2007; 
Yee et al. 2002), or a control parameter (Majidi et al. 2005). 
However, residual stress/gradients and thermoelastic stress 
in general are not known a priori. Thermoelastic stress is 
obtained by measuring the material coefficient of thermal 
expansion (CTE) and the temperature variation (Rogers et al. 
2002; Yee et  al. 2002). When the residual stress gradients 
are asymmetric along the microstructure thickness, which 
generates bending moment and thus deflection, the residual 
stress and its gradients can be characterized as a function of 
the microstructure dimensions (Zhang and Zhao 2006) or 
thermoelastic stress/temperature (Chen et  al. 2002). When 
the residual stress gradients are symmetric along the micro-
structure thickness and no deflection occurs, bulge test is 
often used to extract the residual stress inside a microstruc-
ture (Vlassak and Nix 1992). By any standard, measuring the 
residual stress and its gradients or thermoelastic stress inside 
a microstructure is not a trivial thing. Extra experimen-
tal setup to monitor the temperature variation and heating 
devices are often needed in the thermoelastic stress measure-
ment (Chen et al. 2002; Rogers et al. 2002). Multiple special 
specimens are needed (Vlassak and Nix 1992; Zhang and 
Zhao 2006); the extraction of residual stress and its gradients 
often involves complex numerical simulation (Chen et  al. 
2002; Zhang and Zhao 2006). In a bulge test, a pneumatic 
device is needed to exert a uniform pressure to deform the 
microstructure (Vlassak and Nix 1992). Furthermore, bulge 

test requires the microstructure in test to have a large deflec-
tion to extract residual stress, which involves complex non-
linear mechanics analysis (Komaragiri et  al. 2005; Vlassak 
and Nix 1992; Wong et al. 2007). For the MEMS structure 
with a small gap distance, the requirement of large deflection 
can not be satisfied.

Besides the residual stress/gradients and thermoelastic 
stress, the nominal adhesion energy is another unknown 
material property in a stiction test. The nominal adhesion 
energy is found by minimizing the system total energy with 
respect to the suspension length (de Boer and Michalske 
1999; Legtenberg et al. 1994; Maboudian and Howe 1997; 
Mastrangelo and Hsu 1993a; Yang 2004; Yee et  al. 2002; 
Zhang and Zhao 2011, 2012). The total energy is the sum 
of the elastic energy and surface energy. The residual stress 
and thermoelastic stress generate axial force; the residual 
stress gradients generate bending moment. They all result 
in the change of the microstructure elastic energy. When 
the residual stress/gradients and thermoelastic stress are 
(assumed) zero or measured, the elastic energy can be cal-
culated and the total energy minimization gives the relation 
of adhesion energy and detachment length. Such relation is 
given as follows for a cantilever beam with zero axial stress

where γs is the nominal adhesion energy, E1 and t are the 
beam Young’s modulus and thickness, respectively. H is the 
gap distance; S is called the suspension length or the detach-
ment length. C is a constant, C = 3/8 for the arc-shaped 
stiction (Maboudian and Howe 1997; Mastrangelo and Hsu 
1993b) and C = 3/2 for the S-shaped stiction (de Boer and 
Michalske 1999; de Boer et al. 1999; Yang 2004). Clearly, 
Eq.  (1) presents an one-to-one relationship of adhesion 
energy and suspension length: once the suspension length 
is measured, the adhesion energy is uniquely determined. 
Similarly, if the nonzero residual axial stress/strain is meas-
ured, the adhesion energy can also be uniquely determined 
by the suspension length (Maboudian and Howe 1997; Yee 
et al. 2002). When the axial stress is unknown, as shown in 
this study, the one-to-one relationship can no longer hold: 
there are infinite combinations of the axial stress and adhe-
sion energy which can result in the same suspension length. 
For any given E1, t and H, as indicated by Eq. (1) for the 
zero axial stress case, the suspension length (S) is the only 
parameter needed to be measured in a stiction test.

Mathematically, the reason for no need to measure the 
out-of-plane deflection profile is that the deflection shape 
is assumed (Zhang and Zhao 2011, 2012). As shown in this 
study, the assumed deflection shapes such as arc-shape and 
S-shape, which are the zero axial load case, can not capture 
the stuck beam deflection shape when the axial stress is rel-
atively large. On the other hand, the mature measurement 

(1)γs = C
E1H2t3

S4
,
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technique of Michelson interferometer is often used in 
a stiction test (de Boer and Michalske 1999; Jensen et al. 
2001; Mastrangelo and Hsu 1993b) and the out-of-plane 
deflection of a stuck microstructure can be measured with 
the high accuracy of nanometer scale (Jensen et al. 2001). 
The deflection profile of a stuck microbeam is used to iden-
tify the structural nonidealties such as the compliance of 
support post (DelRio et al. 2006; Jensen et al. 2001). When 
the axial stress and adhesion energy are given, the sus-
pension length is uniquely determined as a forward prob-
lem. However, in a stiction test, the axial stress and adhe-
sion energy are the unknowns; the suspension length and 
deflection profile are the measured quantities (de Boer and 
Michalske 1999; Legtenberg et  al. 1994; Maboudian and 
Howe 1997; Mastrangelo and Hsu 1993a, b; van Spengen 
et  al. 2004). Therefore, in practice, the following inverse 
problem is encountered: how to use the suspension length 
and deflection profile to determine the axial stress and 
adhesion energy? This study presents the solution to this 
inverse problem. One obvious advantage of solving this 
inverse problem is that there is no need for extra experi-
mental setup to measure residual stress or thermoelastic 
stress in a stiction test.

2 � Model development

Figure  1a shows a clamped-clamped (C-C) beam under 
a concentrated load P and an axial load T. The coordinate 
system is also shown in the figure, which coincide with the 
transverse load. The beam is with the length of 2L and sepa-
rated from substrate with the gap distance of H. When stic-
tion occurs, some portion of the beam is in contact with the 
substrate. The beam displacement W = W(x) is thus divided 
into three zones as shown in Fig.  1a: W2 is the beam dis-
placement in the contact zone; W1 and W3 are the displace-
ments in the suspension zones (Weitsman 1970; Zhang and 
Murphy 2004). For brevity, the governing equations for the 
beam under an asymmetric load P are given as the following
 

E1 is the beam Young’s modulus, I is the area moment of 
inertia defined as I = bt3/6 (2b: the beam width and t: the 
beam thickness). δ(x) is the Dirac delta function. 2L is the 

(2)















E1I d4W1

dx4 − T d2W1

dx2 = 0, −L1 < x < x1

E1I d4W2

dx4 − T d2W2

dx2 + k(W2 − H) = Pδ(x), x1 ≤ x ≤ x2

E1I
d4W3

dx4 − T
d2W3

dx2 = 0, x2 < x < L2

Fig. 1   a Schematic diagram of 
a clamped-clamped beam under 
a concentrated transverse load 
P and an axial load T . The coor-
dinate system is also shown. b 
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beam length, L1/L2 is the distance from the left/right clamped 
end to the concentrated load and 2L = L1 + L2. x1 and x2 are 
the contact separation points, which are the unknowns to be 
determined. x1 and x2 are also the crack tip locations from 
the viewpoint of fracture mechanics (de Boer and Michalske 
1999; de Boer et al. 1999; Knapp and de Boer 2002; Jones 
et al. 2003). x2 − x1 = 2A is the beam attachment length and 
S = L − A is the suspension length. T is the beam axial load. 
As mentioned above, thermoelastic stress, residual stress and 
its symmetric gradients generate axial load; the asymmetric 
stress gradients generate bending moment (Zhang and Zhao 
2006). Therefore, the above model only accounts the axial 
load effect of the residual stress and thermoelastic stress. 
However, as proved by Knapp and de Boer (2002), the bend-
ing moment only changes the initial equilibrium configura-
tion and has no impact on the stiction behavior of a beam 
(in the small linear deformation range). In practice, there is 
no need to measure the initial equilibrium configuration or 
curvature due to the bending moment of asymmetric resid-
ual stress gradients (Knapp and de Boer 2002). The contact 
between the beam and substrate is modeled by the elastic 
foundation model and k is the modulus of elastic founda-
tion. −k(W2 − H) is thus the contact pressure exerted by the 
substrate on the beam, which was also demonstrated to have 
impact on the equilibrium configuration of a stuck beam 
(Zhang and Zhao 2011, 2012). As shown in appendix, the 
contact pressure between beam and substrate is (implicitly) 
assumed zero in both the arc-shape and S-shape models. The 
contact pressure can also have the impact on the nominal 
adhesion energy. For example, Jones et al. (2003) observed 
that the nominal adhesion energy increases after several 
loading/unloading cycles. The explanation is that the contact 
pressure during the loading process induces the plastic defor-
mation of the contacting surface asperities (Wu et al. 2011, 
2013; Zhang and Zhao 2012), which increases the actual 
contact area and as a result of that γs increases.

For a rectangular beam indenting a substrate which is 
modeled as an elastic half space, k is given as follows (Biot 
1937)

 E2 is the Young’s modulus of substrate. The following non-
dimensionalization scheme is introduced (Weitsman 1970; 
Zhang and Murphy 2004; Zhang 2008)

(3)k = 0.71E2

(

E2b4

E1I

)1/3

.

(4)

ξ = βx, wi = βWi(i = 1, 2, 3), ξ1 = βx1,

ξ2 = βx2, h = βH, l1 = βL1,

l2 = βL2, l = βL, � =

T

E1Iβ2
, F =

P

4β2E1I

 β is defined as β = 4

√

k
4E1I

 (Weitsman 1970; Zhang and 

Murphy 2004), which has the unit of m−1. Physically, β−1 
is also the length used to evaluate the effect of beam bend-
ing on the contact (Castillo and Barber 1997). The dimen-
sionless quantity F indicates the ratio of external concen-
trated load to the beam transverse stiffness (Zhang and 
Zhao 2011, 2012); � indicates the (order of) ratio of axial 
load to the beam transverse stiffness.

Now Eq. (2) is nondimensionalized as the following

Here (),ξ = d/dξ and � = T/(E1Iβ2) as given in Eq. (4). 
The solution forms to Eq. (5) are dependent on �. For the 
zero axial load case of � = 0, the solution forms are given 
as follows (Weitsman 1970; Zhang and Murphy 2004)

 Ai, Bi, Ci and Di (i = 1, 2 and 3) are twelve unknown con-
stants. These twelve unknowns together with ξ1 and ξ2 are 
the fourteen unknowns in total to be solved.

For the tensile load case of � > 0, the solution forms are 
given as follows

where α =
√

�, f1 =
√

2 cos
θt

2
, f2 =

√
2 sin

θt

2
 and 

θt = arctan(

√

16−�2

�2 ). For the compressive load case of 
� < 0, the solution forms are given as follows

Now α =
√

−�, f1 =
√

2 cos
θc

2
, f2 =

√
2 sin

θc

2
 and 

θc = π − arctan(

√

16−�2

�2 ). When � = 0, θt = θc = π/2 
and f1 = f2 = 1 for both the tensile and compressive load 
cases, w2 solution forms recover those in Eq. (6) of the zero 
axial load case.

To solve the fourteen unknowns, fourteen equations are 
needed. At the contact separation points of x1 and x2, the 
following eight matching conditions must be satisfied

(5)







w1ξξξξ − �w1ξξ = 0, −l1 < ξ < ξ1
1
4

w2ξξξξ − �w2ξξ + w2 − h = Fδ(ξ), ξ1 ≤ ξ ≤ ξ2

w3ξξξξ − �w3ξξ = 0, ξ2 < ξ < l2.

(6)
w =























w1 = A1ξ3 + B1ξ2 + C1ξ + D1

w2 = A2 cosh ξ sin ξ + B2 cosh ξ cos ξ + C2 sinh ξ sin ξ

+D2 sinh ξ cos ξ + F

2
(cosh ξ sin |ξ | − sinh |ξ | cos ξ) + h

w3 = A3ξ3 + B3ξ2 + C3ξ + D3

(7)

w =























w1 = A1 cosh(αξ) + B1 sinh(αξ) + C1ξ + D1

w2 = A2 cosh(f1ξ) sin(f2ξ) + B2 cosh(f1ξ) cos(f2ξ)

+C2 sinh(f1ξ) sin(f2ξ) + D2 sinh(f1ξ) cos(f2ξ)

+ F

2f1f2
[cosh(f1ξ) sin |f2ξ | − sinh |f2ξ | cos(f1ξ)] + h

w3 = A3 cosh(αξ) + B3 sinh(αξ) + C3ξ + D3

(8)

w =























w1 = A1 cos(αξ) + B1 sin(αξ) + C1ξ + D1

w2 = A2 cosh(f1ξ) sin(f2ξ) + B2 cosh(f1ξ) cos(f2ξ)

+C2 sinh(f1ξ) sin(f2ξ) + D2 sinh(f1ξ) cos(f2ξ)

+ F

2f1f2
[cosh(f1ξ) sin |f2ξ | − sinh |f2ξ | cos(f1ξ)] + h

w3 = A3 cos(αξ) + B3 sin(αξ) + C3ξ + D3
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The matching conditions can be obtained by applying the 
principle of virtual work. It is noticed that the above match-
ing conditions are the same as those with zero axial load 
(Zhang and Murphy 2004; Zhang 2008). The same match-
ing conditions are also obtained by Lin and Adams (1987) 
in the tensionless contact of a beam under an axial load, by 
Ghatak et al. (2004, 2005) in a film peeled from a substrate, 
and by Jiang et al. (2008) in the buckling of film on sub-
strate. The matching conditions of Eq. (9) are also referred 
to as the transversality conditions (Kerr 1976; Liu 2010). 
The four boundary conditions of a C-C beam are given as 
follows

Here we assume the rigid support post by setting the zero 
rotation angle of dw/dξ(−l1) = 0. The rotation angle 
may not be zero due to the compliance of support post (de 
Boer and Michalske 1999; DelRio et al. 2006; Jensen et al. 
2001).

Two constraint conditions are given as follows (Zhang 
and Zhao 2011, 2012)

where αr is a dimensionless parameter defined as 
αr = 4bγs/(E1Iβ2) (Zhang and Zhao 2011, 2012). Physi-
cally, 

√
αr/2 is the dimensionless critical normal crack open-

ing displacement due to the adhesion energy of γs (Zhang 
and Zhao 2012). This upward deformation of 

√
αr/2 at ξ1 

and ξ2 is also demonstrated (by exaggeration) in Fig. 1a. The 
above two constraint conditions are obtained by minimiz-
ing the system total energy with respect to the suspension 
length. The detailed derivation of Eq. (11) is given by Zhang 
and Zhao (2011, 2012). When the axial load is nonzero, 
there is an additional energy due to stretching, which is 
T

∫ L2

−L1
W2

x dx/2. The stretching energy does not explicitly 
change the above constraint conditions. However, the pres-
ence of T (�) changes the solution forms as indicated above, 
the constraint conditions are thus implicitly changed.

(9)

w1(ξ1) = w2(ξ1),
dw1

dξ
(ξ1) =

dw2

dξ
(ξ1),

d
2
w1

dξ2
(ξ1) =

d
2
w2

dξ2
(ξ1),

d
3
w1

dξ3
(ξ1) =

d
3
w2

dξ3
(ξ1),

w2(ξ2) = w3(ξ2),
dw2

dξ
(ξ2) =

dw3

dξ
(ξ2),

d
2
w2

dξ2
(ξ2) =

d
2
w3

dξ2
(ξ2),

d
3
w2

dξ3
(ξ2) =

d
3
w3

dξ3
(ξ2).

(10)

w(−l1) = 0,
dw

dξ
(−l1) = 0,

w(l2) = 0,
dw

dξ
(l2) = 0.

(11)w2(ξ1) = h −
√

αr

2
, w2(ξ2) = h −

√
αr

2
.

Equations  (9), (10) and (11) offer fourteen equations 
in total to solve the fourteen unknowns. Because of the 
unknown property of ξ1 and ξ2, solving these fourteen 
unknowns is a nonlinear problem, which requires Newton-
Rhapson method (Press et  al. 1992). The above problem 
formulation is for the general case which includes asym-
metric transverse loading scenario (Zhang and Zhao 2011, 
2012). As shown later, a lot of iterations are needed to solve 
the inverse problem, which is very computational time-
consuming. The computation can be significantly reduced 
by using the symmetry property. The coordinate system is 
at the center of the beam, which is to say l1 = l2 = l. By 
using the symmetry property, the solution form of the zero 
axial load case of Eq. (6) now becomes the following

Here we emphasize that stiction is defined as an attachment 
state under zero transverse load (de Boer and Michalske 
1999; Legtenberg et  al. 1994; Leseman et  al. 2007; Mas-
trangelo and Hsu 1993b; Zhang and Zhao 2011, 2012). 
Therefore, F = 0 and the terms associated with F are gone. 
The cosh ξ sin ξ and sinh ξ cos ξ terms are tossed away 
because they are the symmetry-breaking odd functions. 
This technique of using the symmetry property to reduce 
computation was first done by Weitsman (1970) in the 
study of the tensionless contact of an infinitely long beam. 
Now there are only seven unknowns: A1, B1, C1, D1, B2, C2 
and ξ1.

The solution form of the tensile axial load case of 
Eq. (7) now becomes the following

Again, the cosh(f1ξ) sin(f2ξ) and sinh(f1ξ) cos(f2ξ) terms 
are tossed away because they are odd functions. Similarly, 
the solution form of the compressive axial load case of 
Eq. (8) now becomes the following

Due to the symmetry of ξ1 = −ξ2, only those matching 
conditions at ξ = ξ1 are needed. Equation (9) is reduced to 
the following four:

(12)w =
{

w1 = A1ξ
3 + B1ξ

2 + C1ξ + D1

w2 = B2 cosh ξ cos ξ + C2 sinh ξ sin ξ + h.

(13)w =







w1 = A1 cosh(αξ) + B1 sinh(αξ) + C1ξ + D1

w2 = B2 cosh(f1ξ) cos(f2ξ)

+C2 sinh(f1ξ) sin(f2ξ) + h.

(14)w =







w1 = A1 cos(αξ) + B1 sin(αξ) + C1ξ + D1

w2 = B2 cosh(f1ξ) cos(f2ξ)

+C2 sinh(f1ξ) sin(f2ξ) + h.

(15)

w1(ξ1) = w2(ξ1),
dw1

dξ
(ξ1) =

dw2

dξ
(ξ1),

d
2
w1

dξ2
(ξ1) =

d
2
w2

dξ2
(ξ1),

d
3
w1

dξ3
(ξ1) =

d
3
w2

dξ3
(ξ1)
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The boundary conditions now are only two:

The two constraint conditions are reduced to one:

Now Eqs. (15), (16) and (17) offer seven equations in total 
to solve the seven unknowns. For the Newton-Rhapson 
method (Press et  al. 1992) to start, the initial guesses for 
the seven unknowns of A1, B1, C1, D1, B2, C2 and ξ1 are 
needed. Except for the zero axial load case, both the tensile 
and compressive cases are sensitive to the initial guessed 
values. The general strategy here is to guess ξ1 only and 
then find A1, B1, C1, D1, B2 and C2 by linear algebra from 
the guessed value of ξ1.

3 � Results and discussion

In this study, the dimensionless gap distance is fixed as 
h = 1 for all the computation cases and F = 0 because stic-
tion is defined as an attachment state with zero transverse 
load. As mentioned above, the computation exhibits some 
sensitivity to the initial guessed equilibrium configuration. 
The presence of external load F can relief such sensitiv-
ity. Wu et al. (2011) obtained the stiction equilibrium con-
figuration by applying an external load and then gradually 
reducing it to zero. Let us first examine how our deflection 
shape differs from those of arc-shape and S-shape when 
the beam length is between the critical suspension lengths 
of arc-shape and S-shape. The previous description on the 
formation of arc- and S-shape is rather vague as follows: 
longer beam forms an S-shape and its unstuck/suspension 
length is appreciably shorter than the beam length; shorter 
beam forms an arc-shape and its unstuck/suspension length 
is approximately equal to the beam length (Rogers et  al. 
2002). In our study, the dimensionless suspension length is 
given as s = l + ξ1. The dimensionless critical suspension 
length is sc−c = 4

√

36h2/αr  for S-shape and sarc =
√

2
2

sc−c 
for arc-shape as given in appendix. Now a natural ques-
tion arises: what is the deflection shape of a beam when its 
length is between sarc and sc−c? This question seems a puz-
zle and concern to some researchers (Wu et al. 2011). For 
h = 1 and αr = 1 × 10−4, sarc = 17.32 and sc−c = 24.5. 
Figure 2 plots the deflection shapes of a beam with l = 20, 
αr = 1 × 10−4 and different �s in comparison with arc and 
S-shapes. There is little difference between the three deflec-
tion curves with three different �s of � = 0.02, � = −0.02 
and � = 0. Their suspension lengths are all around 
s = 18.95, which is also between sarc and sc−c. When a 
compressive axial load is exerted, the caution for buckling 

(16)w1(−l) = 0,
dw1

dξ
(−l) = 0.

(17)w2(ξ1) = h −
√

αr

2
.

is needed. The governing equation of Eq.  (2) is incapable 
of the post-buckling analysis. For a C-C with the length 
of 2L, the critical buckling load is Tc = −4π2E1I/(2L)2 
(Chajes 1974), which corresponds to �c = −π2/l2 and 
�c ≈ −0.0247 when l = 20. Wu et  al. (2011) speculated 
that the deflection of a beam with a length between sarc and 
sc−c “may shift between the arc-shaped and S-shaped con-
figuration, depending on the initial configurations.” How-
ever, our computation shows that the deflection shapes look 
neither like arc-shape nor like S-shape, which is also exper-
imentally observed (de Boer and Michalske 1999). de Boer 
and Michalske (1999) ascribed the mechanism to the com-
pliance of support post. The arc-shape and S-shape as given 
in appendix actually prescribe the beam deflection shape by 
assuming the boundary conditions at the separation point. 
In contrast, our model does not prescribe the deflection 
shape, which is a function of l, h, � and αr. Physically, the 
difference between our model and arc/S-shape results from 
that the arc/S-shape method does not include the bend-
ing and contact energies in the stiction zone (Zhang and 
Zhao 2011, 2012). The arc/S-shape method is more or less 
inspired the classical study of mica splitting test by Obrei-
moff (1930), in which those energies inside the contact 
area are not included, either. However, there is one criti-
cal difference in the adhesion energy between the Obrei-
moff’s mica splitting test and the microbeam stiction test. 
Obreimoff’s (1930) splitting test is actually the cleavage of 
mica and the adhesion energy is “the extremely high value” 
of 20 Jm−2, which is orders of magnitude larger than that 
of a stiction test. This large adhesion energy makes the 
deformation of a mica lamina inside contact area (unsplit 
part) extremely small compared with that of the split part. 

Tensile: ∆=0.02    
Compressive: ∆=-0.02
Zero axial load             
S-shape                
Arc-shape              
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ξ

Fig. 2   Comparison of a “chunky” beam deflection shapes with arc-
shape and S-shape. The beam is with αr = 1 × 10−4 and l = 20, 
which is between sarc and sc−c. The three deformation shapes are the 
ones with � = 2 × 10−2, � = 0 and � = −2 × 10−2, respectively
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Therefore, the bending and contact energies inside the 
contact zone can be ignored. Because of intrinsic surface 
roughness (Li et  al. 2010; Maboudian and Howe 1997; 
Tayebi and Polycarpou 2006; Wu et  al. 2011; Zhang and 
Zhao 2011, 2012), nanoparticles formed during the fabrica-
tion process (DelRio et  al. 2006), and presence of liquids 
(Legtenberg et  al. 1994; Leseman et  al. 2007; Tayebi and 
Polycarpou 2006; Wei and Zhao 2007), the nominal adhe-
sion energy in a stiction test can vary with several orders 
of magnitudes. As listed in a reference (Zhang and Zhao 
2012), the measured nominal adhesion energy of poly-
silicon ranges from 2.5 × 10−4 to 0.27 Jm−2. In compari-
son, the real adhesion energy of polysilicon computed by 
molecular dynamics is 2.54 Jm−2 (Wu et al. 2011), which is 
still significantly smaller than that of the mica splitting test. 
Therefore, it is safe to keep both bending and contact ener-
gies for the stiction test case. Majidi and Adams (2009), 
Majidi and Fearing (2008) demonstrated that the bending 
energy of a film inside the contact zone is a vital factor 
impacting its adherence to a curvy body.

Figure  3 plots the deflection shapes of a slender beam 
with l = 27, αr = 1 × 10−4. Now the beam length is larger 
than sc−c and correspondingly the critical buckling load 
changes as �c ≈ −0.0135. The three curves correspond 
to � = 0.01, � = −0.01 and � = 0. sarc and sc−c are only 
dependent on h and αr, which is to say that the variation of 
the beam length has no impact on them and they remain 
the same as sc−c = 24.5 and sarc = 17.32. It is noticed in 
Fig.  3 that the deflection curve of � = 0 overlaps with 
S-shape. Now the difference between the three deflections 

also becomes very significant: s = 22.31 for � = −0.01

, s = 24.5 for � = 0 and s = 25.18 for � = 0.01. Stic-
tion is the equilibrium due to the competition between the 
elastic restoring force which tries to pull the beam back to 
the horizontal position and the tensile force due to adhe-
sion energy around the separation point which tries to 
keep the beam in contact (Zhang and Zhao 2011, 2012). 
The tensile axial load stiffens the beam, which increases 
the elastic restoring force and therefore, more beam por-
tion peels off; the compressive axial load softens the beam, 
which decreases the elastic restoring and therefore, more 
beam portion adheres to the substrate. That the axial ten-
sile/compressive load reduces/increases the attachment 
length has also been experimentally observed (Yee et  al. 
2002). As seen in Fig. 3, the suspension length monotoni-
cally increases as the axial load changes from compres-
sive to tensile. Besides the suspension length variation, 
the solution forms of the beam deflection also vary as the 
axial load varies. As a result, the beam deflection shape 
difference stands out in the suspension zone. To evaluate 
this difference and also for the convenience of statement, 
we introduce a variable r(ξ) = h − w1(ξ). Physically, r(ξ) 
is the beam rise above the substrate. In Fig. 3, at ξ = −10

, the three displacements of the beam under different axial 
loadings are marked with three circles. Of course, any 
place other than ξ = −10 can be selected to mark. It just 
seems that at ξ = −10, the difference maximizes. Clearly, 
r(ξ) monotonically increases as the axial load changes 
from compressive to tensile: r = 0.175 when � = −0.01

, r = 0.222 when � = 0 and r = 0.282 when � = 0.01. 
The physics behind this is that the beam deflection is dif-
ferent: different axial loadings give different suspension 

Tensile: ∆ =0.01    
Compressive: ∆=-0.01
Zero axial load             
S-shape                
Arc-shape              
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Fig. 3   Comparison of a “slender” beam deformation shapes with 
arc-shape and S-shape. The beam is with αr = 1 × 10−4 and l = 27, 
which is larger than sc−c. The three deformation shapes are the ones 
with � = 1 × 10−2, � = 0 and � = −1 × 10−2, respectively. The 
deflection curve of � = 0 overlaps with the S-shape. The circles mark 
the beam displacements at ξ = −10
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Fig. 4   Deflection shape variations as αr changes. l = 27 and 
� = 1 × 10−2 are fixed; αr varies as αr = 1 × 10−4, αr = 1.5 × 10−4 
and αr = 2 × 10−4. The circles mark the beam displacements at 
ξ = −10



926	 Microsyst Technol (2015) 21:919–929

1 3

lengths and different mathematical solution forms. Fig-
ure  3 examines the effect of axial load on the beam with 
the fixed length and αr. In Fig. 4, we fix the beam length 
and axial load as l = 27 and � = 0.01 to see how the 
beam deflection varies as a function of αr. As αr varies as 
αr = 1 × 10−4, αr = 1.5 × 10−4 and αr = 2 × 10−4, the 
suspension length monotonically decreases as s = 25.19

, s = 22.31 and s = 20.34. Larger αr means larger adhe-
sion energy influence, which thus leads to smaller suspen-
sion length. For arc and S-shapes which are the zero axial 
load case and have analytical expression for the suspen-
sion length, their suspension lengths have the relationship 
of s ∝ α

−1/4
r . The beam displacements at ξ = −10 are 

also marked with three circles. As αr increases, r decreases 
monotonically: r = 0.29 when αr = 1 × 10−4, r = 0.178 
when αr = 1.5 × 10−4, and r = 0.111 when αr = 2 × 10−4

. Because the axial load is fixed as � = 0.01, the solution 
forms as given in Eq. (13) do not change. However, as αr 
changes, the suspension length changes and as a result the 
coefficients associated with those solution forms change, 
which leads to the deflection shape difference.

As seen in Fig. 3, when αr is fixed, both the beam sus-
pension length and rise at a given point increase monotoni-
cally as � increases. In Fig.  4, when � is fixed, both the 
beam suspension length and rise at a given point decrease 
monotonically as αr increases. These monotonic increase 
and decrease properties are used to solve the inverse 
problem. To illustrate the inverse problem solving pro-
cedure, we give the example of l = 27, αr = 1.5 × 10−4 
and � = 5 × 10−3, which gives the suspension length of 
s = 21.59 and rise at ξ = −10 of r = 0.156. In a stiction 
test, αr and � are unknown; the beam dimensions, elastic 
properties, and beam deflections (i.e. s and r) are measured. 
The main idea of solving this inverse problem is to search a 
wide range of αr and � to see if there is a unique combina-
tion which satisfies s = 21.59 and r = 0.156.

Figure 5 plots the suspension length variation as αr varies 
from 1 × 10−4 to 2 × 10−4 and � varies from −1 × 10−2 to 
1 × 10−2. The variation step for αr is dαr = 2 × 10−6 and 
the variation step for � is d� = 4 × 10−4. The tilted plane 
indicates the suspension variation as a function of αr and �
. Again, as also seen in Figs. 3 and 4, for any given value of 
αr, the suspension length increases monotonically with �. 
At the same time, for any given value of �, the suspension 
length decreases monotonically with αr. The level plane is 
the one with the fixed suspension length of s = 21.59. The 
intersection of these two planes are marked by a solid line. 
Physically, this line indicates that there are infinite combina-
tions of αr and � which can result in the same suspension 
length of s = 21.59 for a beam with l = 27. In other words, 
measuring the suspension length alone cannot uniquely 
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determine αr and �. Analogously, Knapp and de Boer (2002) 
showed that different combinations of transverse external 
load and adhesion energy can result in the same suspension 
length. Figure  6 plots the beam rise variation as αr varies 
from 1. × 10−4 to 2 × 10−4 and � varies from −1 × 10−2 
to 1 × 10−2. As also seen in Figs. 3 and 4, the same mono-
tonic increase and decrease patterns of r occur. The level 
plane is the one with the fixed beam rise of r = 0.156 (at 
ξ = −10). The intersection of these two planes are marked 
by a dashed line. Again, this dashed line indicates that 
for the same beam rise, there are infinite combinations of 
αr and �. Measuring the beam rise at a given point alone 
cannot uniquely determine αr and �, either. When the two 
intersecting lines obtained in Figs. 5 and 6 are projected into 
the αr − � plane, the two lines intersect as shown in Fig. 7. 
The intersection point is marked with a circle, which cor-
responds to (αr , �) = (1.515 × 10−4, 5.45 × 10−3). Com-
pared with (αr , �)=(1.5 × 10−4, 5 × 10−3) which results 
in s = 21.59 and r = 0.156, the error of αr is 1 % and the 
error of � is 9 %. The accuracy of αr and � can be further 
improved by taking smaller steps with the trade-off of more 
computation efforts.

Here the inverse problem is solved by the use of sus-
pension length and rise at a given point. As the deflection 
of a stuck beam can be accurately measured (de Boer and 
Michalske 1999; Jensen et al. 2001; Mastrangelo and Hsu 
1993b), a direct deflection shape comparison between the 
experimental measured one and those given in Eqs. (6), (7) 
and (8) by varying axial load and adhesion energy (� and 
αr) is also another method of solving the inverse problem.

4 � Conclusion

The residual stress effect is modeled as an axial load, which 
can either stiffen or soften the beam. Mathematically, the 
presence of axial load changes the solution forms of the 
beam; the effect of adhesion energy is embodied in the con-
straint condition. For a microbeam with the given dimen-
sions and elastic properties, the axial load and adhesion 
energy uniquely determine its stiction shape. In this study, 
the beam stiction shape is characterized by the suspension 
length and rise at a given point. The axial load and adhe-
sion energy play different roles in determining the beam 
stiction shape, which results in the monotonic increase and 
decrease patterns of the suspension length and rise. These 
patterns are used in this study to solve the inverse problem. 
For a given value of either suspension length or rise, there 
are infinite combinations of axial load and adhesion energy. 
However, if both values are given, there is only one com-
bination. This study presents an effective method to solve 
this type of inverse problem though it requires relatively 
large amounts of computation for large amounts of the 

combinations of axial load and adhesion energy. Because 
the deflection of a chunky beam is much less sensitive to 
the axial load variation, the method is suitable for the slen-
der beam structure.
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Appendix: arc‑shaped and S‑shaped deflections

Figure  1b shows the arc-shape and S-shaped deflections 
and the coordinate system. When a beam is under stiction 
with no transverse and axial loads, the following governing 
equation holds:

The solution to the above equation is

 A, B, C and D are the four unknown constants to be deter-
mined by the boundary conditions.

For an arc-shaped beam, the following boundary condi-
tions hold:

 w(ξ) of arc-shaped beam is then solved as follows

The (dimensional) suspension length of arc-shaped beam is 
given as follows (Mastrangelo and Hsu 1993b; Yang 2004)

According to the nondimensionalization scheme of Eq. (4), 
we have sarc = βSarc = 4

√

9h2/α.
For an S-shaped beam, the following boundary condi-

tions hold:

 w(ξ) of S-shaped beam is solved as follows

The (dimensional) suspension length of S-shaped beam is 
given by Yang (2004) as follows

The dimensionless sc−c = βSc−c = 4
√

36h2/αr  and 
sarc =

√
2

2
sc−c. Equations  (21) and (24) are also presented 

(18)wξξξξ = 0.

(19)w(ξ) = Aξ3 + Bξ2 + Cξ + D.

(20)w(0) = 0, wξ (0) = 0, w(sarc) = h, wξξ (sarc) = 0.

(21)w(ξ) = −
h

2s3
arc

ξ3 +
3h

2s2
arc

ξ2
.

(22)S4
arc =

3

8

E1H2T3

γs

=
9E1IH2

4Bγs

.

(23)w(0) = 0, wξ (0) = 0, w(sc−c) = h, wξ (sc−c) = 0.

(24)w(ξ) = −
2h

s3
c−c

ξ3 +
3h

s2
c−c

ξ2
.

(25)S4
c−c =

3

2

E1H2T3

γs

=
9E1IH2

Bγs

.
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by de Boer et al. (1999). As the two coordinate systems in 
Fig. 1a and b are different, Eqs. (21) and (24) are the fol-
lowing forms in the coordinate system of Fig. 1a
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