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There is no consensus on whether the macroscopic Laplace Equation of capillarity is applicable for
nanoscale systems. The microscopic expression for the radius and surface tension of the surface
of tension for cylindrical liquid were deduced on Gibbs theory of capillarity. The radii and tensions
of the surfaces of tension and the differences between internal and outside pressure for several
argon liquid cylinders consisting of different numbers of atoms with Lennard-Jones (LJ) potential
under the temperature of 90 K were obtained by combination of molecular dynamics simulation
and calculation. The results suggested that Laplace equation could be applicable in nanoscale with

fairly good approximation.
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1. INTRODUCTION

With the rapid development of nanotechnology in recent
years,' the capillarity theory of nanoscale has become
very important research branch of nanotechnology. It has
a profound influence on preparation and research of nano-
materials. The Laplace equation to predict additional pres-
sure of curved interfaces and Young equation to determine
macroscopic contact angle are the fundamental theories for
capillarity phenomena. The question how to modify these
equations in nanoscale has become very active.*?

Gibbs developed a rigorous theory of the capillary phe-
nomena by the methods of thermodynamics.®” For a ther-
modynamic system comprising a liquid in equilibrium
with its vapor, there exists a gradual transition layer.
In Gibbs’s thermodynamic theory of capillary phenomena,
the transition layer is modeled as a geometrical surface
of zero thickness called dividing surface. The dividing
surface can be one of the equi-density surfaces in the
transition layer, so it is not unique. Different dividing sur-
face have different surface tension and different exten-
sive quantities, for instance, the molecule number of the
liquid—vapor interface. The dividing surface with radius R
is called the surface of tension if the Laplace’s equation is
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valid at it. Later theoretical studies have been made fur-
ther discussions by several authors.®'3 In 1992, Nijmeijer
et al.'* generalized the theory to cylindrical liquid and
derived the general Laplace Equation (r = R)

a_p_" a'_y_ 1
P p R+[dR] 1)

where p* and pP are the pressure of liquid phase and
vapbur phase respectively, y is the surface tension of the
dividing surface and [dr/dR] is the derivative for the same
physical state of the same system.

General Laplace equation is the basic equation of capil-
larity. There is no unique answer for whether the general
Laplace equation is applicable in nanoscale. In order to
clarify the applicability of the general Laplace equation,
it is enough to study the special case, i.e., the Laplace’s
equation for the surface of tension
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R, is the radius of the surface of tension.

Many papers'“'¢ have taken Egs. (1) or (2) as the starting

point of theoretical analysis and molecular dynamics sim-

ulation without proving it. Some unsatisfied results were
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often attributed to statistical fluctuation of small number of
molecules or computable error. In 2006, Nagayama et al."”
proposed that their results disagreed with the Laplace
equation for nano-sized bubble. In 2008, Matsumoto and
Tanaka* confirmed that the Laplace equation was valid even
for nano-scale bubbles. They obtained the radius of the sur-
face of tension and the difference between inside pressure
and outside pressure of a spherical bubble by MD simula-
tion, and put them into Eq. (2) to get the surface tension.
Their results showed that surface tension was independent
of R, and very close to that of a planar interface. However
strong doubts about their analysis still exists. For nano-
scale bubbles, the Tolman’s effect connot be neglected,
that is to say, surface tension is dependent of the radius. So
Matsumoto’s conclusion may be incorrect. ‘

One of the causes of above difference may lie in the
fact that the system size is so tiny and the density of the
molecules in the bubble is so small that the statistical error
is too large. Therefore in the present paper we take a cylin-
drical nano droplet as an object to be investigated.

The aim of this work is to derive a microscopic expres-
sion for the radius and surface tension of the surface of
tension for cylindrical liquid on Gibbs theory of capillarity.
The results are used to discuss the applicability of Laplace
equation in nanoscale. In Section 2, we propose the theo-
retical analysis of surface tension. In Section 3, we describe
the molecular dynamics simulation, results, and discussion.
The conclusion is given in Section 4.

2. THEORETICAL ANALYSIS OF THE
SURFACE TENSION (vy,) OF
CYLINDRICAL LIQUID
2.1. The Integral Form of Surface Tension of
Arbitrary Dividing Surface
Consider the cylindrical liquid of a liquid phase a sur-
rounded by a vapour phase (3, separated by a dividing sur-
face of radius R located in the thin transition layer of the
physical system, and so R is not unique. R* and RP are
the radius of two cylindrical surfaces located in interiors of
liquid and vapor respectively, which is shown in Figure 1.
We choose the dividing surface r = R and define the
function p*#(r; R):

r<R

a B _
P = pP r>R 3)

Considering the 6 change (8 — 6+ d6) in @, direction,
the change of work would be

RB
dW:/ rpr(r)Ldrdé
RLI

If the notional discrete system replaces the physical one, it
would be

R RP
W' = [ rp"Ldrdo+ [ rpPLdrd6+yLRdg
R

R«

190

Cui et al.

Fig. 1. Schematic figure of column coexisting liquid and vapor.

According to the equivalence between the new system and
the physical one, it can be dW = d W', The form of surface
tension arbitrary dividing surface for cylindrical liquid is

RB

YR =2 [ ratp R -] @

2.2. The Condition About Surface of Tension
The pressure tensor in cylindrical components is given by

b= pn(r)E. e+ pr(r)(E,é,+E.2,) )

where ¢,, €, and e, are orthogonal unit vectors and p, (r)
and py(r) are the normal and transverse components of the
pressure tensor respectively. The mechanical equilibrium
condition of pressure tensor V- P = 0 gives

5 _
dpw  Pv=Pr _

ar r ©6)
d

PT:O

dx

where p; is independent of x. Combination of Egs. (3) and
(6) gives '

RB
R(p* — pP) = / Cdrlp*P(r Ry = pr (0] ()

From Egs. (4) and (7), Eq. (1) gives
Z% == (R_ - %) dr[p“*(r: R) = pr(r)]  (8) |

By combining the condition of  Gibbsian
[dy/dR]g_g, =0 with Egs. (4) and (8), we can get the
formulae for the radius and surface tension of the surface
of tension

RB
[, (= Rdr(p**(ri R) = pr(N] =0 (9)

RB
Yo = /R dr[p*“F(r; Ry) = pr(1)] (o
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2.3. The Solution of Surface Tension
and the Radius of Surface of Tension

Integration of Eq. (9) yields

1 a a a
(" = PR — (PR — pPRP+P)R,

IR — PR 42B] =0 (1)

8 B :
where P, = f:u pr(r)dr, P, = flf“ rpy(r) dr. The solution
of Eq. (11) is

Ro=(p*R* = pPRP+ P+ ((p°R" = pPRP + P,)?
—[p*(R*)? = pP(RE)* +2P,)(p" = PP))'"?)

(" =7 (12)
By substituting Eq. (12) into (10)
’Yo:PB(RB‘RO)“PG(RQ_RO)_PJ (13)

3. MOLECULAR DYNAMICS SIMULATION,
RESULTS, DISCUSSION

3.1. Molecular Dynamics Simulation

The intermolecular interactions between argon atoms are

described by the Lennard—Jones potential

wo=f()-()]

where r, € and o are the interparticle distance, energy
scale, and length scale, respectively. All quantities used in
the simulation are dimensionless. According to the basic
parameters of an argon atom, m = 6.3382 x 107%° Kg,
e =ky120 K, kp = 1.38 x 1072 J/K, o = 0.3405 nm, the
dimensionless quantities are as follows:

r* = r/o for length, T* = kT /¢ for temperature, {* =
t/(g/mo?) for time,

p* = po?/m for density, f* = fo /¢ for force, and E* =
E/e for energy.

The initial configuration is constructed on a finite cubic
lattice located at the central part of the box, and the atomic
separation is 1.20°. The box size of simulation system is x X
yx7=19.0%39.0x39.0. The periodic boundary condition
is used in x directions and mirror boundary condition is
used in y and z directions. The simulated temperature is
T* =0.75. The cut-off distance is r- = 3.0.

The total simulated number of atoms (N) are 10140,
10935, 11760, 13500 and 15360 respectively. We take N =
11760 as an example to illustrate the results.

For simulated system N = 11760, the initial configura-
tion is constructed by putting 15 x 28 x 28 = 11760 parti-
cles on a finite cubic lattice located at the central part of
the box.

For the cylindrical liquid systems and planar interface
system, at the initial time all the particles are given veloc-
lties according to the Maxwell-Boltzmann distribution.
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Fig. 2. A snapshot of simulated system N = 11760 after equilibrium.

The velocity-Verlet algorithm'® is used in MD. The canoni-
cal ensemble (NVT ensemble) of temperature 90 K and the
time step 8¢ = 5 fs are used before equilibrium. On calcu-
lating the mean value of a physical quantity, we change the
time step into 6 = 2 fs. In order to find the step number N
that is needed for a physical quantity, say, g(¢) to reach its
steady value, we use an accumulative average method for
the statistics

S50 = 3 Yl 15)
i=1

. —'.—N
accumulative average g(i-6¢) was used, where the num-

— N
ber g(i-&t) must be large enough for the accumula-
tive mean value to reach a constant with acceptable small

——— density profils in the Rdial orierdation
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Fig. 3. The density profile in r direction.
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Table I. Simulated results and surface tensions of five systems.

10140 0.04494 0.00590 0.15337 0.05988 12.99 0.570 0.520 0.050 8.7%
10935 0.05618 0.00607 0.26995 0.22471 13.42 0.647 0.672 0.025 3.9%
11760 0.05383 0.00621 0.24500 —0.00432 14.35 0.669 0.678 - 0.009 1.3%
13500 0.04611 0.00582 0.21134 —1.74382 - 16.90 0.694 0.680 0.014 2.0%
15360 0.04574 0.00574 0.20921 —1.97303 17.26 0.700 0.690 0.010 © 1.4%
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variation. In fact in our simulations up to 1000000 runs
with a time step of 67 = 2 fs were used to obtain the accept-
able statistics. A snapshot of simulated system N = 11760
after equilibrium shown in Figure 2.

3.2. Results and Discussion

The statistical time steps are 1000000 runs. A configura-
tion of system is recorded by every 100 runs. The average
result is obtained by 10000 samples. Examples of the den-
sity profile is obtained with this method. The density profile
in r direction of simulated system N = 11760 is shown in
Figure 3.

The results of Molecular dynamics simulation is shown
in Table I. The numerical function R, and v, are calculated
by Egs. (12), (13) and MD simulation.

For cylindrical liquid, we can also use Laplace Equa-

for these argon liquid cylinder were obtained by combina-
tion of simulation and calculation. The results suggested
that Laplace equation could be applicable in nanoscale with
fairly good approximation.

In addition, the paper deals with some properties for
nano-liquid by molecular dynamics simulation (model-
ing) approach. Other descriptions and approach for nano-
matters are given for example in the Refs. [24-26]. In most
cases dynamics approach is necessary for nanomaterials.
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