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Gravity affects the stability of Marangoni flow in floating half zone of low-Pr fluids through two different
factors, i.e., the buoyancy and the static deformation of the free surface shape. In the present study,
influence of these two factors are evaluated by unsteady three-dimensional (3D) simulations for a real-
istic model of floating half zone of molten tin (Pr = 0.009) with an aspect ratio As = 2.0 under a ramped
temperature difference (1.19 K/min) between the top and bottom ends of two iron supporting rods.
The corresponding first critical conditions for the onset of 3D asymmetric non-oscillatory flows and
the second critical conditions for the onset of 3D oscillatory flows are determined. Simulation results
indicate that the fee surface deformation is the most influential factor for the critical conditions of the
flow transitions. Buoyancy is less influential to the flow transitions. However, buoyancy causes multiple
step transitions between different 3D asymmetric non-oscillatory flow modes.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The stability of the surface tension driven flow (Marangoni
flow) in floating half zone of low-Pr fluids has been the subject of
extensive research for decades. It was motivated by the experi-
mental fact that an oscillatory Marangoni flow in floating zone
configurations may be responsible for striations in crystals grown
using a partially covered floating zone method [1] and floating
zone Si crystal grown in space [2]. Since the first prediction
through the three-dimensional (3D) numerical simulation by Rupp
et al. [3], numerous linear stability analyses (LSA), e.g. [4–7], and
nonlinear numerical simulations, e.g. [5,6], have proved that
Marangoni flow in floating half zone (noted as FHZ, hereafter) of
low-Pr fluids becomes oscillatory through a two step bifurcations:
the first bifurcation from an axisymmetric non-oscillatory flow to a
3D asymmetric non-oscillatory flow occurs at a certain Reynolds
number (the first critical Reynolds number: Rec1) and the second
bifurcation to a 3D oscillatory flow occurs at much larger Reynolds
number (the second critical Reynolds number: Rec2). Moreover,
these 3D flows in FHZ of low-Pr fluids are caused by hydrodynamic
instability mechanism [4,5], rather than the hydrothermal wave
instability mechanism [8] which is widely known as the cause of
the oscillatory 3D flow in FHZs of moderate-Pr and high-Pr fluids
[4,5]. Velten et al. [9] experimentally found that the critical
Reynolds number for the onset of oscillatory flow in FHZ of moder-
ate-Pr fluid heated from bottom is larger than that obtained when
heated from top. Wanschura et al. [10] studied the effect of gravity
on the Marangoni flow in FHZ by linear stability analysis and con-
firmed the counterintuitive experimental fact found by Velten et al.
[9]. However, the mechanism was not clearly explained. Also their
analysis predicts this apparently contradictory stabilizing effect of
buoyancy may occur in FHZ of low-Pr fluid. These theoretical and
numerical predictions are not yet validated by comparing with
reliable experimental results. There are many experimental reports
on the oscillation frequency and flow patterns of oscillatory flow in
FHZ of low-Pr fluids such as molten silicon [11] and molten silver
[12]. However, these high temperature experiments are unsuitable
for measuring a small temperature difference to detect the critical
conditions. There are some studies on oscillatory Marangoni flow
in FHZ at lower temperatures, e.g. Han et al. with mercury [13]
and Yang and Kou with molten tin [14]. According to these exper-
iments, Mac2 for a transition to oscillatory flow ranges between
200 and 900 and Mac1 was not detected. JAXA started a series of
on-ground experiments, e.g. [15–17], searching both flow transi-
tion conditions, Rec1 and Rec2 in FHZ of molten tin (Pr ¼ 0:009).
Correspondingly, a series of numerical simulations on Marangoni
flow in FHZ of molten tin have been conducted based on a simple
FHZ model such as a cylindrical FHZ held between two circular
heating/cooling disks [18,19] or a cylindrical FHZ held between
two iron rods [20,21]. In these simulations, effects of the aspect
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Fig. 1. Schematics of a realistic floating half zone (FHZ) model.

Table 1
Thermophysical properties.

Molten tin Fluid A Fluid B Iron

q ðkg=m3Þ 6793 6793 6793 7700
k ðW=mKÞ 35.44 35.44 35.44 20.0
Cp ðJ=kgKÞ 242 242 242 460

m ðm2=sÞ 1.94 � 10�7 1.94 � 10�7 1.94 � 10�7 –
r ðN=mÞ 0.5 >>1 0.5 –
rT ðN=mKÞ �1.3 � 10�4 �1.3 � 10�4 �1.3 � 10�4 –
b ð1=KÞ 1.3 � 10�4 1.3 � 10�4 0 –
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ratio of FHZ on the flow instability under microgravity condition
were systematically studied. Li et al. [21] studied the effect of
ramping rate of temperature difference by numerical simulations.
It was confirmed that the larger temperature ramping retards the
flow transitions which raised the experimentally determined Rec1

and Rec2. However, buoyancy and free surface deformation caused
by the gravity were not considered in these studies.

For a quantitative comparison of the critical conditions deter-
mined through numerical simulations to the results through
on-ground experiments, numerical simulations must include all
gravity-related factors, i.e. static deformation of free surface and
the buoyancy. Many numerical studies on flow instabilities have
been done for non-cylindrical FHZ under microgravity, i.e., the
effect of liquid volume. These works were reviewed and bench-
mark-tested by Shevtsova [22]. To our knowledge, there are only
a few linear stability analyses and numerical simulations on the
instabilities of buoyant-Marangoni convection in gravitationary
deformed FHZ of low-Pr fluids. Nienheuser and Kuhlmann [23]
conducted a linear stability analysis of axisymmetric Marangoni
flow in FHZ with non-cylindrical surfaces for Pr ¼ 0:02 and
Pr ¼ 4. Kuhlmann et al. [24] conducted linear stability analysis of
axisymmetric flow in gravitationary deformed FHZ with unity
aspect ratio for Pr ¼ 0 � 0:04. In the papers, they provided a plot
of Rec1 as a function of Bond number and heating direction for
Pr ¼ 0:023. Lappa et al. [25] studied stability limit of Marangoni
flow in deformed FHZ of silicon (Pr ¼ 0:01) and gallium
(Pr ¼ 0:04) by comparing with their own results for cylindrical
FHZ with an aspect ratio As ¼ 2:0. These works treated the static
deformation of the surface. Shevtsova [22] included Rec1 for grav-
itationary deformed FHZ in the benchmark topics but Rec2 was
not tested. However, the combined effects of buoyancy and free
surface deformation on the Marangoni flow in FHZ of low-Pr fluids
under earth gravity (1G) are yet not fully discerned. It should be
noted that Kuhlmann and Nienheuser et al. [23] studied the effect
of dynamic surface deformation on the instability and the ampli-
tudes of dynamic deformations are so small that would not cause
significant effects.

In the present study, the combined effects of buoyancy and sta-
tic surface deformation on time evolution of Marangoni flow and
flow transition processes in a FHZ of Pr ¼ 0:009 with As ¼ 2:0
under a ramped temperature difference are studied by numerical
simulations based on a realistic FHZ model. A ramp rate of
1.19 K/min is assumed for the time-dependent temperature differ-
ence between both ends of the two supporting iron rods. In order
to distinguish effects of free surface deformation and buoyancy,
behavior of FHZ under special situations, i.e., cylindrical FHZ with
buoyancy (Bo = 0, Gr – 0) and deformed FHZ without buoyancy
(Bo – 0, Gr = 0) were also studied using two imaginary fluids.
These imaginary fluids, Fluid A and Fluid B, are assumed to have
the same thermophysical properties of molten tin except for either
surface tension (quite large surface tension) or thermal expansion
coefficient (no thermal expansion), respectively.
2. Model and methods

The schematics of a realistic FHZ of molten tin are shown in
Fig. 1. The melt zone of molten tin is supported between two iron
rods. The melt is assumed to be an incompressible Newtonian fluid
and further adopted the Boussinesq assumption except for the
temperature dependencies of density and surface tension. Thermo-
physical properties of molten tin and iron rod are shown in Table 1
together with the two imaginary fluids (Fluid A and Fluid B). A
cylindrical coordinate system ðR;h;ZÞ is adopted with the origin
located at the center of the lower melt/rod interface. The radius
of the supporting rod is denoted as a. The melt zone length and
iron rod length are denoted L and Lr with the aspect ratios
As ¼ L=a and Asr = Lr/a, respectively. In the present study,
(a = 3.0 mm, A = Asr = 2.0) is adopted. The fluid is initially motion-
less and kept at an uniform temperature T0 ¼ 703:6 K, and subse-
quently linearly increasing temperature difference were applied on
the top end and bottom end of the supporting iron rods (TH and TC).
Based on the experimental average ramping rate 0.34 K/min
measured through the thermocouples located at 0:5 mm apart
from the melt/rod interfaces (see Fig. 1) during one of the experi-
ments conducted at JAXA [15], the ramping rate of the temperature
difference is determined as dðTH � TCÞ=dt = 1.19 K/min by the pure
steady conduction model [19,20]. Therefore, the time-dependent
temperatures at the ends of the supporting rods are
TH ¼ 703:6þ 0:009917 t ½K� and TC ¼ 703:6� 0:009917 t ½K�,
respectively.

The fundamental equations are expressed as follows:
In the melt zone:

r � U ¼ 0 ð2:1Þ

@U
@t
þ U � rU ¼ 1

q
rpþ mr2U� bgðT � T0Þez ð2:2Þ
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@T
@t
þ U � rT ¼ ar2T ð2:3Þ

In the iron rods:

@Tr

@t
¼ arr2Tr ð2:4Þ

where U ¼ ðUR;Uh;UZÞ is velocity vector, m kinetic viscosity, t time,
q density, p pressure, T and Tr temperatures of the melt and rods,
respectively, b thermal expansion coefficient, g the gravity level,
ez a unit vector in the Z direction, and a, ar the thermal diffusivities
of the melt and rods respectively.

The boundary conditions are as follows:
In the melt zone,

at Z ¼ 0 and Z ¼ L : U ¼ 0; k
@T
@Z
¼ kr

@Tr

@Z
ð2:5Þ

at R ¼ hðZÞ : n � U ¼ 0; n � rT ¼ 0; tz � ðs � nÞ ¼ �tz � rT;

th � ðs � nÞ ¼ �th � rT ð2:6Þ

In the iron rods,

at Z ¼ �Lr : Tr ¼ TC; at Z ¼ Lþ Lr : Tr ¼ TH in the top-heated case ðnoted as THÞ
ð2:7Þ

at Z¼�Lr : Tr¼ TH; at Z¼ LþLr : Tr ¼ TC in the bottom-heated case ðnoted as BHÞ
ð2:8Þ

at R ¼ a : n � rTr ¼ 0 ð2:9Þ

where k and kr are the heat conductivities of the melt and rod
respectively, hðZÞ the radius of the free surface n the normal vector
of the free surface, tz and th are the tangential vectors of the free
surface in the ðR; ZÞ plane and ðR; hÞ plane respectively, and s the
stress tensor. In the present study, the driving force of the Marang-
oni flow is not given a priori. An effective temperature difference
between the melt/solid interfaces, DTe, at each time step is
calculated a posteriori as

DTe ¼
1

2p

Z 2p

0
Tða; h;0Þdh�

Z 2p

0
Tða; h; LÞdh

� �
ð2:10Þ

where Tða; h;0Þ and Tða; h; LÞ is the temperature on the three phase
contact lines. The Prandtl number, Reynolds number and Grashof
number are respectively defined as

Pr ¼ m
a
; Bo ¼ qga2

r
; Re ¼ rTjDTeja

qm2 ; Gr ¼ bgDTea3

m2

Due to the experimental fact that dynamic free surface deforma-
tions (10�6 m) are negligibly small compared to the FHZ size
(O(10�2 m)), dynamic free surface deformations are ignored in the
present study. Then the static free surface shape hðZÞ is assumed
to be non-deformable and axisymmetric to the Z-axis which is
determined by solving the Young–Laplace equation:

1

hðZÞð1þ hðZÞ02Þ
1
2
� hðZÞ00

ð1þ hðZÞ02Þ
3
2
¼ aDp

r
� qga

r
Z ð2:11Þ

with two boundary conditions and a volume constant:

at Z ¼ 0 : hð0Þ ¼ a; at Z ¼ L : hðLÞ ¼ a ð2:12Þ

V ¼
Z L

0
phðZÞ2dZ ¼ pa2L ¼ 2pa3 ð2:13Þ

In the present study, the non-cylindrical physical domain is
transformed into a uniform computational domain through the
body-fitted transformation [26]. The governing equations are dis-
cretized through the finite volume method on staggered grids in
the computational domain. The details of the numerical method
can be found elsewhere [18]. The mesh number is 40� 40� 80 in
(R; h and Z) directions, respectively, for the melt zone, and
40� 40� 40 for the iron rods. Note that non-uniform staggered
grid are adopted in the physical domain to increase the resolution
near the boundaries. To validate the code, the present model is sim-
plified to a FHZ model with melt zone only (the mesh number is
40� 40� 80 in (R; h and Z) directions). The corresponding numeri-
cal results are in a good agreement with the benchmark work [22]
as shown in Table 2.
3. Results and discussions

In the present study, the results for lG case (Bo = 0, Gr = 0), at
which the melt zone is cylindrical, was calculated for the reference.
The present FHZ (a ¼ 3 mm; As ¼ Asr ¼ 2:0;V ¼ 2pa3 and
Bo ¼ 1:20 under 1G) has a S shaped free surface with a maximum
radius 1:09a and a minimum 0:87a as shown in Fig. 2.

All the cases studied are classified into three groups according
to the Grashof number (Gr), the Bond number (Bo) and the heating
direction:

Group 1: FHZ with cylindrical free surface:

(Bo = 0, Gr = 0), (Bo = 0, Gr > 0) and (Bo = 0, Gr < 0);

Group 2: FHZ with deformed free surface heated from top:
(Bo = 1.20, Gr < 0) and (Bo = 1.20, Gr = 0, TH);

Group 3: FHZ with deformed free surface heated from bottom,
(Bo = 1.20, Gr > 0) and (Bo = 1.20, Gr = 0, BH).

For current FHZ with non-zero Gr, the flow field is expected to
be Marangoni flow dominant due to the small dynamic Bond num-
ber (Bod ¼ jGr=Rej ¼ 0:60 < 1).
3.1. Axisymmetric non-oscillatory flow regime

As time elapsed, the temperature gradient develops in the
melt zone which drives the Marangoni flow, in cooperation with
buoyancy for 1G cases. The flow in the melt zone is axisymmet-
ric and non-oscillatory until jDTej exceeds a certain threshold
value. The effects of the free surface shape and the buoyancy
on the axisymmetric non-oscillatory temperature and flow fields
at jDTej ¼ 0:23 K (Re ¼ 351), much smaller than the first critical
conditions, are shown in Figs. 2 and 3. It should be noted that
Z⁄, the horizontal axis of Fig. 3, is the distance from the hot
melt/rod interface. In Fig. 2, all isothermals meet the free sur-
face at right angle because of the adiabatic boundary condition
at the free surface. In lG case (Bo ¼ 0;Gr ¼ 0; BH) the free sur-
face temperature distributes approximately linearly in Z⁄ direc-
tion (Fig. 3a). However, Fig. 2b shows small variation of
temperature in the radial direction and on a horizontal cut
plane at Z = 0.5L, free surface temperature is slightly higher than
that at R = 0 in lG cases. The absolute value of the free surface
velocity jUzj shows a smooth curve with a maximum around
Z⁄ = 0.55L = 0.0033 m as shown in Fig. 3b.

On the contrary, the distributions of the free surface tempera-
ture and velocity in the deformed FHZ under 1G distinguishably
deviate from those of lG case. It can be seen from Fig. 3a that large
free surface temperature gradient (�dT/dZ⁄) appears in the neck
zone, 0.65L < Z < 0.9L (0.0039 m < Z⁄ < 0.0054 m) for bottom-
heated case: Gr > 0, and 0.0006 m < Z⁄ < 0.0021 m for top-heated
case: Gr < 0. Even in cases of Groups 2 and 3, the base flow is
mostly driven by the free surface temperature gradient (Marangoni
effect). Then the flow intensity depends on the free surface temper-
ature gradient and the length over which the free surface tension
gradient effectively accelerate the flow. The velocity distributions
in FHZ (Fig. 2a and c) and on the free surface (Fig. 3b) well



Table 2
The code validation against Shevtsova [22] for the case of Pr ¼ 0:02, Re ¼ 2000;Gr ¼ 0:.

Stream-function jwjmax jVZ jmax on free surface

As ¼ 1 As ¼ 1:2 As ¼ 1 As ¼ 1:2

Contact angle 40� Shevtsova [22] 8.42 5.61 188.61 184.46
Present code 8.57 5.82 191.15 189.31

Contact angle 90� Shevtsova [22] 15.67 12.67 201.84 205.61
Present code 15.74 12.74 201.97 205.84

Fig. 2. The velocity and temperature fields of axisymmetric non-oscillatory flow in the melt zone. (Re ¼ 351:11 < Rec1) (a) under 1G and heated from top
(Bo = 1.20,Gr = �210.66), (b) under lG and heated from bottom (Bo = 0, Gr = 0) and (c) under 1G and heated from bottom (Bo = 1.20, Gr = 210.66).

Fig. 3. (a) The free surface temperatures and (b) the absolute values of surface velocity in the Z-direction as a function of distance from the hot melt/rod interface.
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correspond to the free surface temperature distributions (Fig. 3a).
Maximum jUzj in Fig. 3b appears at around Z = 0.62L (Z⁄ = 0.38
L = 0.0023 m) for top-heated case and at Z = Z⁄ = 0.70L = 0.0042 m
for bottom-heated case. It should be noted that in all cases, the iso-
thermals near the free surface have positive radial gradient near
the mid-height of the melt zone, then the free surface temperature
on the mid-height is closer to the temperature of the bottom plate.

3.2. Time evolution of the absolute value of effective temperature
difference DTe

As mentioned above, a linearly ramped overall temperature dif-
ference is applied between both ends of the supporting iron rods.
The time evolutions of the absolute value of effective temperature
difference (jDTej) between the upper and lower melt/rod interfaces
for all cases studied are shown in Fig. 4. jDTej for all cases are nearly
linear in early calculation time span (t < 200 s), but the slope is
slightly dependent on the shape of FHZ. In cases of cylindrical
FHZ, the slope (djDTej=dt) is about 0.21 K/min. The buoyancy force
seems to play a minor role in the cylindrical FHZ over a wide range
of the calculation time span (t < 650 s). In case of deformed FHZ,
jDTej is always about 3% larger than those of the cylindrical FHZ.
The difference can be attributed to the non-uniform cross sectional
area of the melt zone. During the entire calculation time span, the
slope changes at least twice, accompanied by the flow transitions,
but the changes cannot significantly be clarified in Fig. 4. In order
to detect flow transitions during the entire calculation time span,
local velocities and temperatures are plotted as a function of
jDTej, instead of time, as shown in Figs. 5 and 6. It can be seen that
the buoyant-Marangoni flow in FHZ of molten tin is axisymmetric
stationary until jDTej exceeds a certain threshold. At a first thresh-
old value, the flow changes from an axisymmetric non-oscillatory
flow to a 3D asymmetric non-oscillatory flow. At further larger
jDTej (a second threshold value), 3D oscillatory flow sets on. In
the following sections, each regime of the flow transitions will be
described in detail.



Fig. 4. Time evolution of the absolute value of the effective temperature difference
between the melt/rod interfaces.

Fig. 5. Evolutions of the maximum absolute value of radial velocity close to the axis
at mid-plane of the melt zone against jDTej between the melt/rod interfaces.
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3.3. Asymmetric non-oscillatory flow regime

After the overall ramping temperature difference started, axi-
symmetric non-oscillatory flow increases its intensity as shown
in Fig. 6 in lG case. At the first critical temperature difference
jDTejc1, or the first critical Reynolds number Rec1, the flow becomes
Fig. 6. Evolutions of the local temperature and velocities at four points on the free surfac
respectively, as a function of jDTej: (a) temperature, (b) azimuthal velocity and (c) axial
unstable and a flow exhibits a transition to a 3D asymmetric non-
oscillatory flow. As shown in the following figures and Table 3,
jDTejc1 or Rec1 strongly depends on the free surface shape and
the heating direction. Due to the transient nature of the present
study, detection of the critical point is more difficult than our pre-
vious works [18–20,26]. In those studies, transient calculations
were conducted for different but constant Re to obtain the growth
rate constants of 3D disturbances as a function of Reynolds num-
ber. Then the critical Rec1 is determined as the value of Re at which
the growth rate constant becomes zero. In the present study, the
first bifurcation point is determined through the local free surface
temperature which is identical to that through the local free sur-
face azimuthal velocity [21].
3.3.1. Group 1 (Bo = 0)
As mentioned above, it is rather difficult to detect the flow tran-

sition points from the ever changing local temperatures and veloc-
ities in the present work. However, at Re = 770 (jDTej = 0.50 K),
local free surface temperatures of the cylindrical FHZ under lG
(Bo = 0, Gr = 0) show distinguishable deviations (1:0� 10�4 K) from
the axisymmetric distribution. The cold plume flows down slightly
apart from the Z-axis and cools one side of the free surface to cre-
ate a minimum surface temperature on one side of FHZ and a
higher temperature area on the opposite side. This disturbance
grows with time and a temperature and velocity distribution
appear pattern with an azimuthal wave number of m = 1 (see
Fig. 7). Temperature and vectors on the horizontal cut-plane at
Z = 0.5L (mid-plane) is characterized by its azimuthal wave num-
ber m = 1, since it has single line of symmetry (or symmetric plane)
PSY, non-zero jURj near the axis, and splitting of the local free sur-
face temperatures and velocities (see Figs. 5 and 6). At larger jDTej
the free surface temperature at h ¼ 0 becomes lower than those at
h ¼ p=2 and h ¼ 3p=2. This corresponds to splitting of the higher
temperature zone into two separate zones like Fig. 9a which still
holds the characteristics of m = 1 mode.

For the cylindrical FHZ (Bo = 0, Gr < 0, TH), the evolution of the
3D asymmetric non-oscillatory flow is qualitatively the same as
the lG case except for the different magnitudes of the tempera-
tures and velocities (see Figs. 5 and 8). Moreover, for both cases,
the well developed 3D asymmetric non-oscillatory flow with
m = 1 dominates until the second flow transition to an oscillatory
flow sets on.

On the other hand, for the cylindrical FHZ (Bo = 0, Gr > 0, BH),
initially the 3D asymmetric stationary flow with m = 1 (Fig. 7) sets
on and gradually deforms its pattern to that of Fig. 9a. The temper-
ature and flow fields of Fig. 9a holds the character of m ¼ 1 since it
has only one line of symmetry. However it also can be recognized
as an incomplete (or deformed) m = 2 since it has two local max-
ima of free surface temperature. With a further increase of jDTej
e of a cylindrical FHZ (Bo = 0, Gr = 0) at mid-plane (Z = 0.5L) at h = 0, p/4, 2p/4, 3p/4,
velocity.



Table 3
The critical conditions of bifurcation to 3D asymmetric stationary flow.

Present work Lappa et al. [26]

Molten tin, Fluid A and Fluid B Pr = 0.009 (Bo = 1.20
under 1G)

Si melt: Pr = 0.01 (Bo = 0.85
under 1G)

Ga melt: Pr = 0.021 (Bo = 2.08
under 1G)

Rec1 mc1 Mode change Rec1 mc1 Rec1 mc1

Group 1 Bo = 0, Gr = 0 770 1 762 1 816 1
Bo = 0, Gr – 0, TH 770 1 m = 2 at Re P 3053 768 1 874 1
Bo = 0, Gr – 0, BH 770 1 746 1 770 1

Group 2 (TH) Bo – 0, Gr < 0 976 2 831 2 2162 2
Bo – 0, Gr = 0 976 2

Group 3 (BH) Bo – 0, Gr > 0 1220 1 939 1 –*

Bo – 0, Gr = 0 1220 1

* A direct transition to a 3D oscillatory flow is reported for this case.

Fig. 7. 3D asymmetric non-oscillatory flow structure on the mid-plane (Z ¼ 0:5L) of the cylindrical FHZ under lG (Bo = 0, Gr = 0) (a) slightly supercritical 3D asymmetric non-
oscillatory flow with m = 1 and (b)3D non-oscillatory flow with m = 1 at jDTej ¼ 1:0K. (+: higher temperature, �: lower temperature).

Fig. 8. Evolutions of the local (a) free surface temperatures, (b) free surface azimuthal velocities and (c) free surface axial velocities on the mid-plane (Z ¼ 0:5L) of the
cylindrical FHZ (Bo ¼ 0; Gr – 0) at h ¼ 0;p=2;p;3p=2 respectively as a function of jDTej.
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the flow pattern of m = 1 (Fig. 9a) becomes unstable and trans-
forms to another non-oscillatory flow mode of m = 2 (Fig. 9b) at
about jDTej=2.00 K (Re = 3020). It should be noted that the free sur-
face flow does not follow the Marangoni effect, i.e., velocity vectors
near the surface indicate that surface moves from cold spots to hot
spots against the Marangoni effect. This kind of transition between
3D non-oscillatory flows was also found in short FHZ (As = 0.8) of
molten tin under lG [27].

3.3.2. Group 2 (top-heated deformed FHZ)
As shown in Fig. 10a, local free surface temperatures on the

mid-plane of a deformed FHZ (Bo = 1.20, Gr = 0, TH) continue
decreasing from their initial values with increasing jDTej. Since
the free surface temperature on the mid-plane is closer to that of
the lower melt/rod interface (see Fig. 3a), the temperature distri-
bution on the mid-plane (see Fig. 11a) is different from those of
other cases, i.e. highest temperature appears in a subsurface region
and the free surface temperature is slightly lower. At Rec1 = 976
(jDTej ¼ 0:64 K), the 3D axisymmetric non-oscillatory flow is bro-
ken by a developing 3D weak disturbance which looks like an
asymmetric mode of m = 1 (see Fig. 11b). The first transition is
accompanied by a quick increase of the maximum jURj near the
Z-axis at mid-plane of the FHZ (see Fig. 5) and splitting of local free
surface temperatures and velocities (see Fig. 10). Further evolution
of the 3D asymmetric non-oscillatory flow proceeds as shown in
Fig. 11b–e. After taking a transition state which looks like an



Fig. 9. 3D asymmetric non-oscillatory flow structure on the mid-plane (Z = 0.5L) of the cylindrical FHZ (Bo = 0, Gr > 0) (a) well-developed 3D asymmetric non-oscillatory flow
with m = 1, (b) 3D asymmetric non-oscillatory flow right after the transition from mode m = 1 to mode m = 2. (+: higher temperature, �: lower temperature).

Fig. 10. Evolutions of the local (a) free surface temperatures, (b) free surface azimuthal velocities and (c) free surface axial velocities on the mid-plane (Z = 0.5L) of the
deformed FHZ (Bo ¼ 1:20; Gr 6 0; TH) at h ¼ 0;p=2;p;3p=2 respectively as a function of jDTej.
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asymmetric mode of m = 2 (see Fig. 11c), another 3D disturbance
with m = 1 appears instantaneously (see Fig. 11d). With a further
jDTej increase, the hotter crescent zone of m = 1 splits (see
Fig. 11e) and finally transforms to a 3D asymmetric non-oscillatory
flow of m = 2 (see Fig. 11f). The peaks of the local maximum jURj
near the Z-axis on the mid-plane (Fig. 5) also correspond to the
process. From our viewpoint, the critical mode in this case is
assigned to be m ¼ 2 despite the initial weak (m = 1)-like 3D asym-
metric disturbance. For the deformed FHZ (Bo ¼ 1:20;Gr < 0) in
group 2, evolution of the 3D asymmetric non-oscillatory flow pro-
ceeds in a similar way as Fig. 11. However, when the second
(m = 1)-like pattern (similar to Fig. 11d) appears, it rotates counter-
clockwise about p=2 with respect to the Z-axis before proceeding
to the rest of the transition scenario from (e) to (f) of Fig. 11
(Bo = 1.20, Gr = 0, TH), which causes the second large peak of
jURjR!0 in Fig. 5 and of T, UR and UZ on the free surface shown by
the black lines in Fig. 10.

3.3.3. Group 3 (bottom-heated deformed FHZ)
For both cases of deformed FHZs (Bo = 1.20, Gr = 0, BH) and

(Bo = 1.20, Gr > 0, BH), transitions to 3D asymmetric non-oscilla-
tory flow are qualitatively the same, see Figs. 5 and 12. At
Rec1 ¼ 1220 (jDTej ¼ 0:79 K), the 3D axisymmetric non-oscillatory
flow is unstable to a developing 3D weak disturbance of m ¼ 1,
and then 3D asymmetric non-oscillatory flow as shown in Fig. 13
is quickly developed and is stably maintained until the 3D oscilla-
tory flow sets on.

3.3.4. Comparison with previous results
The critical conditions for the onset of 3D asymmetric non-

oscillatory flow for all cases studied in the present study
(a¼ 3 mm;As¼ Asr ¼ 2:0;As¼ Asr ¼ 2:0;Pr¼ 0:009;Bo¼ 1:20) are
tabulated in Table 3, comparing with the results of Lappa et al.
[26] for FHZ of Silicon (a = 5 mm, As = 2.0, Pr = 0.01, Bo = 0.85)
and of Gallium (a = 5 mm, As = 2.0, Pr = 0.04, Bo = 2.08). It can be
seen that Rec1 for cylindrical FHZ is close to those for cylindrical
FHZ of Si but significantly smaller than those for cylindrical FHZ
of Gallium. The deviations can be justified by linear stability
analyses of Wanschura et al. [4] and Levenstam et al. [6], i.e. Rec1

for FHZ of low-Pr fluids with lG slightly increases with increasing
Pr. When free surface deformation and buoyancy are taken into
consideration, i.e. deformed FHZ in groups 2–3, Rec1 is much larger
than those for cylindrical FHZ in group 1 for both heating
directions. This suggests the significant stabilization effect of the
free surface deformation.

The base flow is further stabilized by heating from bottom. The
critical azimuthal wave number is mc1 = 1 for groups 1 and 3. How-
ever, for group 2 (top-heated deformed FHZ) mc1 = 2 regardless the
presence of buoyancy. These trends are in accordance with the
results of Lappa et al. [26]. However, the present results show a
unique transition between 3D asymmetric non-oscillatory flows
at much higher Re in a cylindrical FHZ heated from top with buoy-
ancy (Bo = 0, Gr < 0, TH). The critical conditions summarized in
Table 3 suggest that the larger gravity-induced free surface defor-
mation of FHZ causes the more stabilization against three dimen-
sional disturbances.

Linear stability analysis of Kuhlmann et al. predicts the influ-
ence of Bo and Gr on Rec1 for FHZ of (Pr = 0.023, As = 1.0,
Bod=Bo ¼ 0:27) in Fig. 3b of [24]. In their study, when the FHZ is
heated from top, Rec1 shows a local minimum at small Bo and fur-
ther increase of Bo, and when the FHZ is heated from bottom, Rec1

monotonically increases with increasing Bo. The plot provides



Fig. 11. Time evolution of temperature and velocity distributions during the transition from axisymmetric flow to a non-oscillatory 3D flow (m = 2) on the mid-plane of a
deformed FHZ heated from top (Bo = 1.20, Gr = 0).

Fig. 12. Evolutions of the local (a) free surface temperatures, (b) free surface azimuthal velocities and (c) free surface axial velocities on the mid-plane (Z ¼ 0:5L) of the
deformed FHZ (Bo = 1.20, Gr > 0, BH) at h ¼ 0;p=2;p;3p=2 respectively as a function of jDTej.
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Rec1(Bo = 1.20, Gr = 0)/Rec1(Bo = 0, Gr = 0) = 0.96 for the case
heated from top and 1.33 for the case heated from top, and
Rec1(Bo = 1.20, Gr – 0)/Rec1(Bo = 1.20, Gr = 0) = 1.02 for the
heated from top and 0.97 for the case heated from bottom. The
present study on different conditions (Pr = 0.009, As = 2.0 and
Bod=Bo ¼ 0:50) show the trend of Rec1 as a function of Bo.

3.4. 3D oscillatory flow regime

At a certain threshold of temperature difference,jDTejc2 or Rec2,
the 3D asymmetric non-oscillatory flow in low-Pr FHZ becomes
unstable and starts oscillations around the Z-axis. At Rec2, the oscil-
lation amplitudes of local temperatures are very small but increase
in jDTej enlarge the amplitudes.
In the present work, the maximum absolute value of radial
velocities at the axis on the mid-plane of the FHZ is chosen as
the most sensitive indicator of the onset of oscillatory instability
instead the local temperatures on the free surface. The reason is
that the temperature oscillations start much later than the radial
velocity’s oscillation on the Z-axis in the present cases. The critical
temperature difference was defined as the effective temperature
difference jDTej at which the amplitude of the indicator velocity’s
oscillation amplitude exceeds 1:0� 10�5 m=s. The azimuthal wave
number of the 3D oscillatory flow (mc2) is the same as that of the
well-developed 3D non-oscillatory flow prior to the start of oscilla-
tions. The critical conditions for the second bifurcation in the pres-
ent FHZ are tabulated in Table 4. In Table 4, mc2 is the azimuthal
wave number at the second critical point (Rec2), the oscillation



Fig. 13. 3D asymmetric non-oscillatory flow with mode m = 1 on the mid-plane (Z ¼ 0:5L) of a deformed FHZ heated from bottom: (a) Bo = 1.20, Gr = 0, BH, (b) Bo = 1.20,
Gr > 0, BH. (+: higher temperature, �: lower temperature).

Table 4
The critical conditions for the second bifurcation.

Rec2 mc2 Mode fc (Hz)

Group 1 Bo = 0, Gr = 0 3278 1 1-T 0.56
Bo = 0, Gr < 0, TH 3611 2 2-T 0.56
Bo = 0, Gr > 0, BH 3467 1 1-T 0.48

Group 2 Bo = 1.20, Gr < 0, TH 3167 2 2-T 0.45
Bo = 1.20, Gr = 0, TH 3122 2 2-T 0.48

Group 3 Bo = 1.20, Gr > 0, BH 3444 1 1-T 0.50
Bo = 1.20, Gr = 0, BH 3400 1 1-T 0.48
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mode ‘‘m-T’’ means the flow and temperature fields on the mid-
plane is characterized by an azimuthal wave number ‘‘m’’, and
Fig. 14. Temperatures and velocities of well-developed 3D oscillatory flow of (1-T) mo
oscillatory period (s) in a time interval of s=4 (+: higher temperature, �: lower tempera
one of the lines of symmetry is twisting back and forth in azi-
muthal direction around the Z-axis.’’

Li et al. [28] studied the three dimensional structures of the
oscillating disturbances of ‘‘m-T’’ and other oscillation modes, such
as ‘‘m-p’’ (or ‘‘m+1’’) (the center of the pattern of m moves back
and forth on a linear line like a pendulum). The oscillation mode
first reported by Levenstam and Amberg [5] for floating half zone
of (Pr = 0.01, As = 1.0) corresponds to this ‘‘2-p’’ (or ‘‘2+1’’) mode.
Li et al. [21] also reported combined oscillation modes at much
higher super-criticalities, such as ‘‘2-T+R’’ (whole temperature
and velocity fields with 2-T type oscillation rotates around the Z-
axis) and ‘‘1-T+1’’ (center of the temperature and velocity fields
showing 2-T type oscillation moves like a pendulum). All
de on the mid-plane (Z ¼ 0:5L) of the deformed FHZ (Bo ¼ 1:20; Gr > 0) during an
ture).



Fig. 15. Temperatures and velocities of well-developed 3D oscillatory flow of (2-T) mode on the mid-plane (Z ¼ 0:5L) of the deformed FHZ (Bo ¼ 1:20; Gr < 0) during an
oscillatory period (s) in a time interval of s=4 (+: higher temperature, �: lower temperature).
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oscillations met in the present simulations take twisting mode,
either 1-T or 2-T, at the second critical point and slightly super-
critical states.

Fig. 14 shows temperature and velocity distributions on the
mid-plane of a (1-T) mode oscillation at four instances during an
oscillation period in a deformed FHZ heated from bottom
(Bo = 1.20, Gr > 0, BH). The temperature and flow fields at each
instance keep the characteristic pattern of m = 1 which is similar
to the 3D well-developed asymmetric non-oscillatory flow of
mc1 = 1, although it is slightly changing with time. At four different
instants during an oscillation period, the torsional disturbance
induces an oscillatory motion in the temperature and flow fields
in the azimuthal direction with respect to the symmetry plane of
PSY (see Fig. 7b). The flow around the axis periodically alternates
its azimuthal direction between anticlockwise and clockwise
directions.

Fig. 15 shows characteristics of a (2-T) mode oscillation by four
snapshots of temperature and velocity vectors on the mid-plane of
a deformed FHZ heated from top (Bo = 1.20, Gr < 0, BH) during one
period of oscillation. The temperature and flow field at each
instance still holds the characteristic pattern of m = 2, although it
is largely deforming with time.

As shown in Table 4, 3D oscillatory flow in cylindrical FHZ
under lG (Bo ¼ 0; Gr = 0) is the torsional oscillation mode of
(1-T). The oscillation mode is (1-T) for all bottom-heated FHZ
and (2-T) for top-heated FHZ, regardless the value of Bo and
Gr. It should be noted that the free surface flow is not governed
by the Marangoni effect, i.e. velocity vectors near the surface
indicate that the free surface flow moves from cold spots to
hot spots against the Marangoni effect at almost all instance of
oscillations.
The results in Table 4 indicate that the Rec2 for cylindrical FHZ
with non-zero Gr is larger than Rec2 for cylindrical FHZ under lG
(Bo = 0, Gr = 0), regardless the heating direction. On the other hand,
Rec2 for the deformed FHZ heated from top (Bo = 1.20, Gr 6 0) is
smaller than that for the cylindrical FHZ under lG (Bo = 0,
Gr = 0), while Rec1 for the deformed FHZ heated from bottom
(Bo = 1.20, Gr P 0) is larger than that for lG.

The present results indicate that the combined effects of free
surface deformation and buoyancy destabilize the three-dimen-
sional non-oscillatory flow if the FHZ is heated from top, and stabi-
lize if the deformed FHZ is heated from bottom. Moreover, in the
same group, the presence of buoyancy always causes further sta-
bilization. However, for all the cases studied in the present work,
the effects of free surface deformation and buoyancy on Rec2 are
much less than those on Rec1.
4. Conclusions

Gravity affects the stability of Marangoni flow in floating half
zone of low-Pr fluids through two different factors, i.e., the buoy-
ancy and the static deformation of the free surface shape. In the
present study, influence of these two factors are evaluated by
unsteady three-dimensional (3D) simulations based on a realistic
model of floating half zone of molten tin (a ¼ 3 mm; As
¼ Asr ¼ 2:0; V ¼ 2pa3 and Bo ¼ 1:20 under 1G) under a ramped
temperature difference (1.19 K/min) between the top and bottom
ends of two iron supporting rods. All the cases studied in the pres-
ent study are classified into three groups according to the Grashof
number (Gr), the Bond number (Bo) and the heating direction: the
cylindrical HZ with lG case (Bo ¼ 0;Gr ¼ 0) and two accompanied
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cylindrical HZs with buoyancy only (Bo ¼ 0;Gr – 0), the deformed
FHZ under 1G in bottom-heated situation (Bo ¼ 1:20;Gr P 0;BH)
and the deformed FHZ under 1G in top-heated situation
(Bo ¼ 1:20;Gr 6 0;TH). The corresponding first critical conditions
for the onset of 3D asymmetric non-oscillatory flows and the sec-
ond critical conditions for the onset of 3D oscillatory flows are
determined. For the microgravity case, the axisymmetric non-
oscillatory flow transfers to 3D asymmetric non-oscillatory flow
with mc1 ¼ 1 at the first bifurcation and transfers to 3D oscillatory
flow of (1-T) at the second bifurcation. The flow evolution in the
deformed FHZ heated from bottom (Bo ¼ 1:20;Gr > 0) is similar
to the microgravity case except for the significant quantitative
deviation caused by the gravity effects. On the other hand, for
the flow evolution in the deformed FHZ heated from top
(Bo ¼ 1:20;Gr < 0), gravity effects alter the flow structure. Com-
pared to the microgravity case, gravitational deformation stabilizes
the axisymmetric non-oscillatory flow regardless the heating
direction. However, the bottom-heated cases further stabilize the
flow. On the other hand, gravity effects destabilize the 3D asym-
metric non-oscillatory flow when FHZ is in top-heated situation
and stabilize the 3D asymmetric non-oscillatory flow when FHZ
is in bottom-heated situation. It is noted that the gravity effects
on the Marangoni flow are mainly contributed by the free surface
deformation. Buoyancy is less influential to the flow transitions,
however, buoyancy causes multiple step transitions between dif-
ferent 3D asymmetric non-oscillatory flow modes.
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