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By solving the total energy equation, we obtain the formula of exchange-correlation functional for the first time. This functional is
usually determined by fitting experimental data or the numerical results of models. In the uniform electron gas limit, our exchange-
correlation functional can exactly reproduce the results of Perdew-Zunger parameterization from the jellium model. By making
use of a particular solution, our exchange-correlation functional could take into account the case of non-uniform electron density,
and its validity can be confirmed through comparisons of the band structure, equilibrium lattice constant, and bulk modulus of
aluminum and silicon. The absence of mechanical prescriptions for the systematic improvement of exchange-correlation functional
hinders further development of density-functional theory (DFT), and the formula of exchange-correlation functional given in this
study might provide a new perspective to help DFT out of this awkward situation.
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1 Introduction

Although density-functional theory (DFT) was proposed
back in 1964 [1, 2] and was popular for calculating periodic
system in 1970s, it was seldom applied to quantum chemistry
until the development of exchange-correlation functionals in
1990s, which helped it win the 1998 Nobel Prize in chem-
istry. There are much richer applications for DFT now, for
example, simulations of clusters, catalysis, and nanotechnol-
ogy, which has been stimulated by the progress in approxima-
tions for the exchange-correlation functional [3–16], since it
is the only unknown in this theory.

Perdew et al. [17] considered exchange-correlation func-
tional approximations as a Jacob’s ladder, and they clas-
sified them into five rungs based on the ingredients used
to construct the exchange-correlation functional. The five
rungs from the bottom up are the local spin density approx-
imation, generalized gradient approximation (GGA), meta-
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gradient approximation, exact exchange and compatible cor-
relation and exact exchange and exact partial correlation. The
Jacob’s ladder rises to the goal of “chemical accuracy”, which
means the rates of chemical reactions (the order of 1 kcal/mol
= 0.0434 eV) can be well predicted. With the exact exchange-
correlation functional DFT will be the ultimate practical the-
ory, and it could be almost perfect if there exists any me-
chanical prescription that would systematically improve ap-
proximations [18]. Unfortunately, neither possibility exits at
the moment. Standing on the middle rung of Jacob’s lad-
der, we can-not see the next rung. With more research on
physical models and also constraint satisfaction [19–28], the
nature of exchange-correlation functional will be gradually
uncovered. However, this research can hardly help design
a better exchange-correlation functional, and we believe that
this is because these models or constraints can-not suggest
the form of exchange-correlation functional directly. Con-
sequently, one is naturally led to the question, “Is there any
rational consideration for searching the formula of exchange-
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correlation functional?”
In this paper, we obtain the formula of exchange-

correlation functional by solving the total energy equation.
In the uniform electron gas (UEG) limit, our exchange-
correlation functional can exactly reproduce the results of
Perdew-Zunger (PZ/CA) parameterization from the jellium
model. For the case of non-uniform electron density, the con-
tribution of the particular solution of the total energy equation
is considered, and comparisons of the equilibrium lattice con-
stant, bulk modulus and band structure of aluminum and sili-
con support its validity. This study, we believe, could provide
a new perspective to help DFT out of the present impasse.

2 Formulism

Based on the Born-Oppenheimer approximation, the motions
of electrons and nuclei can be decoupled, which means that in
order to study electrons we only need to focus on the energy
relevant to electrons. To be specific

ET = T + Vee +

∫
vext(r)ρ(r)dr, (1)

where T , Vee, and vext(r) represent the kinetic energy of elec-
trons, the interaction energy between electrons and the ex-
ternal potential, respectively. In the Kohn-Sham method, the
energy functional can be written as:

ET [ρ] = Ts[ρ] + VH[ρ] + Exc[ρ] +
∫

vext(r)ρ(r)dr, (2)

VH[ρ] =
1
2

∫
ρ(r′)ρ(r)
|r − r′| dr′dr, (3)

Exc[ρ] ≡ T [ρ] − Ts[ρ] + Vee[ρ] − VH[ρ], (4)

where Ts[ρ] is the single particle kinetic energy, VH[ρ] is
the classical Coulomb energy, or Hartree energy, and Exc is
the exchange-correlation energy. Using variational principle
proposed in the second Hohenberg-Kohn theorem, the well-
known single particle equation, the Kohn-Sham equation, can
be obtained

[
−1

2
∇2 + ve f f

]
φi = εiφi, (5)

Ve f f (r) = vext(r) +
∫
ρ(r′)
|r − r′|dr′ + vxc(r), (6)

where vxc(r) = δExc/δρ(r) = ρ(r) · δεxc/δρ(r) + εxc and εxc

are the exchange-correlation potential and its energy density.
By using the energy eigenvalues εi obtained from the Kohn-
Sham equation, the energy functional can be rewritten as:

ET [ρ] =
N∑
i

εi − VH[ρ] + Exc[ρ] −
∫

vxc(r)ρ(r)dr. (7)

Here N is the total number of electrons in the system. Note
that eq. (7) is the starting point of this paper. Usually, eq. (7)
is considered as a formula to calculate the total energy of the

system. However, we will reconsider it as an equation (given
the external potential and also the total number of electrons,
the energy of the ground state is already determined, which
means Eg = E(ρg) =

∑N
i εi −VH[ρg]+Exc[ρg]− ∫

vxcρg(r)dr.
Since the external potential Vext could have any form (so
does the corresponding ρg(r)), and also considering the uni-
versality of the exchange-correlation functional, the above
equation can be built unambiguously. This is why we can
consider it as an equation for the exchange-correlation func-
tional. Note that Eg is a parameter dependent of the given
system (i.e., Vext) in our formalism.), which must be satisfied
by εxc[ρ] (since vxc[ρ] can be expressed by εxc[ρ], as men-
tioned above). Actually, eq. (7) provides constraints for the
exchange-correlation functional, which is constructive when
searching for its formula. Thus, we will next carefully dis-
cuss the solution of eq. (7). First, vxc = ρ · δεxc/δρ + εxc is
used to simplify eq. (7)

−
∫
δεxc[ρ]
δρ(r)

ρ(r)ρ(r)dr = ET −
N∑
i

εi + VH[ρ]. (8)

Eq. (8) is an integral-differential equation for unknown
function εxc. Due to the superposability for a linear equa-
tion, the solution of eq. (8) can be divided into two parts
εxc[ρ] = ε(H)

xc [ρ] + ε(S )
xc [ρ], i.e., the homogeneous solution

ε(H)
xc [ρ] and the particular solution ε(S )

xc [ρ], which satisfy

− δε
(S )
xc [ρ]
δρ(r)

ρ(r) =
1
N

[ET −
N∑
i

εi] +
1
2

∫
ρ(r′)
|r − r′|dr′, (9)

∫
δε(H)

xc [ρ]
δρ(r)

ρ(r)ρ(r)dr = 0. (10)

2.1 Particular solution ε(S)
xc [ρ]

It seems easy to obtain the particular solution

ε(S )
xc [ρ] = −ΔE

N
ln
ρ

ρ̄
− 1

2

∫
U(r)
ρ

dρ, (11)

ΔE = ET −
N∑
i

εi, (12)

U(r) =
∫
ρ(r)
|r − r′|dr′, (13)

where ρ̄ represents the average electron density. Note that
U(r) in above formula is the Coulomb repulsion potential be-
tween electrons. Because U(r) is a long-range interaction, it
will diverge under periodic boundary conditions, which are
usually assumed for calculations of crystals. In fact, this di-
vergence originates from non-neutrality, which can be under-
stood by writing Poisson’s equation

ΔU(r) = 4πρ(r). (14)

Note that the above equation only considers electrons. Un-
der periodic boundary conditions, the solution in real space is
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not easy, but fortunately in reciprocal space Poisson’s equa-
tion becomes diagonal, making the solution, in principle, triv-
ial,

|G|2U(G) = 4πρ(G). (15)

Now we focus on the term U(G = 0). Usually, Poisson’s
equation considers nuclei and electrons all at once, and the
neutrality of the system confirms ρ(G = 0) = 0, indicating
that U(G = 0) is an arbitrary constant, and can be left alone.
However, the situation here is different, since only electrons
are considered in Poisson’s equation, ρ(G = 0) � 0. The con-
sequence of this non-neutrality is that U(G = 0) diverges. To
deal with it, the U(r) is divided into two components

U(r) = U0(r) + U∗(r), (16)

ΔU0(r) = 4πρ̄, (17)

ΔU∗(r) = 4π[ρ(r) − ρ̄]. (18)

Now the particular solution can be given as:

ε(S 1)
xc [ρ] = −E′

N
ln
ρ

ρ̄
− 1

2

∫
U∗(r)
ρ

dρ, (19)

E′ = ET −
N∑
i

εi + E0, (20)

E0 =
1
2

∫
U0(r)ρ(r)dr, (21)

and the corresponding exchange-correlation potential is

v(S 1)
xc (r) = ρ(r) · δεxc/δρ(r) + εxc (22)

= −E′

N

[
1 + ln

ρ

ρ̄

]
− 1

2

[
U∗(r) +

∫
U∗(r)
ρ

dρ
]
. (23)

Another particular solution can be given, if the third term
VH[ρ] in eq. (8) is considered to be a constant.

ε(S 2)
xc [ρ] = −E′′

N
ln
ρ

ρ̄
, (24)

E′′ = ET −
N∑
i

εi + EH , (25)

EH = VH[ρ] =
1
2

∫
U(r)ρ(r)dr, (26)

v(S 2)
xc (r) = −E′′

N

[
1 + ln

ρ

ρ̄

]
. (27)

Comparing the two particular solutions given above, it is
easy to give the third particular solution when E′ � E′′

ε(S 3)
xc [ρ] =

E′′

2(E′ − E′′)

∫
U∗(r)
ρ

dρ, (28)

v(S 3)
xc (r) =

E′′

2(E′ − E′′)

[
U∗(r) +

∫
U∗(r)
ρ

dρ
]
. (29)

2.2 Homogeneous solution ε(H)
xc [ρ]

The form of homogeneous solution is assumed to be

ε(H)
xc =

∑
n

[cn + dnlnρ]ρ−n/α, (30)

where α is constant, and cn and dn are coefficients related to
each other by eq. (10), which can further be simplified to

cn =
αI(1 − n

α ) − nI∗(1 − n
α )

nI(1 − n
α

)
dn (n � 0), (31)

I(m) =
∫
ρmdr, (32)

I∗(m) =
∫
ρm ln ρdr. (33)

Note that d0 = 0 and c0 could be any arbitrary constant. In
fact, a variety of forms could be considered, but will not be
discussed in this paper.

3 Uniform electron gas case

UEG is actually a model of interacting electrons in a solid
where the positive charges are assumed to be uniformly dis-
tributed in space whence the electron density is a uniform
quantity as well in space. Using a Monte Carlo method,
Ceperley and Alder [29] studied this model, and presented
the numerical results, which are well described by the PZ/CA
parameterization [30]. The exchange functional is derived
exactly from the free-electron gas:

εx = − p
rs
, vx =

4
3
εx, (34)

where rs = ( 4π
3 ρ)

−1/3, p = 0.458165. Parameterization of the
correlation functional is slightly more complicated:

rs � 1 :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
εc = g/(1 + b1r

1
2
s + b2rs),

vc = εc ·
(
1 +

7
6

b1r
1
2
s +

4
3

b2rs

)/
(1 + b1r

1
2
s + b2rs),

(35)

rs < 1 :⎧⎪⎪⎪⎨⎪⎪⎪⎩
εc = a · ln rs + b + c · rs ln rs + d · rs,

vc = a · ln rs +

(
b − a

3

)
+

2c
3

rs ln rs +
(2d − c)

3
rs,

(36)

where g = −0.1423, b1 = 1.0529, b2 = 0.3334, a = 0.0311,
b = −0.048, c = 0.0020 and d = −0.0116. Letting ρ(r) = ρc,
the corresponding εxc(ρc) obtained by the present analysis
should be consistent with this exchange-correlation energy
density of PZ/CA parameterization. Although the homoge-
nous solution seems to be awkward, when ρ(r) = ρc can be
greatly simplified to

ε(H)
xc [ρc] = c0 +

∑
n�0

α

n
dnρ

− n
α

c . (37)
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In the above expression α is constant, and as requried
from here on, we let α = 6. Besides, ρ(r) = ρc also leads
to ln(ρc/ρ̄) = 0 and U∗(r) = 0, which leads to particular
solutions ε s1

xc[ρ] = ε s2
xc[ρ] = 0 in the case of UEG. There-

fore, only the homogenous solution could be used to meet
the PZ/CA exchange-correlation energy density. For rs � 1
our exchange-correlation energy density is given by

εx = − p
rs
, (38)

εc = c0 +
∑
n=1

6
n

dnρ
− n

6
c (39)

= c0 +
∑
n=1

6
n

dn

( 3
4π

) n
6

r
n
2
s , (40)

and the corresponding exchange-correlation potential is

vx = −4
3

p
rs
, (41)

vc = c0 +
∑
n=1

(6
n
− 1

)
dn

( 3
4π

) n
6

r
n
2
s , (42)

where c0 = g (the parameter g = −0.1423 has been defined
in eq. (35)), d1 = − g·b′1

6 , d2 = −2b′1d1 − 1
3 c0b′2, and for n � 3

dn = −b′1
n

n − 1
dn−1 − b′2

n
n − 2

dn−2, (43)

where b′1 = 0.8293 and b′2 = 0.2068. The coefficients given
above could be strictly derived by substituting eq. (30) into
eqs. (34) and (35), hence for rs � 1 the exchange correlation
energy density can be exactly characterized by the homoge-
nous solution. For rs < 1, the exchange energy density can be
obtained in the same way as in rs � 1. However, it is not pos-
sible to exactly characterize εc by the homogenous solution
(eq. (30)). This is not surprising, because every term in eq.
(30) is required to satisfy the homogenous equation, which
is apparently not necessary. Relaxing this requirement, a ho-
mogenous solution can be given as:

εc =
−2(a · lnrρ + b + c · rρlnrρ + d · rρ)2

J[a · lnrρ + b + c · rρlnrρ + d · rρ]
+ 2(a · lnrρ + b + c · rρlnrρ + d · rρ), (44)

where J[ f (ρ)] =
∫

f (ρ)dr/
∫

f (ρ)(d f (ρ)/dρ)dr is functional,
and a, b, c, d are the same as in eq. (36), and rρ = ( 4π

3 ρ(r))−1/3

(The symbol rρ is intended to be distinguished from rs, which
is usually used when ρ = ρc). Note that when ρ = ρc, this ho-
mogenous solution is equal to eq. (36), which means that the
exchange-correlation energy density, and hence the potential
of PZ/CA, can be exactly described by the homogenous solu-
tion.

4 The extension to the non-uniform case

Having dealt with UEG case, extension to the non-uniform
case is of interest, since in reality electron densities are al-
ways non-uniform. To extend to the non-uniform case, the

homogenous solution adopts PZ/CA exchange-correlation
functionals eqs. (35) and (36), and non-uniformity is intro-
duced by adding a particular solution (eq. (29)), which is zero
for the uniform case. To be specific, our exchange-correlation
functional for the non-uniform case is written as:

rs � 1 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εc = g/(1 + b1r
1
2
s + b2rs) + β

∫
U∗(r)
ρ

dρ,

vc = εc ·
(
1 +

7
6

b1r
1
2
s +

4
3

b2rs

)/
(1 + b1r

1
2
s + b2rs)

+ β
[
U∗(r) +

∫
U∗(r)
ρ

dρ
]
,

(45)

rs < 1 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εc = a · lnrs + b + c · rslnrs + d · rs+β

∫
U∗(r)
ρ

dρ,

vc = a · lnrs +

(
b − a

3

)
+

2c
3

rslnrs +
(2d − c)

3
rs

+ β

[
U∗(r) +

∫
U∗(r)
ρ

dρ

]
,

(46)

where β = E′′/2(E′ − E′′) is considered as a material depen-
dent parameter.

5 Calculations of aluminum and silicon

Here aluminum and silicon have been used as examples to
test the validity of our exchange-correlation functional. En-
ergy variations with respect to the lattice constant are given
in Figures 1(c) and (d) (calculations in this paper use ELK
code (http://elk.sourceforge.net/, 2014)), which can be fitted
by Murnaghan equation of state [34]. One of its popular
forms is

E(V) = E0 + B0V0

[ (V/V0)1−B′0

B′0(B′0 − 1)
+

1
B′0

V
V0
− 1

B′0 − 1

]
, (47)

where E0, V0, and B0 are energy, volume, and bulk modu-
lus of the system with zero pressure. Bulk modulus B is as-
sumed to be a linear function of pressure B = B0 + P · B′0,
where P = −dE/dV . To fit experimental bulk modulus data,
different β in eqs. (45) and (46) are used, β = −1.5 × 10−4

for aluminum, and β = −0.6 × 10−7 for silicon. Comparisons
of the lattice constant and the bulk modulus of aluminum and
silicon are given in Table 1. It is obvious that GGA (including
PW91, PBE, PBEsol) gives a larger lattice constant than local
density approximation (i.e. PZ/CA), and PBEsol is closest to
the experimental data. However, when one takes bulk mod-
ulus into account, existing exchange-correlation functionals
could hardly give us a satisfactory answer. Considering the β
parameter in our exchange-correlation functional, the exper-
imental value of bulk modulus could be fitted, and it is very
encouraging to find that the lattice constant is slightly im-
proved after fitting relative to the result from PZ/CA, which
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Figure 1 (Color online) Band structure of aluminum (a) and silicon (b) with the PZ/CA exchange-correlation functional (blue solid line) and the current
exchange-correlation functional (red scatters) are shown. Energy variation with respect to lattice constant of aluminum (c) and silicon (d) with the PZ/CA
exchange-correlation functional and the current exchange-correlation functional are given, where the reference lattice constant a′ are 3.99 Å and 5.43 Å for
aluminum and silicon, respectively. Note that, different β in eqs. (45) and (46) are used, β = −1.5 × 10−4 for aluminum, and β = −0.6 × 10−7 for silicon.

Table 1 Lattice constants and bulk modulus obtained by different exchange-
correlation functionals. The units for lattice constants a0 and bulk modulus
B0 are Å and GPa, respectively. To fit the bulk modulus, different β in eqs.
(45) and (46) are used, β = −1.5 × 10−4 for aluminum, and β = −0.6 × 10−7

for silicon

a0(Al) B0(Al) a0(Si) B0(Si)

Experiments 4.05 [35] 75.9 [35] 5.43 [36] 98.8 [36]

PZ/CA [30] 3.99 84.3 5.40 97.7

PW91 [31, 32] 4.08 95.3 5.47 88.6

PBE [11] 4.05 79.9 5.47 88.8

PBEsol [33] 4.03 82.5 5.43 94.3

Our results 4.02 75.9 5.40 98.8

demonstrates the validity of our exchange-correlation func-
tional. Furthermore, the band structure of aluminum and sil-
icon are also given for comparison in Figures 1(a) and (b),
from which it can be seen that our results are nearly the
same as the results obtained by using the PZ/CA exchange-
correlation functional.

6 Conclusion

The total energy equation includes constraints for the
exchange-correlation functional, which has been overlooked

in previous works. Here we solve the total energy equation
for the first time, and provide the formula for the exchange-
correlation functional. In the UEG limit, the formula of
exchange-correlation functional exactly returns the results
of the jellium model. For the non-uniform electron den-
sity case in reality, the particular solution is nonzero and
takes the responsibility. Further, calculations of aluminum
and silicon are performed. Through tuning β, our exchange-
correlation functional can predict equilibrium lattice, bulk
modulus, and band structure even better than the PZ/CA
exchange-correlation functional, which demonstrates its va-
lidity. This study, we believe, could provide a new perspec-
tive to DFT, and also make it more complete.
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