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A new model characterizing the response of a multi-strand wire rope subjected to axial tension and axial
torque is presented in this paper. Apart from most of previous approaches which deal with a straight wire
strand, the present model fully considers the double-helix structure in multi-strand configuration. To be
further, a new method to compute local deformation parameters (two curvatures and a twist defined by
Love, 1944) of each wire is introduced. The proposed model well predicts the global stiffness of the rope.
It is found that different friction states between adjacent wires can lead to quite a different distribution of
local bending and torsion deformation of double-helix wire. The variations of stresses in double-helix
wires along the rope axis are analyzed and the results show that torsion stress of a double-helix wire
can be neglected when the rope is subjected to axial tension (axial torsion is restrained). The present
model provides a new way to estimate the local deformation and stresses at the wire level, which sheds
new insight into the understanding of the fatigue and failure behavior of the wire rope.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Helical structures like wire ropes have been widely used in ele-
vator lifting, suspension bridges, aerial rope ways, mine hoists, etc.
Due to their capacity to support large tensile load with relatively
small bending or torsion stiffness, wire ropes are usually employed
as load transmission elements especially when they have to be
bent over sheaves or drums. During past decades, extensive theo-
retical and experimental works have been made to characterize
the mechanical behavior of wire ropes. A systematical work of
these was presented by Feyrer (2006). Great concern has been paid
to the global response of the wire ropes, such as the tensile and
bending stiffness, and also the local deformation of individual wire,
which are critically related to the fatigue and damage behavior of
the wire ropes. The degree of damage is closely associated with
the geometrical and spatial configuration of the wires as well as
their positions within the rope (Lee, 1991).

A simple wire rope can just be a multi-layer single straight
strand, in which all spiral wires are configured as single-helix. How-
ever, complex wire ropes are constructed from several strands that
are wound around a core. The center wire of a wound strand is still
single-helix while other wires in the strand are configured as
double-helix. In general, two types of lay construction are used in
complex wire ropes: regular lay and lang lay. In regular lay con-
struction, the lay direction of the wires within the wound strand
is opposite to the spiral direction of the strands around the core.
In lang lay construction, the two directions are the same.

Currently, a majority of mathematical models have been applied
to a single, straight strand to study the mechanical property of wire
ropes. A review of these models was given by Cardou and Jolicoeur
(1997). Among them, the fiber model is the simplest one, which
assumes a fibrous response of each wire and ignores its bending
and torsion rigidity. This model was introduced by Hruska
(1952a,b) and later extended by Knapp (1979) and Lanteigne
(1985). However, the bending and torsion stiffness are not actually
negligible for the wires. Hence, some new models considering
bending and torsion effects are needed to be developed.

Costello and Philips (1976) presented a thin rod model, based
on the nonlinear equations of equilibrium of curved rods (Love,
1944). This model considers the bending and torsion stiffness of
the wires and ignores the friction force, which was recently
extended by Kumar and Cochran (1987) to a linearized and
closed-form expression for the global stiffness of the rope. LeClair
and Costello (1988) discussed the friction effects of strands sub-
jected to bending load. Utting and Jones (1987a,b) have extended
the Costello’s analysis to include wire flattening (contact deforma-
tion) and friction effects. The results show that these phenomena
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Fig. 1. A 7 � 7 wire rope with cross section.
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have little effect on estimation of the global rope response.
Jolicoeur and Cardou (1991) compared the mechanical response
of a single strand rope predicted by Costello’s thin rod model with
that estimated by fiber model (Hruska, 1952a,b). It was found that
the fiber model is not appropriate when twisting moment and
angle have to be taken into account and the thin rod model shows
a good prediction of cable stiffness with experimental results
obtained by Utting and Jones (1987b).

In contrast to the thin rod models, a semi-continuous model
(so-called orthotropic sheet model) was introduced by Hobbs and
Raoof (1982) and described in detail by Raoof (1983), in which
each layer of twisted wire is modeled as an orthotropic complete
cylinder. The same homogenization was taken by Blouin and
Cardou (1989) to develop another semi-continuous model.
Jolicoeur (1997) reported a comparative study of these models.
He found that the former cylinder model is simpler and would be
preferred for tension or torsion loads, but fails to capture the range
of bending stiffness, so the latter semi-continuous model should be
used if bending will occur (Spak et al., 2013). Raoof and Kraincanic
(1994) compared the semi-continuous models with thin rod mod-
els for cable analysis and found that thin rod theory was more reli-
able for small diameter wire strand, while semi-continuous models
would be advantageous for cables made of a large number of wires.

All the above models are only treating a single-helix wire
strand. However, most wire ropes in practical use have a complex
multi-strand cross-section in which most wires are configured
double-helix (Argatov, 2011). Lee (1991) discussed in detail the
geometrical property of single-helix and double-helix wires and
pointed out that there existed many differences between them.
Recently, a concise mathematical model was introduced by
Stanova et al. (2011a) for both the single-helix and the double-
helix configurations in the form of parametric equations. Their
method presents high efficiency in building the finite element
model of wire ropes and the numerical results of a multi-layered
strand under tension tests were given, which agree well with
experimental data (Stanova et al., 2011b). Inagaki et al. (2007) ana-
lyzed the mechanical behavior of second order helical structure in
electrical cables, whose attention was paid to the response of
cables subjected to bending load.

Velinsky (1981) and Velinsky et al. (1984) extended Costello’s
model to a complex multi-strand wire rope and treated a wound
strand as being a single-helix wire in a straight strand. They first
calculated the tension, torsion and bending stiffness of a straight
strand, and then used the parameters to get the resultant tension
and torque of the strand when it is wrapped around the central
core. As a consequence, this homogenization may produce some
difficulty in obtaining the local response of double-helix wires
completely. Velinsky’s approach was generalized by Phillips and
Costello (1985) for wire rope with an independent wire rope core
(IWRC) and summarized in the book Theory of Wire Rope
(Costello, 1990). Ghoreishi et al. (2007a,b) introduced a similar
homogenization procedure to get the mechanical character of a
1 + 6 synthetic fiber rope.

The double-helix configuration was first fully considered by
Elata et al. (2004) for simulating the mechanical behavior of a wire
rope with IWRC under axial loads. They took two different kine-
matics of wires: locked rope-level sieves that emulate infinite fric-
tion between adjacent wires and unlocked rope-level sieves that
emulate a well lubricated rope. In the first kinematics the axial
strain varies periodically along the centerline of the double-helix
wires, while it is uniform in the second kinematics. Fiber assump-
tion was retaken to simplify the analysis procedure, and the wires
are subjected to load on their lateral surface, applied by adjacent
wires. Therefore, the accuracy of this model improves when the
number of wires in the wire rope increases (Ghoreishi et al.,
2007c).
Usabiaga and Pagalday (2008) developed another model for
double-helix cables, but did not take Poisson effect into consider-
ation. The model is based on the work of Ashkenazi et al. (2003)
and the general thin rod theory (Love, 1944), and assumes that
the wires are un-lubricated to prevent relative movements
between adjacent wires. However, instead of attaching the mate-
rial points of each wire section to the central wire of the rope as
Ashkenazi et al. (2003), Usabiaga and Pagalday (2008) attached
those points to the central wire of the wound strand. The local cur-
vatures and twist results along double-helix wires of the two kine-
matics showed great difference. Besides, a detailed and rigorous
description of the procedure is employed to compute Love’s
(1944) kinematic parameters by Usabiaga and Pagalday (2008).

In this article, we focus our attention on the double-helix con-
figuration and take a typical 7 � 7 wire rope (i.e. IWRC, see
Fig. 1) into consideration. Instead of adding additional kinematics
to the wires, a new method to calculate the local curvatures and
twist of the wires is proposed, based on the general thin rod theory
of Love (1944) and frictionless hypothesis between adjacent wires.
Some effective procedures to get the axial strain along the wires
are also introduced. The global response of the rope and the local
deformation and stresses of individual wires are analyzed and
the results are compared with those of the popular homogenized
model of Costello (1990) and other models for complex multi-
strand wire ropes.

2. Wire centerline descriptions

A Cartesian coordinate system feX ; eY ; eZg is used to describe the
structure of the rope where the rope axis is along the ez direction.
In the initial configuration, a generic centerline of a single-helix
wire is given by the following parametric equation:

xs0 ¼ rs0 cos hs ð1aÞ

ys0 ¼ rs0 sin hs ð1bÞ

zs0 ¼ rs0 tan as0h ð1cÞ

where rs0 is the laying radius of the single-helix, as0 is the single-
helix laying angle, hs represents the angular position around the
rope axis eZ relative to eX (Fig. 2) and hs ¼ hþ hs0. h is a free param-
eter representing the angle of the centerline spiral around the axis
of the rope and hs0 is the single-helix phase angle indicating the
wire position relative to eX when zs0 = 0 (i.e. when h = 0), that is
hs0 ¼ hsðzs0¼0Þ.

A generic description of the centerline of a double-helix wire in
its initial configuration is derived by Usabiaga and Pagalday
(2008):

xw0 ¼ xs0 � rw0 cos hw cos hs þ rw0 sin hw sin hs sinas0 ð2aÞ

yw0 ¼ ys0 � rw0 cos hw sin hs � rw0 sin hw cos hs sinas0 ð2bÞ



Fig. 2. Geometric features of the wire rope structure.

Fig. 3. Local coordinate systems along wires.
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zw0 ¼ zs0 þ rw0 sin hw cos as0 ð2cÞ

where rw0 is the spiral radius of the double-helix wire laying around
its corresponding single-helix wire, hw represents the angular posi-
tion around the Frenet–Serret vector ts0 relative to ns0 (Fig. 2) and
hw ¼ mhþ hw0. hw0is the double-helix phase angle denoting the wire
position relative to ns0 when h = 0, that is hw0 ¼ hwðh¼0Þ, and m is a
construction parameter which is related to the geometrical
property of the rope, given as

m ¼ rs0

rw0

1
tan bw0 cos as0

ð3Þ

where bw0 is the double-helix laying angle.
One may notice that Eqs (2a)–(2c) have differences in +/� signs

with the equations developed by Elata et al. (2004). This is due to
the different definition of hw. As explained previously, hw repre-
sents the angular position around ts0 relative to ns0 in this paper,
while hw defined by Elata et al. (2004) represents the angular posi-
tion around ts0 relative to �ns0 (Fig. 2).

In the following statement, the subscript ‘s’ and ‘w’ represent
the single-helix and the double-helix respectively. Without losing
generality, we take the wire with hs0 = 0 and hw0 = 0 for a typical
study, unless specially noted.

When the rope is subjected to axial load, the global deformation
parameters are the rope tensile strain et and the rope torsion kt:

et ¼
L� L0

L0
ð4aÞ

kt ¼
D/
L0

ð4bÞ

where L0 and L are the rope lengths in the undeformed and
deformed configuration respectively and D/ is the relative torsion
angle between the two ends of the rope.

Elata et al. (2004) gave the location along the stressed center-
line of a double-helix wire along with the global deformation of
the rope:

xw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

w0 þ y2
w0

q
cos tan�1 yw0

xw0

� �
þ ktzw0

� �
ð5aÞ

yw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

w0 þ y2
w0

q
sin tan�1 yw0

xw0

� �
þ ktzw0

� �
ð5bÞ

zw ¼ zw0ð1þ etÞ ð5cÞ

However, this expression exhibits an arctangent function so
that the future derivation (like differential operation) with these
equations may have some difficulty. It can be improved as:
xw ¼ xw0 cosðktzw0Þ � yw0 sinðktzw0Þ ð6aÞ

yw ¼ xw0 sinðktzw0Þ þ yw0 cosðktzw0Þ ð6bÞ

zw ¼ zw0ð1þ etÞ ð6cÞ

The location along the stressed centerline of a single-helix wire
can be expressed by similar equations, which are also given by
Usabiaga and Pagalday (2008):

xs ¼ rs0 cosðhs þ ktzs0Þ ð7aÞ

ys ¼ rs0 sinðhs þ ktzs0Þ ð7bÞ

zs ¼ zs0ð1þ etÞ ð7cÞ

Radial contraction due to Poisson effect in the wire diameter is
neglected in all of the above equations.

3. Local deformation along a wire

Ignoring the effect of contact deformation, the kinematics of a
particular wire is fully defined by four parameters: the axial strain
n, two curvatures j and j0 and the twist s. In this section, we will
give a detailed analysis of these local deformation parameters by
introducing some mathematical skills and the thin rod theory of
Love (1944).

3.1. The Frenet–Serret frames

The centerline of any wire in a rope is a three-dimensional
space curve. It is convenient to use the well-known Frenet–Serret
local axes ft0;n0;b0g (undeformed configuration) and {t, n, b}
(deformed configuration) at each point of the wire trajectory to
enable a better understanding of its local deformation. Here t is
the tangent unit vector, n is the principal normal and b is the binor-
mal vector. t0 and t are always along the tangential direction of the
centerline at any point (Fig. 3).

According to the Frenet–Serret frame, the curvature of a space
curve can be calculated by virtue of (Lee, 1991)

jF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _y€z� _z€yÞ2 þ ð _z€x� _x€zÞ2 þ ð _x€y� _y€xÞ2

ð _x2 þ _y2 þ _z2Þ3

vuut ð8Þ



Fig. 4. Forces and moments acting on a wire (after Costello, 1990).
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and the torsion of a space curve can be computed by

sF ¼

_x _y _z
€x €y €z

x
v

y
v

z
v

�������

�������
_y€z� _z€yð Þ2 þ _z€x� _x€zð Þ2 þ _x€y� _y€xð Þ2

ð9Þ

It should be noted that the principal normal vectors ns0 (derived
from Eq. (1)) and ns (derived from Eq. (7)) of a single-helix center-
line always point to the axis of the rope (Fig. 3). However, one can
verify that the principal normal vectors nw0 and nw of a double-
helix centerline do not always lay in the direction to its corre-
sponding single-helix centerline but vary periodically in the neigh-
borhood region (Fig. 3).

3.2. The principal torsion–flexure axes

In order to describe the general deformation of a thin rod, Love
(1944) introduced an orthonormal local frame {x, y, z} called prin-
cipal torsion-flexure axes, which was defined on the centerline for
every cross section of the rod. The third vector z of these frames
is always along the tangential direction of the centerline at any
point, so the difference between these axes and the Frenet–Serret
axes is that they generate an angle f in the (x, y) or (n, b) plane
(Fig. 3).

In the initial configuration, the selection of principal torsion–
flexure axes has some arbitrariness that the normal and binormal
vectors just need to be perpendicular to each other and constitute
an orthonormal frame with the tangent vector. When the rod is
subjected to external load, the initial principal torsion–flexure axes
should stick to the cross section of the rod and move along with
the centerline, which means that material points in the direction
of the initial normal vector x0 should lay in the direction of the nor-
mal vector x after deformation. It indicates a one-to-one corre-
sponding relationship between the material points in the
undeformed and deformed state.

The thin rod theory of Love (1944) introduced two curvatures j
and j0 and a twist s to represent the local deformation of the rod.
When the principal torsion–flexure axes are fully determined, they
can be calculated by

j ¼ l3
dl2

ds
þm3

dm2

ds
þ n3

dn2

ds
ð10aÞ

j0 ¼ l1
dl3

ds
þm1

dm3

ds
þ n1

dn3

ds
ð10bÞ

s ¼ l2
dl1
ds
þm2

dm1

ds
þ n2

dn1

ds
ð10cÞ

where, for example, l1; m1; n1 are the direction cosines of the axis x
referred to the fixed axes.

In fact, another method to compute these kinematic parameters
is also given by Love (1944):

j ¼ �jF cos f L ð11aÞ

j0 ¼ jF sin f L ð11bÞ

s ¼ sF þ
dfL

ds
ð11cÞ

where s is the arc parameter along the centerline and 1
2 p� f L is the

angle between the principal plane (x, z) of the rod and the principal
normal vector n of the strained centerline.

As we have explained, f denotes the angle between n of the Fre-
net–Serret axes and x of the principal torsion–flexure axes, so
1
2 p� f L ¼ �f . Then more concise equations to compute j, j0 and
s are:

j ¼ jF sin f ð12aÞ

j0 ¼ jF cos f ð12bÞ

s ¼ sF þ
df
ds

ð12cÞ

Eq. (12) is important to determine the local deformation of dou-
ble-helix wires in this paper and it can be seen that key problem to
determine the principal torsion–flexure axes has came down to get-
ting the value of f.

3.3. Curvatures and twist

Fig. 4 illustrates the most general case of loading on a wire. On a
given cross section, it has three components of force: the two com-
ponents of shear force N and N0 in x and y directions respectively,
and the tension T in z direction. It also has three components of
moment: the two components of bending moment G and G0 in x
and y directions respectively, and the torsion moment H in z direc-
tion. There are also distributed forces, such as contact forces, and
distributed moments that act on the outer surface of the wire.
These distributed forces and moments are denoted by X, Y and Z
and K, K0 and H in x, y and z directions, respectively.

The thin rod theory of Love (1944) gives the following force and
moment balance equations:

dN
ds
� N0sþ Tj0 þ X ¼ 0 ð13aÞ

dN0

ds
� Tjþ Nsþ Y ¼ 0 ð13bÞ

dT
ds
� Nj0 þ N0jþ Z ¼ 0 ð13cÞ

dG
ds
� G0sþ Hj0 � N0 þ K ¼ 0 ð13dÞ

dG0

ds
� Hjþ Gsþ N þ K 0 ¼ 0 ð13eÞ



Fig. 5. Planar view of a double-helix centerline and its corresponding single-helix
centerline.
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dH
ds
� Gj0 þ G0j�H ¼ 0 ð13fÞ

The bending and torsion moments of a wire cross section can be
calculated from:

G ¼ EIðj� j0Þ ð14aÞ

G0 ¼ EIðj0 � j00Þ ð14bÞ

H ¼ lJðs� s0Þ ð14cÞ

Here, EI and lJ represent the bending and torsion stiffness,
respectively. E is Young’s modulus of the wire and l is the shear
modulus. In the case of a wire of circular cross-section with radius
R, we have

EI ¼ p
4

ER4; lJ ¼ pER4

4ð1þ mÞ ð15Þ

It is necessary to establish the principal torsion–flexure axes of a
wire before and after deformation. Usually we make the axes
equivalent to the Frenet–Serret axes in the initial configuration
to simplify the computation, i.e. f0 = 0 at each point of wire center-
line. In this case, we can get from Eq. (12):

j0 ¼ 0; j00 ¼ jF0; s0 ¼ sF0 ð16Þ

An additional assumption, H = 0, is made for two reasons: first,
the friction between adjacent wires is neglected. Secondly, the
direction of contact force points to the center of every wire cross
section, so it does not cause the torsional effect. Then we substitute
Eqs. (12), (15) and (16) into Eq. (14) and get

G ¼ p
4

ER4jF sin f ð17aÞ

G0 ¼ p
4

ER4ðjF cos f � jF0Þ ð17bÞ

H ¼ pER4

4ð1þ mÞ sF þ
df
ds
� sF0

� �
ð17cÞ

Taking Eqs. (12) and (17) into Eq. (13f) and assuming H = 0, we
obtain an equation for the angle f:

dðsF � sF0Þ
ds

þ d2f

ds2 ¼ ð1þ mÞjFjF0 sin f ð18Þ

From the above equation, f can be determined and then the
response of the wires can be described by j, j0 and s via Eq. (12).

For single-helix wires, the solution of Eq. (18) is quite simple,
that is, f is still equal to zero after deformation as sF0, sF, jF0 and
jF derived from centerline descriptions of Eqs. (1) and (7) are all
constants. This analysis is the same as that of Costello (1990) for
single-helix wires. Then the variations of curvatures and twist of
the wires can be derived as:

Dj ¼ j� j0 ¼ 0 ð19aÞ

Dj0 ¼ j0 � j00 ¼
cos2 as

rs
� cos2 as0

rs0
ð19bÞ

Ds ¼ s� s0 ¼
sinas cos as

rs
� sinas0 cos as0

rs0
ð19cÞ

As for double-helix wires, the situation is more complex
because sF0, sF, jF0 and jF do not keep constant but vary periodi-
cally along the wire centerline, which leads to a periodical varia-
tion of f. Therefore, we consider one period to save computation
cost. The finite difference method is introduced to solve Eq. (18).
It is transformed into
dðsF �sF0Þ
ds

� �
n

þ f nþ1�2f nþ f n�1

ðDsÞ2n
¼ð1þmÞðjFÞnðjF0Þn sin f n ð20Þ

Here, the arc length of one period is divided into nc segments and
n = 1,2, . . . ,nc � 1, which leads to a group of nc � 1 simultaneous
equations. Generally we take nc > 1000 to ensure the computational
accuracy. Ds is the length of one segment and given by

Ds ¼ _x2
w þ _y2

w þ _z2
w

� 	1=2
Dh ð21Þ

If we sketch a figure in which a variable varies with h and take a
boundary point of a period coincided with the origin point of the
coordinates, sF0, sF, jF0 and jF behave just like an even function
(examples are given later in Figs. 8 and 9), so f can exactly meet
Eq. (18) if it varies as an odd function. Thus the boundary condition
can be reasonably chosen as: fn = 0 when n = 0 and n = nc. This con-
dition (i.e. f equals zero at the boundary points of a period) can also
be obtained from the kinematics assumption made by Usabiaga
and Pagalday (2008) if we calculate j, j0 and s based upon Eq. (12).

The presented procedure is implemented with Matlab software,
which helps to solve the nonlinear equation group gathered from
Eq. (20). When the value of f in one period is known, it can be easily
expanded to the whole points along the rope length.

3.4. Axial strain along a wire

Planar view of a double-helix centerline and its corresponding
single-helix centerline in a wound strand is shown in Fig. 5. Let
ls0 and hs0 be the initial circumferential length and the initial height
of the single-helix centerline, respectively. We can easily get the
following relations:

ls0 ¼ rs0h ð22Þ

hs0 ¼ rs0h tan as0 ð23Þ

where rs0 ¼ R1 þ 2R2 þ 2R4 þ R3 if we suppose that the wires of dif-
ferent layers just contact with each other in the unloaded state.

As described by Eq. (7), the centerline of a single-helix wire
deforms with the global deformation et and kt. ls and hs are the cir-
cumferential length and the height of the single-helix centerline
after deformation, respectively. Ignoring the Poisson effect, we
can get:

ls ¼ rs0ðhþ kths0Þ ð24Þ

hs ¼ hs0ð1þ etÞ ð25Þ

In frictionless condition, the axial strain along a wire is uniform
and it can be directly computed for a single-helix wire by means of:

n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhsÞ2 þ ðlsÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2

q � 1 ð26Þ



Table 1
Main rope geometric parameters considered in this study.

Parameter Value

R1 (mm) 1.97
R2 (mm) 1.865
R3 (mm) 1.6
R4 (mm) 1.5
as0,2 (�) 71.01
as0,3 (�) 71.46
bw0,4 (�) 74.45
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Then the curvature variation Dj03 and the twist variation Ds3 of the
wire can be obtained from Eq. (19).

As for double-helix wires, let lw0 be the initial circumferential
length of the double-helix centerline and

lw0 ¼ rw0hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2

q 

tan bw0 ð27Þ

where rw0 ¼ R3 þ R4.
In the loaded state, the double-helix centerline deforms along

with its corresponding single-helix centerline. So the circumferen-
tial length of the double-helix centerline after deformation is

lw ¼ rw0ðhw � rw0hw tan bw0Ds3Þ ð28Þ

where the operator ± value depends respectively on whether the
rope is lang lay or regular lay. Then, the axial strain of the dou-
ble-helix wire can be derived by

n4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2
h i

ð1þ n3Þ2 þ ðlwÞ2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2 þ ðlw0Þ2

q � 1 ð29Þ
Fig. 6. Axial force prediction for lang and regula
In fact, it is convenient to consider the Poisson effect since the
axial strain is uniform in frictionless condition. Considering the
variation of the spiral radius of the single-helix wire, Eq. (24) will
be written as

l0s ¼ r0sðhþ kths0Þ ð30Þ

where

r0s ¼ R1ð1� mn1Þ þ 2R2ð1� mn2Þ þ 2R4ð1� mn4Þ þ R3ð1� mn3Þ ð31Þ

Here n1 and n2 represents the strain of the straight wire and the sin-
gle-helix wire in the core strand respectively. The axial strain of the
single-helix wire in the wound strand is now obtained by

n03 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhsÞ2 þ ðl0sÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2

q � 1 ð32Þ

The spiral angle of the single-helix wire is given by

a0s ¼ tan�1 hs0ð1þ etÞ
r0sðhþ kths0Þ

� �
ð33Þ

Here the curvature variation Dj03 and the twist variation Ds3 also
have changed. We denote them by ðDj03Þ

0 and ðDs3Þ0 now respec-
tively and they can still be calculated from similar equations as
Eq. (19) by using the angle a0s.

It should be noted that n3 and n4 on the right end of Eq. (31) are
obtained from Eq. (26) and Eq. (29) by ignoring the Poisson effect
(n2 can be got from a similar equation as Eq. (26)). The main reason
for this simplification is that mni (i = 1, . . . ,4) considered in present
work is a minor term compared to the value of 1 in Eq. (31).

Considering the Poisson effect, the circumferential length of the
double-helix centerline after deformation can be rewritten as
r lay ropes in different loading conditions.



Fig. 7. Axial torque prediction for lang and regular lay ropes in different loading conditions.

Table 2
Stiffness of the lang and regular lay ropes.

Lang lay Regular lay

C11 (N) 5.879 � 107 6.219 � 107

C12 (N mm) 2.068 � 108 1.602 � 108

C21 (N mm) 2.007 � 108 1.550 � 108

C22 (N mm2) 8.968 � 108 4.984 � 108

C12�C21
C12

(%) 2.95 3.25
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l0w ¼ r0wðhw � rw0hw tan bw0Ds3Þ ð34Þ

where

r0w ¼ R3ð1� mn3Þ þ R4ð1� mn4Þ ð35Þ

and n3 and n4 are given by Eqs. (26) and (29) respectively. Then the
axial strain of the double-helix wire is now calculated by

n04 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2
h i

ð1þ n03Þ
2 þ ðl0wÞ

2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs0Þ2 þ ðls0Þ2 þ ðlw0Þ2

q � 1 ð36Þ
4. Axial tension and torque of a rope

When the axial strain along a wire is known, the axial force in
the wire can be described by

T ¼ EAn ð37Þ

where A is the area of the cross section, i.e. A = pR2.
Shear forces N and N0 can be directly calculated from Eq. (13d)

and Eq. (13e) if we neglect K and K0 due to the frictionless assump-
tion, just as the work of Costello (1990). The rest of non-zero dis-
tributed loads X, Y and Z may be also calculated from Eqs. (13a)–
(13c) respectively, which can be interpreted as contact forces
between adjacent wires.

The contribution of a particular wire to the global tension and
torque of the rope is made by projecting the local forces and
moments of a wire cross section in the principal torsion-flexure axes
{x, y, z} to the global Cartesian coordinate system feX ; eY ; eZg
(Usabiaga and Pagalday, 2008). That is

Fi ¼ ðNi � xþ N0i � y þ Ti � zÞ � eZ ð38Þ

Mi ¼ q�Ni �xþq�N0i �yþq�Ti �zþGi �xþG0i �yþHi �z
� 	

�eZ ð39Þ

where q is the vector from the considered wire centroid to its near-
est point on the rope central axis.

Then the total response of the rope can be computed by

Ft ¼
Xnt

1

Fi ð40aÞ

and

Mt ¼
Xnt

1

Mi ð40bÞ

where nt is total number of the wires and Ft and Mt are the total ten-
sile force and torque of the rope respectively.

When subjected to external load, the rope shows a coupling of
tensile and torsional response. In the linear case, it can be
expressed as

Ft

Mt

� �
¼

C11 C12

C21 C22

� � et

kt

� �
ð41Þ



Fig. 8. Curvature and torsion defined by the Frenet–Serret frame for the double-helix wire before deformation and for et = 0.003 and kt = 0.

Fig. 9. Curvature and torsion defined by the Frenet–Serret frame for the double-helix wire before deformation and for et = 0.0001 and kt ¼ 0:001 rad=mm.
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The four parameters C11, C12, C21 and C22 denote the global stiff-
ness of the rope. As discussed by Elata et al. (2004), and Usabiaga
and Pagalday (2008), the stiffness matrix must be symmetric
according to the reciprocity theorem of Betti, i.e. C12 = C21. This is
a verification of the consistency of a wire rope model and our
model will be verified in Section 5.



Fig. 10. The angle f of the double-helix wire in different loading conditions.
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5. Results and discussion

A 7 � 7 multi-strand wire rope (IWRC) is chosen to illustrate the
model in this paper, both for regular lay and lang lay constructions.
Table 1 lists the main geometrical parameters of the considered
rope (Usabiaga and Pagalday, 2008). For all the wires in the rope,
an elastic constitutive law with elastic modulus E of 200 GPa and
Poisson ratio m of 0.3 is considered.

5.1. Global rope response

Figs. 6 and 7 illustrate global response of ropes in different load-
ing conditions. Results of Costello (1990) and Usabiaga and
Pagalday (2008) are displayed as well. As the present model and
the model of Usabiaga and Pagalday (2008) ignore the Poisson
effect, the results of Costello’ model considering m = 0 are chosen
for rigorous comparison. Usabiaga and Pagalday (2008) have dis-
cussed that it doesn’t show significant difference between m = 0
and m = 0.3 for Costello’ model.

Generally the present model shows a similar performance with
the homogenized model of Costello (1990). The result of the pres-
ent model is a little bigger than that of Costello (1990) for the axial
torque predicted for regular lay rope in Fig. 7, but not more than
10%. However, the result of Usabiaga and Pagalday (2008) is much
higher than the other two models for the force predicted of regular
lay rope in Fig. 6(b) and the torque predicted of lang lay rope in
Fig. 7(b) (up to 25%), which generates a much bigger C21 for the
regular lay rope and a much bigger C22 for the lang lay rope. This
may be due to the infinite friction assumption made by the
authors. As relative movements between adjacent wires are totally
prevented, the rope may tend to behave like a simple complete rod,
which leads to some degree of stiffer reaction to the external load.
Table 2 lists all calculated rope stiffness constants for the char-
acterized lang and regular lay ropes. Generally, the axial torque of a
lang lay rope is larger than that of a regular lay rope, especially
when the rope is subjected to torsion load. That is, both C21 and
C22 for lang lay are bigger than those for regular lay. However,
there is no significant difference between the C11 for lang and reg-
ular lay ropes, indicating a similar axial force when the rope is sub-
jected to global tension. As is previously discussed in this paper, a
model should be fully compliant with the Betti reciprocity theo-
rem. The results in Table 2 verify the symmetry of the stiffness
matrix in Eq. (41), i.e. the difference between C12 and C21 is negli-
gible for lang and regular lay ropes.

Another point that should be taken into account is the rope
level equilibrium balance. As independent equilibrium of an indi-
vidual wire has been discussed in Section 3.3, one need to verify
whether the present model leads to a good global equilibrium. That
is, the resultant tensile force and torque of any cross section of the
rope axis should be equal to the values generated at the ends of the
rope. Every loading and rope configuration case in Figs. 6 and 7 has
been examined. Results show that the deviation of resultant tensile
forces and torques is usually not more than 1%, and the deviation of
resultant torque for regular lay under torsion load is a little higher
but still lower than 3%. Thus, a consistent global equilibrium has
been verified as well.

Reedlunn et al. (2013) found that the lubrication (friction) does
not have appreciable effect on the rope stiffness constant C11 of
shape memory alloy cables by experiments, which is coincident
with the force results predicted by the models with different fric-
tion assumptions in Fig. 6(a). Velinsky et al. (1984) and Elata
et al. (2004) compared their theoretical prediction with experi-
ment results and found that the tension–elongation stiffness C11

was larger than the measured values (up to 10–20%). This may



Fig. 11. Dj, Dj’ and Ds calculated from the present model and the kinematics of Usabiaga and Pagalday (2008) and Ashkenazi et al. (2003) for et = 0.003 and kt = 0.
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be due to the neglection of the contact deformation between the
wires and the outer strands tend to settle inside the rope core dur-
ing the experiment process (Costello, 1990). These situations are
not included in the present work as well. Thus, our model will give
a basic prediction of the rope global stiffness.
5.2. Bending and twisting along double-helix wires

The values of the curvature jF, the torsion sF and the angle f are
calculated first as curvatures and twist of wires are computed from
Eq. (12). Figs. 8–10 illustrate the three parameters respectively.
Actually, the angle f is not calculated in the work of Usabiaga
and Pagalday (2008). We get their value of f by the following equa-
tion derived from Eq. (12a):

f ¼ arcsinðj=jFÞ ð42Þ

From Figs. 8 and 9, we can find that both jF and sF of the present
model and the model of Usabiaga and Pagalday (2008) differ just a
little with each other after deformation, even if the two models
take different centerline descriptions of double-helix wires in the
deformed configuration. However, the f of the present model is
usually much bigger than that of Usabiaga and Pagalday (2008)
except when a regular lay rope is subjected to global torsion load
(Fig. 10(b)). As the present model ignores the friction, the wires
are easier to slide and move in the rope, which may generate a big-
ger f than the infinite friction model of Usabiaga and Pagalday
(2008).
Figs. 11 and 12 show the curvatures and the twist variation Dj,
Dj0 and Ds for lang lay and regular lay double-helix wires in differ-
ent loading conditions. The results of the kinematics assumption
proposed by Usabiaga and Pagalday (2008) and Ashkenazi et al.
(2003) (which was also materialized by Usabiaga and Pagalday,
2008) for a un-lubricated rope are also given. As depicted by the
figures, the approaches lead to significant difference for almost
all the cases.

Firstly, from Eqs. (12a) and (16), Dj can be calculated by

Dj ¼ j� j0 ¼ jF sin f ð43Þ

So a much bigger Dj is gotten when the rope is subjected to axial
tension (Fig. 11), since jF after deformation are nearly equal and f
of the present model is much higher than that of Usabiaga and
Pagalday (2008). This leads to more prominent bending deforma-
tion for wires in a well-lubricated rope.

Secondly the difference in Dj0 of the models is analyzed. As we
can see in Fig. 10, the f always has a very small value (lower than
1�), except for the regular lay wires under global torsion load (up to
17.5� but in a narrow region). Therefore the calculation of Dj0 can
be simplified as

Dj0 ¼ jF cos f � jF0 � jF � jF0 ð44Þ

Then the different values of Dj0 calculated from the models are
related to the different centerline descriptions of wires taken by
the authors after deformation. The present model takes the center-
line descriptions improved from Elata et al. (2004) while other



Fig. 12. Dj, Dj0 and Ds calculated from the present model and the kinematics of Usabiaga and Pagalday (2008) and Ashkenazi et al. (2003) for et = 0.0001 and
kt ¼ 0:001 rad=mm.

Table 3
Axial strain of the wires in lang and regular lay ropes.

Rope configuration Model et ¼ 0:001; kt ¼ 0 ð�10�3Þ et ¼ 0; kt ¼ 0:001 rad=mm ð�10�3Þ

n2 n3 n4 n2 n3 n4

Lang lay Present model (m ¼ 0) 0.894 0.899 0.816 1.186 3.148 3.491
Present model (m ¼ 0:3) 0.864 0.872 0.773 1.167 3.086 3.364
Costello’s model (m ¼ 0:3) 0.864 0.873 0.775 1.162 3.048 3.337

Regular lay Present model (m ¼ 0) 0.894 0.899 0.853 1.186 3.148 2.357
Present model (m ¼ 0:3) 0.864 0.872 0.807 1.167 3.096 2.248
Costello’s model (m ¼ 0:3) 0.864 0.872 0.809 1.162 3.058 2.205
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authors follow the descriptions of Usabiaga and Pagalday (2008), so
the values of Dj0 are nearly the same between the work of
Ashkenazi et al. (2003) and Usabiaga and Pagalday (2008), which
both differ from the present model.

Finally the most significant difference occurs in Ds. When the
rope is subjected to global tensile load (Fig. 11), the peak value
of Ds of the present model is much smaller than other models.
The difference can be up to 10 times, which indicates much slighter
torsion deformation of the ropes. For regular lay configuration
(Figs. 11(b) and 12(b)), the values from the work of Ashkenazi
et al. (2003) and Usabiaga and Pagalday (2008) vary severely near
the ends of a variation period, which indicates that the torsion
stress also changes greatly when the wire is spiral to its innermost
position in the rope. This may be due to the infinite friction kine-
matics applied on wires. As all relative movements between adja-
cent wires are prevented, the significant geometric variation (see sF

in Figs. 8(b) and 9(b)) near the ends of a variation period may be
attached to the local deformation of the wires, when load is
imposed to the rope. However, the present work is based on fric-
tionless hypothesis, so the wires are free to slide and the sticking
effect does not exist. This may be the reason why the present
model generates more smooth curves of Ds.

Overall we can conclude that: in contrast to the model of
Usabiaga and Pagalday (2008) and Ashkenazi et al. (2003), the
present model generates more prominent bending deformation
and much slighter torsion deformation when the rope is subjected



Fig. 13. Variations of the maximum axial stress and the maximum shear stress in a double-helix wire with its corresponding single-helix laying angle as, where
bw ¼ 75� ; rs ¼ 10:0 mm; rw ¼ 3:0 mm and et ¼ 0:003; kt ¼ 0.
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to axial tension and more smooth variation of torsion deformation
when the rope is subjected to axial torque. All these are mainly due
to the different friction assumption made by the authors to their
models, as analyzed above.

5.3. Stress analysis in the wires

Now we analyze the stresses in the wires caused by axial ten-
sion, torsion, and bending. When a rope is subjected to axial ten-
sion and torsion, the internal forces and moments acting on its
wires can be determined by Eqs. (14) and (37). The axial stresses
in each wire are mainly induced by its axial force T and bending
moments G and G0, while the shear stresses result mainly from
the torque H. The axial stress in the center of a wire cross-sec-
tion is

rc ¼
T
A
¼ En ð45Þ

The maximum axial stress and the maximum shear stress in a
wire can be calculated by

rmax ¼ rc þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ G02

p
pR3 ð46Þ

smax ¼
2H

pR3 ð47Þ

respectively.
The axial stress rc along a wire is uniform in frictionless condi-

tion and changes linearly with the axial strain n. Table 3 gives the
axial strain of the wires, with the Poisson effect into consideration
or not. When taking m = 0.3 into computation, the results of the
present model are very close to those of Costello (1990). In global
tension load, the axial strain of a double-helix wire in a lang lay
rope is a little lower than that in a regular lay one, while it is much
bigger when the rope is subjected to axial torsion. Regarding to the
Poisson effect, one can see that the values considering the radial
contraction in the wire diameter are just a little lower than those
ignoring it.

Figs. 13 and 14 illustrate the variations of rmax and smax with
the single-helix laying angle as and the double-helix laying angle
bw when the rope is subjected to axial tension respectively. It
can be seen that rmax in the double-helix wire increases monot-
onously when as or bw changes from 60� to 85�. The variation of
smax is complicated, as its direction and its peak value or average
value along the rope axis vary simultaneously with the change of
the two angles. The lang lay and the regular lay wires show a
very similar stress level of rmax, while the level of smax for reg-
ular lay is usually a little lower than that for lang lay.

To be noted, the magnitude of smax is much lower than that of
rmax. It indicates that the torsion stress in a double-helix wire
can be neglected when the rope is subjected to axial tension. It
should also be noted is that all the stress curves become flat when
as or bw is close to 90�. The reason is that when both as and bw are
equal to 90�, the double-helix wire turns into a totally straight
wire, in which the stresses along the wire are uniform when it is
subjected to axial tension.

The stresses in the wires are not analyzed here when the rope is
subjected to axial torque, as most wire ropes in practical cases are
used to transmit the big tensile force, and relatively the axial tor-
sion is not prominent.



Fig. 14. Variations of the maximum axial stress and the maximum shear stress in a double-helix wire with double-helix laying angle bw, where
as ¼ 70�; rs ¼ 10:0 mm; rw ¼ 3:0 mm and et ¼ 0:003; kt ¼ 0.
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6. Conclusions

A new wire rope model based on frictionless assumption and
Love’s general thin rod theory is proposed. Comparing with pre-
vious approaches, this model fully considers the double-helix
configuration in multi-strand wire ropes. Specifically, local bend-
ing and torsion deformation parameters of each wire are com-
pletely computed, instead of assuming a fibrous response of
each wire or homogenizing a wound strand as being a wire.
The use of the angle ‘‘f’’ generates concise equations to compute
the curvatures and the twist from the equilibrium equations and
helps to understand and explain the related results. The present
model is convinced of a correct estimation of rope global stiff-
ness. And the consistency of the model has been examined by
the invariability of resultant tensile force and torque along the
axis of the rope and by the symmetry of the stiffness matrix
of the rope.

This model also incorporates some procedures to get the axial
strain along wires. Results show that it does not lead to distinct
difference, taking the Poisson effect into account or not, and the
axial strain contributes most of global force and torque of the
rope (Usabiaga and Pagalday, 2008). It indicates that the Poisson
effect may not have significant influence on the rope global
behavior.

The local curvatures and twist along double-helix wires have
shown much difference between the present model and other
models, due to different friction assumptions made to the wires.
As most of ropes are well-lubricated to prevent the frictional con-
tact and wear damage of the wires, our frictionless model may be
closer to the actual situation and have a broader application, in
contrast to the infinite friction model of Usabiaga and Pagalday
(2008).

Concerning the local stresses, the lang lay and regular lay wires
show similar stress levels and the torsion stress of a double-helix
wire can be neglected, when the rope is subjected to axial tension.
The maximum axial stress of a double-helix wire is positively
related to the double-helix laying angle and its corresponding sin-
gle-helix laying angle. The stresses in the wires are critically rele-
vant to rope endurance analysis when rope is under fluctuating
loads and the analysis of stresses changing with different geomet-
ric parameters will help researchers to design optimal rope struc-
tures with a more uniform load distribution between the wires.
What’s more, the proposed model can provide integrated estima-
tions of inter-wire interactions (like contact forces) from the equi-
librium equations of each wire, which is useful to predict the
fretting fatigue property at the wire level.

The current rigorous description of the procedure to compute
Love’s (1944) kinematic parameters can be easily extended to the
wires of higher helix levels. However, ignoring the Poisson effect
and contact deformation may have some influence on the local
stresses. Contact deformation has been analyzed by Argatov
(2011) and Páczelt and Beleznai (2011) for a straight strand, which
may be expanded to double-helix wires in the future. In addition,
all the local deformation results need to be verified by careful
experiments and the finite element method, which can provide
local strain and stress information of the wires, and more practical
cases with a finite friction coefficient and Poisson radial contrac-
tion should be taken into account.
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