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Based on the crystal plasticity theory and interatomic potential, in this paper a new thermo-elasto-plasticity constitutive model 
is proposed to study the behavior of metal crystals at finite temperature. By applying the present constitutive model, the 
stress-strain curves under uniaxial tension at different temperatures are calculated for the typical crystal Al, and the calculated 
results are compared with the experimental results. From the comparisons, it can be seen that the present theory has the capa-
bility to describe the thermo-elasto-plastic behavior of metal crystals at finite temperature through a concise and explicit cal-
culation process. 
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The behavior of metal crystals at different temperatures has 
always extensively drawn attention of scholars. Previously, 
a series of experiments were carried out to obtain the stress- 
strain relations of crystals with temperature effect [1–6]. 
From the experimental results, it can be seen that the stress- 
strain curves of metal crystals usually diverge with increas-
ing strains at different temperatures. In addition, the diver-
gence is not only evident at high temperatures where ther-
mal softening is rapid, it also appears at low temperatures 
where softening is usually considered to be ignored. 

In recent years, many theoretical investigations have 
been carried out [7–11]. For example, the molecular dy-
namics (MD) and Monte Carlo (MC) methods have been 
quickly developed for the study of temperature effect at the 
atomistic scale. However, they are not suitable for large 
scale simulations, and the free energy is difficult to deter-
mine [7]. Therefore, several multi-scale modeling methods 
which combine atomic interaction with continuum models 
have made significant contributions [9–11], such as the 

quasicontinuum Monte Carlo (QCMC) method [12] and QC 
free energy minimization (QCFEM) method [13]. The 
QCMC method and QCFEM method are the extensions of 
the quasicontinuum (QC) method [14,15], which is only ap-
plicable to the absolute zero temperature, because the intera-
tomic potential does not account for the temperature effect.  

Although these theoretical investigations are mature for 
the thermo-elastic calculation, it is clear that they could do 
nothing for some experimental results of crystals [1–6]. In 
these experiments, the plastic behavior plays an important 
role in the deformation process, and the critical resolved 
shear stress and hardening are reduced with the temperature 
increment. Some physical and phenomenological models 
based on the plastic behavior of metal crystals have been 
developed [16–20]. Based on the crystal plasticity, the phy- 
sical models focus on the deformation mechanisms, and have 
made significant progress. For example, Beyerlein et al. [19] 
developed a dislocation-based thermally activated hardening 
model to predict the plastic anisotropy of pure Zr at different 
temperatures and under different orientation conditions. The 
model proposed by Stainier et al. [20] could capture the de-
pendence of the initial yield stress and hardening on temper-
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ature. Moreover, additional forthright models were proposed 
with easy computer simulation process, such as the Johnson- 
Cook model [21], Zerilli-Armstrong model [22] and Khan- 
Huang-Liang model [16–18]. These models improved the 
constitutive descriptions of the dynamic plasticity of metals 
and described the strain, strain- rate, and temperature rela-
tions for metals in the large strain, high strain-rate regime. 
Among these models, the Khan- Huang-Liang model was 
well developed with a new relation to describe the depend-
ence of work-hardening behavior on the strain and strain  
rates. It predicted stress-strain response of FCC metals [23], 
BCC metals [17,24], HCP metals [25], and other metals 
[26,27], with a good agreement between the simulations and 
experimental results at different temperatures. 

On the other hand, in addition to the widely recognized 
theories mentioned above, some new temperature-depend- 
ent elasto-plastic constitutive models which combine micro- 
and macro-scales have been proposed for some complex 
and difficult problems [28–33]. For example, the crystal 
plasticity finite-element (CPFE) models have been used to 
investigate the effect of the dislocation creep [34], harden-
ing behavior [35], and crystal orientation [36] on the plastic 
behavior of metal at different temperatures. Zbib and Diaz 
de la Rubia [30] established a hybrid model to investigate 
size-dependent small-scale plasticity phenomena and related 
material instabilities at various length scales, which pro-
vides an explicit and effective method for the complex plas-
ticity problem. The model proposed by Kim et al. [32] de-
scribed the cyclic plasticity deformation of Mg alloys at 
both the micro- and macro-scales accurately, and had the 
capacity to deal with complex loading path changes. These 
multiscale models have addressed problems from new per-
spectives and made important contributions to the investiga-
tion of temperature effect on material behavior.  

In the present paper, a new thermo-elasto-plasticity con-
stitutive equation is proposed based on the interatomic po-
tential and solid mechanics. The new deformation decom-
positions are given in sect. 1.1, in which the total defor-
mation contains thermal, elastic and plastic parts. The ther-
mal strain is introduced in sect. 1.2. The increment constitu-
tive equations are established at the different deformation 
stages in sect. 1.3. Then the temperature dependences of 
initial critical resolved shear stress and hardening modulus 
are considered in sect. 2. The stress-strain curves of Al 
crystals at different temperatures are calculated using the 
present model, and the calculation results are compared 
with experiments in sect. 3.  

1  Thermo-elasto-plasticity constitutive rela-
tionship 

1.1  Decomposition of the deformation gradient 

As a crystal material is subjected to the external load at the 

finite temperature, its deformation should include both the 
mechanical deformation due to the external load and ther-
mal deformation due to temperature. Therefore, the total 
deformation of a crystal should be a superposition of the 
elastic-plastic deformation and the thermal deformation due 
to the thermal vibration of the atoms around the crystal lat-
tice.  

The kinematical theory for the mechanics of elastic- plas-
tic deformation of crystal has been well established [37].  
Asaro [37] pointed out that the plastic deformation was due 
to slip and the elastic deformation was caused by distortion 
and rotation. The kinematical theory would encounter diffi-
culty when it reaches thermal deformation at a finite tem-
perature, thus a new decomposition of deformation gradient 
is proposed to describe the thermo-elasto-plasticity defor-
mation behaviour. As shown in Figure 1, the deformation 
process is decomposed into four parts: the initial configura-
tion at the undeformed state of 0 K (Figure 1(a)); the first 
intermediate configuration after free thermal expansions at 
T K (Figure 1(b)); the second intermediate configuration 
after elastic deformation at T K (Figure 1(c)); and the cur-
rent configuration after plastic deformation at T K (Figure 
1(d)). 

The total deformation gradient is decomposed as follows:  

 p e * ,=F F F F  (1) 

where Fe
 is the elastic deformation gradient, Fp is the plas-

tic deformation gradient, and F* is the thermal deformation 
gradient due to the free thermal expansion. 

The thermal strain tensor E*, elastic strain tensor Ee and 
plastic strain tensor Ep take the following respective forms:  

  * *T *1
,

2
=E F F I  (2a) 

  e eT e1
,

2
=E F F I  (2b) 

 

Figure 1  Decomposition of

 

deformation configuration: (a) initial config-
uration; (b) first intermediate configuration; (c) second intermediate con-
figuration; (d) current configuration. 
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  p pT p1
.

2
=E F F I  (2c) 

Therefore, the total strain tensor is expressed as follows:  

 

 

 

  
 

T

*T eT pT p e *
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*T eT e * *T eT p e *

* *T e * *T eT p e *

1
=

2
1

2
1

2
2
1

2

.



   

    

 

  

+

E F F I

F F F F F F I

F F F I F F I

F F F F I F F E F F

E F E F F F E F F

 

(3)

 

Based on the polar decomposition of the tensor, the de-
formation gradients F* and Fe are written respectively as: 

 * * * ,F R U  (4) 

 e e e ,F R U  (5) 

where R* and Re are the rotation tensors, and U* and Ue are 
the stretch tensors. 

Assuming that R*=I, Re=I, the total strain tensor is ex-
pressed as: 

 * * e * * e p e *. =E E U E U U U E U U  (6) 

Based on eqs. (2a), (2b), (4) and (5), we can obtain the 
following:  

 
 

 

2* *

2e e

1
,   

2
1

.
2

    

    

E U I

E U I
 (7) 

The Taylor expansions of U* and Ue are  

  2* * 1/ 2 * *1
( ) ,

2
   + 2 +U I E I E E  (8a) 

  2e e 1/ 2 e e1
( ) .

2
   + 2 +U I E I E E  (8b) 

If the thermal strain tensor E* and elastic strain tensor E
e 

are small, we can obtain 

 * * , +U I E  (9a) 

 e e , +U I E  (9b) 

and 

 * ,U I  (10a) 

 e .U I  (10b) 

Then, the total strain tensor takes the form:  

 * e p . =E E E E  (11) 

Eq. (11) is a new strain tensor expression of the thermal, 
elastic and plastic deformation at the finite temperature, and 
it extends the kinematical theory of the elastic-plastic de-
formation of the crystal [37]. 

1.2  Thermal strain 

When an undeformed body is heated up from temperature T0 
to T and expands freely, the thermal strain is given by [38] 

 
0

d ,  
T

T
T

T  (12) 

where T0 is the reference temperature and is chosen to be 
room temperature in the present work, T is the thermal 
strain from temperature T0 to temperature T, and  is the 
coefficient of thermal expansion. The coefficient of thermal 
expansion  can be obtained from the experimental results 
[39], and can also be calculated by the theoretical method 
[28,29]. 

For the metal crystal Al, the thermal strain tensor E* is as 
follows:  

 *

0 0

0 0 .

0 0






 
   
  

T

T

T

E  (13) 

Then the calculations for lattice constant r(0)(T) at tem-
perature T were given by Jiang et al. [9] as follows:  

 
0

(0) (0)
0( ) ( ) 1 d .   
 

T

T
r T r T T  (14) 

1.3  Thermo-elasto-plasticity constitutive equations 

The second Piola-Kirchhoff stress is expressed as: 

 
 e

tot

e * e

1
,

UW

V

    
   

E
S

E E
 (15) 

where V* is the volume at the first intermediate configura-
tion as shown in Figure 1(b), Utot is the total potential ener-
gy of the system.  

Defining the first intermediate configuration as the ref-
erence configuration, the rate of the second Piola-Kirchhoff 
stress takes the following form:  

 

 

 

2 e
tot e

* e e

2 e
tot p *

* e e

1
:

1
 : ( ).

U

V

U

V

 
 
   

 
   
   

 

  

E
S E

E E

E
E E E

E E

 

(16)

 

The thermo-elastic-plastic constitutive eq. (16) is estab-
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lished by the rate of the second Piola-Kirchhoff stress and 
the rate of the Green strain.   

The Cauchy stress is written as follows:  

 

 e
tote e

e

*
e e e e

1

1
  ,

T

T T

U

V

V

V J

 
 

  

 

E
σ F F

E

F SF F SF

 

(17)

 

where V is the volume at the second intermediate configura-

tion as shown in Figure 1(c), and 
*

V
J =

V
 is the ratio of 

volume in the second intermediate configuration to that in 
the first intermediate configuration. 

Then the rate of Cauchy stress takes form:  

     1 1 Te e eT e e eT

e eT e eT

1

1
,

 
   

   

J J

J J

J

J

 







   
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F F F F F SF

L L F SF
 

(18)

 

where   1e e e 
 L F F  is the elastic part of the velocity 

gradient.

 
The Kirchhoff stress is expressed as follows:  

 e eT .J τ σ F SF  (19) 

Then the rate of Kirchhoff stress takes the following 
form:  

 

 
     

Te eT e eT e e

1 1 Te e eT e e eT

e eT e eT .

 

  

 

  

S 
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

τ F SF F SF F F

F F τ τ F F F SF

L τ τL F SF

  

(20)

 

The Jaumann rate of Kirchhoff stress is 

 e e
I ,



 τ τW W τ  (21) 

where We is the elastic part of the material spin.  
Combining eqs. (20) and (21), the following can be ob-

tained:  

  

e eT e e
I

2 e
tot e eT e e

* e e

1
:e

U

V





        
     





F SF D D

E
F E F τD D τ

E E
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
 

(22)
 

where De is the symmetric rate of the elastic stretching ten-
sor. 

The relationship between the elastic part of Green strain 

rate eE  and the symmetric rate of elastic stretching tensor 
De is as follows:  

 e eT e e .E F D F  (23) 

Substituting eq. (23) into eq. (22), the following can be 
obtained:   

 

   

   

2 e*
tote e e e *

*I * e e
*

e e e

2 e
*

tote e e e e*
** e e
*

e e

1

:

1
:

: ,

U

V

U

V

  
   

   
  

         
     



E
F F F F

E E

D D D

E
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E E

C D


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


 

where 
*
*
*
*

 represents quadruple dot products. 

And 

    2 e*
tote e e e e *

** e e
*

1
.

U

V

 
     

   

E
C F F F F C

E E
 (25) 

The component of C  is as follows:  

 .    ijkl ik jl kj ilC  (26) 

For metal crystal, the plastic deformation is determined 
based on the crystal plasticity theory. As shown in Figure 1, 
M() and N() respectively represent the unit vectors in the 
slip direction and the normal direction to the slip plane for 
slip system  in the first intermediate configuration. After 
elastic deformation, the slip direction and the corresponding 
normal on slip system  become to m() and n(), which 
satisfy the following:  

 ( ) e ( ) , m F M  (27) 

   T1( ) e ( ) . 
n F N  (28) 

Defining the second-order symmetric tensor P()
 and the 

antisymmetric tensor Q() as follows:  

  1
,

2
       ( ) ( ) ( ) ( ) ( )P m n n m  (29) 

  1
.

2
       ( ) ( ) ( ) ( ) ( )Q m n n m  (30) 

The resolved shear stress on the slip system  is 

 ( ) ( ): .    P  (31) 

The rate of symmetric tensor P() is 

 ( ) e e e e .       ( ) ( ) ( ) ( )P D Q W P P W Q D  (32) 

And the rate of the resolved shear stress on the slip system 
 is 

(24)
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





 

(33)

 

where ( ) e ( ) ( ) ( ): .    C P Q Q  
 According to the generalized Schmid’s law, the resolved 

shear stress  () of a potentially active or critical slip system 
must reach its critical value ( )

cr .  For a remaining active 

slip system,  () must increase to and remain at the critical 
value, as follows:  
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( ) ( ) ( ) ( )
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1 1

( ) ( ) ( )
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1 1
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h h

h h
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   
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
 


 


  



   

 

 

  

  
 (34)

 
where h is the hardening modulus.  

Substituting eq. (33) into eq. (34), it can be obtained that 
for the remaining active slip system the following is true:  

 ( ) ( ) e

1

: .
m

h  







  D  (35) 

In the theory of crystal plasticity, the symmetric and an-
tisymmetric parts of the plastic velocity gradient have the 
following relationship with the second-order tensors P() 
and Q():  

      p

1

,
n

  






  L m n  (36) 

    p

1

,
n

 






  D P  (37) 

    p

1

.
n

 






  W Q  (38) 

The rate of plastic deformation gradient is 

      p

1

.
n

  






  F M N  (39) 

The rate of plastic strain can then be obtained based on 
eq. (39):  

   Tp p p pT p1
.

2
=  E F F F F  (40) 

Substituting the rate of plastic strain into the constitutive 
eq. (16), and combining this with the rate of thermal strain, 
the increment stress-strain relationship can then be obtained. 

Based on eqs. (37) and (35), we may then obtain the fol-
lowing:  

 ( ) ( ) ( ) ( )

1 1
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

 

 
 
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 
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1
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
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

 
m

g  D  (42) 

where ( ) ( ): . 
 g h= P   

The Jaumann rate of Kirchhoff stress is as follows:  
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(43)
 

Substituting eqs. (24) and (38) into eq. (43), the follow-
ing can be obtained:  
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C D D Q Q

C D C P Q Q
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Then, substituting eq. (42) into eq. (44), the Jaumann rate 
of Kirchhoff stress is written as follows:  

 e 1 ( ) ( )

1 1

( ) : ,
m m

g  


 




 

 
   

 
C D   (45) 

where Ce is determined by eq. (25). In addition, the consti-
tutive eq. (45) is established by the Jaumann rate of the 
Kirchhoff stress and the symmetric parts of the velocity 
gradient in the current configuration. 

Generally speaking, crystalline materials possess crys-
tallographic point groups as description of the material 
symmetries. The microscopic structure of a given material 
could be unaltered in observation under certain orthogonal 
transformations. At the same time, the constitutive equa-
tions should also remain unchanged when the reference 
configurations or coordinates transform. And this limit 
would be reflected by the tensor function of strain and 
stress. 

The constitutive equations in the present model are es-
tablished by the rate of the second Piola-Kirchhoff stress 
and the rate of the Green strain (eq. (16)), as well as the 
Jaumann rate of the Kirchhoff stress and symmetric parts of 
the velocity gradient (eq. (45)). The stress and strain tensors 
in the constitutive equations are complete representations; 
the rate of the second Piola-Kirchhoff stress tensor and the 
Jaumann rate of the Kirchhoff stress tensor are objective, 
which would not be affected by the change of crystal’s rota-
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tion and change of coordinates. So the constitutive equa-
tions in the present model can satisfy the objectivity princi-
ple and the requirements of symmetry in the crystal’s re-
sponse. 

2  Temperature effect on the initial critical re-
solved shear stress and hardening modulus 

The influence of the temperature on glide has been widely 
investigated with metal crystals [1–3]. Due to the fact that 
the initial yield stress and hardening behavior play im-
portant roles in the plastic behavior, the determination of the 
temperature effects on the initial critical resolved shear 
stress and hardening modulus is necessary for theoretical 
investigation and practical application. 

2.1  Temperature effect on the initial critical resolved 
shear stress 

Based on eq. (31), the resolved shear stress on the slip sys-
tem  under uniaxial loading is written as follows:  

    
11 11 .P    (46) 

For single crystals, the maximal value of  
11
P  can be ob-

tained based on the orientation of the slip system. Assuming 
that the elastic deformation is sufficiently small, the ratio of 
volume J=1. Therefore, the relationship between the critical 
resolved shear stress and initial yield stress is written as 
follows:  

 00 max
cr 11 ,  ysP  (47) 

where max
11P  is the maximum value of  

11
P  among all 

slip systems. 
To obtain the relationship between yield stress and tem-

perature, several representative experimental results are 
adopted [1–3,40,41], such as the critical resolved shear 
stress (dot in Figure 2) for BCC crystal -Fe, rhombohedra 
crystal Bi and hexagonal crystals Mg, Cd and Zn. As shown 
in Figure 2, when the temperature is below the melting 
point, the critical shear stress decreases with the rising tem-
perature. By fitting the experimental data with a smooth 
curve, it can be concluded that the exponential curve is 
more accurate in describing the relationship between the 
critical shear stress and temperature. Thus the critical re-
solved shear stress can be written as follows:  

 1 0/0
cr 1 1( ) e ,d T TT A B    (48) 

where A1, B1 and d1 are parameters, and T0 is room temper-
ature (293 K).  

Similar to the expression of critical resolved shear stress 
shown in eq. (48), the exponential relationship between the  

 
Figure 2  Temperature effect on the critical shear stress for different 
metal crystals. (a) -Fe, (b) Bi, (c) Mg, Zn, Cd. 

critical resolved shear stress and temperature has also been 
proposed by some researchers [42–45]. Moreover, in 
Howe’s experiment regarding Al [46], the variation of the 
yield point with temperature follows a similar rule at the 
static strain rate. 

2.2  Temperature effect on hardening modulus 

Similar to the exponential law of the macroscopic strain- 
stress curve, which has been effectively adopted by the the-
oretical model [16,21], the hardening modulus h is written 
as follows:  

 
  ( ) 1

0( ( )) ,

,  ,

mh c T T

h qh
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
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 (49) 
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where c(T) and m are the kinematic hardening parameters, q 
is the latent hardening parameter, and 0 ( ) T  

 
 

1
0
cr .

mm T

c T

 
  
 

 In addition, c(T) is the function of temper-

ature T, and parameter m remains unchanged at different 
temperatures. Due to the fact that the latent hardening be-
havior is not accounted for in this paper, the value of latent 
hardening parameter q is 0. 

Due to the fact that a large number of experiments show 
that hardening is greatly reduced as the temperature rises 
[2,3,46–49], we adopt an exponential curve to describe the 
relationship between the hardening and temperature, and 
c(T) is calculated as follows:  

   2 0/
2 2e ,d T Tc T A B    (50) 

where A2, B2 and d2 are parameters, and T0 is room temper-
ature (293 K). 

3  Calculation and discussion 

The stress-strain curves of single crystal Al are calculated at 
different temperatures, and the calculated results are com-
pared with those of the experiment performed by Boas and 
Schmid [2]. In their experiment, the Al specimens were 
strained at different temperatures, and the stress-strain 
curves were obtained. Since the melting temperature is 
about 993 K for Al, we define 0 K to 500 K as low temper-
ature, and 500 K to 993 K as high temperature. 

3.1  Calculation procedures 

In each calculation step, the elastic strain is given. The cal-
culation procedures are shown in Figure 3 and more details 
are presented as follows:  

(1) The thermal strain and lattice constants at different 
temperatures are respectively calculated based on eqs. (12) 
and (14), and the thermal expansion  in eqs. (12) and (14) 
is obtained from the experimental results [39]. Figures 4 and 
5 show the thermal strain and lattice constant versus tem-
perature for Al. Room temperature (293 K) is chosen as the 
reference temperature, and the thermal strain at room tem-
perature is 0. 

(2) The increment of the second Piola-Kirchhoff stress is 
calculated based on eq. (16) with a given increment of elas-
tic strain. The EAM potential proposed by Mei and Daven-
port [50] is adopted to calculate the potential energy and 
thermal stress (eq. (16)) for the Al, and the change of the 
lattice constant with temperature is considered in the calcu-
lation of potential energy. 

(3) The increment of plastic strain is calculated using eq. 
(40), and the stress-strain curve is obtained by accumulating  

 
Figure 3  Flow chat of the calculation procedures. 

the increment of the stress and strain at each load step.   
The calculated parameters are shown in Table 1, which 

can fluctuate within a deviation range from 5% to 10%. 
This deviation would not influence the accuracy of the cal-
culated results. So the present model is insensitive to pa-
rameters, which ensures the ability of the present model to 
describe the material behavior at different temperatures ac-
curately. 

The fitting curves of the initial critical resolved shear 

stress 0
cr  for Al are shown in Figure 6. Moreover, the fit-

ting curves of kinematic hardening parameter c(T) are also 
shown in Figure 7. From several previous investigations, it 
has been found that above 550 K the yield point drops rap-
idly with temperature [46], and the low-temperature and 
high-temperature work hardening differs in terms of type 
and intensity [4]. We choose two sets of parameters to re-
spectively describe the changes of the initial critical re-
solved shear stress and hardening modulus at low- temper-
ature and high- temperature. 

It is difficult to obtain c(T) directly from experiments. 
After parameter m has been determined, the value of c(T) 
can be obtained by fitting the experimental results given by 
Boas and Schmid [2]. Finally, the experimental values of 
c(T) at different temperatures are obtained. 

3.2  Results and discussion 

Figure 8 is the comparisons of the true stress-strain curve  
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Figure 4  Thermal strain versus temperature for Al. 

 

Figure 5  Lattice constant versus temperature for Al. 

Table 1  Calculated parameters for Al 

T (K) A1 (MPa) B1 (MPa) d1 A2 (MPa) B2 (MPa) d2 m

88–473 3.99 5.04 1.20 29.06 168.07 1.34 0.67
573–773 0.0796 149.55 1.86 7.6 46023 3.93 0.67

 
for Al under uniaxial load between the calculated and ex-
perimental results at different temperatures. Figure 8 (a) 
shows the comparisons for 88 K, 291 K, 373 K and 473 K, 

and Figure 8 (b) shows those for 573 K, 673 K and 773 K. 
The results verify that our proposed theory can predict 

the thermo-elasto-plasticity behavior of metal crystal very 
effectively. The yield strength and work hardening of crys-
tal decrease with increasing temperature, which has been 
previously observed by some experiments [1,3,47], and 
some investigations suggested the thermally activated col-
lapse of sessile dislocations during plastic flow to explain 
the temperature effect on the work hardening [4,51] and 
yield strength [52]. Similar to the other theories proposed by 
some researchers [42–45], the exponential relationships are 
applied in eqs. (48) and (50).  

A new decomposition of the total deformation gradient is 
proposed in this article, which is different from the kine-
matical theory described by Asaro [37], who suggested that 
the total deformation gradient is 

 e p .=F F F  (51) 

Eq. (51) signifies that the material undergoes plastic slip 
through the undeformed crystal lattice according to Fp

 reaching the intermediate configuration, then the material 
deforms according to Fe reaching the current configuration. 
The decomposition of the deformation gradient by eq. (51) 
has been applied extensively by many researchers and made 
a great contribution to the theoretical advancement of crys-
tal plasticity [53,54].  

However, eq. (51) is not effective when it is applied to 
the thermal strain, meaning that when the total deformation 
gradient is written as F=FeFpF*, one may not obtain the 
simple strain tensor equation as eq. (11). Therefore, it is 
necessary to adopt the new composition of deformation 
gradient as eq. (1). The physical phenomenon is objective, 
and one can use different theories to analyze it. In addition, 
although both decompositions of deformation gradients 
F=FpFeF*, and F=FeFpF* may be acceptable, the decom-
positions F=FpFeF*, are better than F=FeFpF*, as a simple 
and brief mathematical expression is usually favorable.  

So the advantages of new decomposition in the present 
model mostly embody two aspects: the first one is that the 
thermal deformation is considered in the whole deformation 
process; the second one is that it provides a good basis to  

 
Figure 6  Fitting curves of initial critical resolved shear stress 0

cr .  (a) Low temperature, (b) high temperature. 
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Figure 7  Fitting curves of kinematic hardening parameter c(T). (a) Low temperature, (b) high temperature. 

 

Figure 8  Comparison of true stress-strain curve for Al between the calculated and experimental results at different temperatures. (a) Low temperature, (b) 
high temperature. 

establish the constitutive equations and makes the calcula-
tion process more simple and explicit. 

Comparing with some widely recognized models, the 
present model has some characteristics as follows: firstly, 
the constitutive equations can be obtained easily based on 
the new decomposition of deformation gradient. And the 
computational efficiency is higher than the MD and MC 
methods. Then, the thermal deformation was not considered 
in most of the previous models, such as the Johnson-Cook 
model [21] and the Zerilli-Armstrong model [22]. In the 
presrnt model, the thermal strain is considered in the whole 
deformation process, which makes the present model appli-
cable to structural calculation with some boundary con-
straints in the future. Lastly, the temperature effects on the 
initial critical resolved shear stress and hardening behaviors 
are reflected by concise expression, and the parameters can 
be determined easily with three uniaxial stress-strain curves 
at different temperature. So the thermo-elasto-plasticity 
behavior can be described more clearly and accurately. 

4  Conclusions 

In this paper, a new thermo-elasto-plasticity constitutive 
model is proposed. The stress-strain curves of Al crystal are 
calculated at different temperatures, and the calculated re-

sults are in good agreement with the experiments, which 
verifies that the present model may effectively predict the 
elastic and plastic deformation behavior of metal crystal at 
different temperatures. A new decomposition of total de-
formation gradient is suggested, and the simple strain tensor 
equation is obtained based on the new decomposition 
method. 
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