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Abstract 

The aspect ratio of submerged floating tunnel (SFT), i.e. the ratio of length to diameter, is usually as large as 102 to 103, which 

means the behavior of SFT would like a slender cylinder restrained by tethers. Although SFT is usually placed under the water 

surface at a certain depth, surface wave has important influence on its dynamic response due to the slenderness. This paper 

performs analyses on the fluid-structure interaction of SFT in wave field. Potential fluid theory is adopted to describe the wave

field. Boundary element method is used to solve the interaction between SFT and surface wave. Wave potential is divided into 

three parts, including incident wave potential, diffraction wave potential and radiation wave potential. SFT is discretized into

finite elements and its dynamic response is finally solved in frequency domain. As a case study, the values of design parameters

for SFT prototype in Qiandao Lake are adopted. Two different tunnel end connectors are used to compare the distributions of 

tunnel deflections, axial membrane forces at the tube segment connectors and tunnel end connectors. 

© 2010 Published by Elsevier Ltd. 
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1.  Introduction 

Submerged floating tunnel (SFT) is a potential choice as a traffic structure placed in straits, rivers, lakes and so 

on. Usually, SFT consists of many tube segments which are connected together. As a priority advantage compared 

to the traditional structures, such as cable-stayed bridge and underground tunnel, the cost per unit length of SFT 

does not increase with the increase of total span [1]. SFT may be the only choice when the span of crossing is large 

enough so that the traditional structures are impossible to be built. 

Aspect ratio of SFT, which is defined as the ratio of span to characteristic length of tube cross-section, is usually 

as large as 102 to 103. It means that the dynamic behavior of SFT would like a slender beam restrained by tethers. 

Therefore, the interaction between SFT and surrounding fluid is significant. Here, due to the slenderness of SFT, the 

deformation of SFT under hydrodynamic loads composes different vibration modes. Thus, it is not appropriate to 

assume that SFT is rigid when we compute the fluid forces exerting on it. 
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Although SFT is placed under the water surface at a certain depth, surface wave has important influence on its 

dynamic response due to the slenderness of structure. Moreover, the wave forces and dynamic response of SFT are 

coupled, which must be taken into account in the numerical simulation. In order to examine the fluid-structural 

interaction behavior of flexible structures, Wu [2], Price et al. [3], Bishop et al. [4] and Newman [5] presented  a 

generalized three-dimensional hydroelasticity theory for a flexible body of arbitrary shape in wave fields. It adopts a 

frequency-domain approach by expanding the structural displacements and fluid velocity potential into structural 

mode components.  

In this paper, a hydroelastic model of SFT is presented based on three-dimensional finite element model. Fluid-

structural interaction is solved using boundary element method (BEM) [6]. The dynamic equation of SFT is solved 

in frequency-domain. As a case study, we adopt the design of submerged floating tunnel prototype (SFTP) at 

Qiandao Lake [7, 8]. The deflections of tunnel and the axial forces at connectors are presented and compared when 

using different tunnel end connectors. 

2. Hydroelastic model 

The equation of motion describing the response of a discretized structure to external excitation may be written as 

� � �MU CU KU F�� �                                                                                                                                           (1) 

where M , C  and K  denote mass, structural damping and stiffness matrices, respectively. The vectors U , U� and

U�� represent the structural displacements, velocities and accelerations, respectively, and the column vector F denotes 

the external forces. 

For a finite element structure, the governing matrix equation of dry natural vibrations is 

� �2�� � �M K d 0                                                                                                                                              (2) 

where �  is dry natural frequency and d is dry natural mode. As a solution of the eigenvalue problem, �  and d in 

Eq. (2) are obtained for each ith dry mode, where i=1,2,…, N, N is the total number of degrees of freedom. Natural 

modes matrix D can be constituted 

� 	1 1, ,..., N�D d d d                                                                                                                                               (3) 

The distortion of the structure may be expressed as the sum of the deflections in the natural modes, 

� �t�U Dp                                                                                                                                                          (4) 

where p  is the principle coordinates vector. By substituting Eq. (4) into Eq. (1) and pre-multiplying by T
D , the 

following generalized equation in terms of the principal coordinates of the structure is obtained 

� � � � � � � �t t t t� � �ap bp cp Q�� �                                                                                                                             (5)

Here a , b  and c  denote the generalized mass, structural damping and stiffness matrices, respectively, and are 

defined as 

T T T T, , ,� 


 � 


 � 


 �a D MD b D CD c D KD Q D F                                                                                              (6) 
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The generalized force matrix, � �tQ represents the fluid-structural interaction and all other external forces (e.g. wave 

forces, etc.). 

The fluid is assumed to be inviscid, incompressible and its motion is irrotational. Therefore, the fluid velocity 

vector, v , can be defined as the gradient of the velocity potential function �  as 

� � � �, , , , , ,x y z t x y z t�� �v                                                                                                                                 (7) 

Velocity potential �  satisfies the Laplace equation and the given boundary values as 

2 0 within fluid�� � 






















                                                                                                                     (8) 

0 at free surface, 0z z
� �� � � � � 









 �                                                                                                       (9) 

0 at sea floor, =-z z d�� � � 



















                                                                                                           (10) 

on wetted structural surface S�� � � 













n V n�                                                                                       (11) 

where 
  is the wave number, 2 g
 �� , �  is the wave frequency, V is the velocity vector of structure at the 

wetted surface and n  is the wetted surface normal vector. The z-axis coincides with the gravity acceleration and 

towards upward with its origin at the water surface and d  is the water depth. 

Furthermore, the total wave potential can be split into three parts [6] if linear wave theory is adopted: 

� � � �I D

1

, ,
N

r r
r

p t x y z� � � �
�

� � ��                                                                                                                      (12) 

Here I�  is incident wave potential, D�  is diffraction (or scattered) potential and r�  is radiation potential which is 

produced by the structure motions and distortions with unit principal coordinate in each of the principle modes in an 

otherwise still water. 

Assuming that the temporal variation of the principal coordinates is sinusoidal and has the form: 

� � � �exp ,r rp t p i t r N�� � 


 �                                                                                                                         (13) 

 The structure boundary condition [Eq. (11)] can be deduced for each potential: 

D I , r ri� � � �� � � �� � 


� � � �n n n d n�                                                                                                         (14) 

Moreover, the diffraction and radiation potentials should also satisfy the radiation condition at infinity. 

Once the potentials are determined, the total linearised pressure can be found from Bernoulli’s equation by 

integration over the structural wetted surface, that is: 

p i gz��� �� �                                                                                                                                                (15) 

Substituting Eqs. (12) and (15) into the right hand side of Eq. (5) then subdividing the pressure into excitation 

and radiation parts: 

� �I D dW
r r

S

F i S�� � �� ��� T
n u                                                                                                                          (16) 
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� � � �2

1

exp
N

R
r k rk rk

k
F p A i B i t� � �

�

� � ��                                                                                                            (17) 

� �T

2
Re drk r k

S

A i S� � �
�

� ��n u                                                                                                                         (18) 

� �TIm drk r k
S

B i S� � �
�

� � ��n u                                                                                                                        (19) 

Here Re and Im denote the real and imaginary parts of a complex variable, respectively. Coefficients rkA  are in 

phase with the acceleration and act as additional mass. Coefficients rkB  are in phase with the velocity and appear as 

additional damping in Eq. (5). ru  is rth modal displacement at any point on the structure. 

Now substituting Eqs. (13), (15), (16) and (17) into Eq. (5), the equation of principal coordinates can be rewritten 

as:

� �2 ( )i� �� �� � � � � �� �a A b B c p F                                                                                                                 (20) 

where A is the added mass matrix, B is the hydrodynamic damping matrix and external force vector F contains the 

incident and diffraction wave forces, hydrostatic and gravity forces. 

The solution of Eq. (20) gives the principal coordinates p and displacement of any point of the structure obtained 

by Eq. (4). To solve Eq. (20), we must get the value of radiation potential first. According to the boundary 

conditions (Eq. (14)), if the dry natural modes of the structure are known, the radiation potential can be deduced 

using the same method as the diffraction potential. Here Green function method and boundary element method 

(BEM) are adopted to solve the Laplace equation (Eq. (8)) with the boundary conditions (Eqs. (9-11)). 

3. Hydroelasticity of  SFTP 

Fig. 1(a) shows the schematic diagram of submerged floating tunnel prototype (SFTP) at Qiandao Lake [7, 8]. It 

consists of 5 tube segments and the total length is 100m. The outer diameter of tube is 4.39m and the wall thickness 

is 0.42m. Cross-section of tube is a sandwich structure shown as Fig. 1(b), which consists of inner steel shell, outer 

aluminum shell and concrete shell in the middle for the aims of corrosion resistance, collision protection, tunnel 

weight balance, etc. The connections between tunnel and shores have the characteristics of hinge with a axial stress 

relaxation device applied at one tunnel end. 

SFTP is submerged 4.2m under the water. The average water depth is 17.28m. The design wave height is 1m 

with wave period 2.3s. Buoyancy acting on the tunnel per unit length equals 155kN, while the structural weight per 

unit length is 120kN. The buoyancy weight ratio (BWR, buoyancy/weight) of SFTP is 1.29. The configuration of 

tethers distribution is shown as Fig. 1(a). Four tilted tethers are located at the mid-span of tunnel and two pairs of 

vertical tethers are located at the 2nd and 4th tube segment. Tethers are consisted of steel wire with the outer diameter  

         

Fig. 1. (a) Schematic diagram of submerged floating tunnel prototype at Qiandao Lake; (b) Cross-section of tube segment 

(a) (b) 
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Fig. 2. Wave forces acting on the stationary tunnel with different amount of elements (a) Horizontal wave forces; (b) Vertical wave forces 

Table 1. Natural frequencies of SFTP in air 

Mode No. Frequency(Hz) Mode No. Frequency(Hz) Mode No. Frequency(Hz) 

1 1.57 8 11.87 15 28.17 

2 2.30 9 14.22 16 29.08 

3 4.28 10 14.25 17 35.23 

4 4.59 11 20.78 18 36.12 

5 8.66 12 20.86 19 36.13 

6 8.74 13 23.54 20 44.57 

7 9.69 14 28.15 21 44.60 

Fig. 3.  Eigenmodes of SFTP 

(a) (b) 

1st 2nd

3rd 4th
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is 0.06m. Two ends of each tether are connected to the tunnel and the foundation individually with anchoring hock. 

The elastic module of tether is 140GPa and the broken tension force equals 3140kN for each tether. 

Hydroelastic model of SFTP is formulated using mathematic method described as section 2. The hydroelastic 

dynamic equation for SFTP is the same as Eq. (20). The left hand of equation contains the fluid added mass and 

hydrodynamic damping, which are induced by the radiation wave due to the deflection of tunnel. The external forces 

on the right hand contain the diffraction wave force. The radiation wave potential and diffraction wave potential are 

both determined by solving Laplace equation (8) with boundary conditions (9~11). The only difference is the 

boundary condition (11), which is decomposed into Eq. (14) for each potential. The same method is adopted to solve 

the two potentials. Boundary elements are used to discretize the tunnel. Boundary integral equation for each element 

is formulated then the potentials are solved.  

To verify the numerical program, a horizontal stationary tunnel is adopted to compute the wave force acting on it. 

This problem has analytical solution, which is compared to the numerical results with different amount of boundary 

elements. The comparison is presented as Fig. 2 containing the horizontal and vertical wave forces per unit length. 

When the number of elements exceeds eight hundred, the numerical result approximates the analytical solution very 

closely. Considering the more elements used the more time consumed by computation, we adopted eight hundred 

elements to discretize the tunnel. Eight elements are used along the circumference of tunnel cross-section, one 

hundred elements are distributed along the tunnel axle. 

The natural frequencies and corresponding eigenmodes are presented by solving Eq. (2). To keep the consistency 

with the boundary elements, the same amount of finite elements are adopted. General software ABAQUS is used to 

solve the eigenvalue of SFTP. From the mode decomposition point of view, the number of reserved mode must 

make sure the ratio of effective mass to total mass on each degree of freedom exceeds 90%. Here twenty one modes 

are used to simulate the response of SFTP. Table 1 shows the natural frequencies of SFTP in air. The first four 

eigenmodes are presented in Fig. 3. In the finite element model, the sandwich structure of SFTP has been simplified 

into a uniform shell with equivalence density is 2125.8kg/m3, elastic module is 3.2 1010N/m2 and the effective 

inner diameter of tunnel is 3.53m [9]. Here, these values are deduced by the bending stiffness, gravity and buoyancy 

equivalence principles. 

4. Results and discussion 

The tunnel tubes are discretized into shell elements not as beam elements. It is necessary to present the 

distributions of deflection or stress in the cross-section of tunnel. In the prototype design, at one tunnel end, there is 

a stress relaxation device to absorb the axial deflection energy of tunnel. This device is important for the safety of 

tunnel considering the deformation of tunnel due to earthquake, wave, thermal stress etc. However, from the 

symmetry of structure point of view, one stress relaxation device at each tunnel end may be a more optimized design 

for the tunnel deflection, although this would increase the cost of SFTP. 

Based on the hydroelastic model of SFTP described in the previous section, for comparison, the dynamic 

response of two models with different tunnel end connectors are simulated. Model A contains only one stress 

relaxation device at the right tunnel end. At the other tunnel end three translational degrees of freedom are 

constrained. Model B contains one stress relaxation device at each tunnel end. Fig. 4 to 6 shows the tunnel 

deflection along the three translation degrees of freedom individually. The instantaneous deflections of tunnel are 

presented at the time when the horizontal deflection reaches the maximum. The ratio of length to diameter of tunnel 

has been adjusted for more convenient drawing. 

The deflection of Model B is obviously more symmetric compared to Model A. Due to the existence of axial 

stress relaxation device at each tunnel end in Model B, more flexible of tunnel induces the larger deflection occurs 

except at the horizontal direction. The relaxation device influences directly the axial response of tunnel, therefore 

the difference of axial deflection is the largest compared to the other two translational deflections. For Model B, the 

maximum axial deflection occurs in the cross-section at the tunnel end. The maximum deflections along horizontal 

and vertical directions both occur in the cross-section at the mid-span. However for Model A, the maximum 

deflections are prone to occur deviating from mid-span to the tunnel right end where there is the relaxation device. 

Here the vertical deflection of tunnel contains the contribution from the net buoyancy. Comparing with horizontal 

deflection, one could conclude that wave forces acting on the tunnel are far smaller than net buoyancy. The 

deflections of tunnel induced by wave forces are the same order of millimeters for both models. 
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Fig. 4. Distribution of axial deflection along the tunnel: (a) Model A; (b) Model B (unit: m) 

     

Fig. 5. Distribution of horizontal deflection along the tunnel: (a) Model A; (b) Model B (unit: m) 

     

Fig. 6. Distribution of vertical deflection along the tunnel: (a) Model A; (b) Model B (unit: m) 

(a) (b) 

(a) (b) 

(a) (b)
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Fig. 7. Distribution of axial membrane force along the cross-section of each connector (a) left tunnel end connector; (b) 1st tube segment 

connector; (c) 2nd tube segment connector; (d) 3rd tube segment connector; (e) 4th tube segment connector; (f) right tunnel end connector. Blue 

line represents Model A and red line represents Model B (Unit of Fx: N) 

Connectors between tube segments are full strength connections for both models. The simulation results show 

that axial membrane force is dominant in each connector compared to shear forces. Usually axial membrane force is 

larger one or two order of magnitude than shear force in connector. Fig. 7 shows the distribution of axial membrane 

force along the cross-section of each connector including tunnel end connectors. For Model A, represented by blue 

line in Fig. 7, the maximum axial membrane force occurs at the left tunnel end connector. At the other tunnel end 

connector, due to the existence of stress relaxation device, axial force equals zero. For Model B, represented by red 

line in Fig. 7, axial membrane forces at both tunnel end connectors equal zero. However, axial membrane force at 

each tube segments connector is larger than the corresponding connector in Model A, especially for the 1st and 2nd 

connectors. Due to the symmetry of Model B, axial membrane forces at different tube segment connectors have the 

similar distributions. 

5. Conclusions

This paper presents a hydroelastic model of SFT considering the fluid-structure interaction under wave condition. 

Due to the elasticity of SFT, deflection and motion of structure induce the radiation wave propagating. Fluid added 

mass and hydrodynamic damping are necessary to be taken into account, which are functions of structural 

acceleration and velocity. Boundary element and structural mode decomposition methods are adopted to solve 

radiation wave potentials. Dynamic equation of SFT is solved in frequency domain. As a case study, we simulated 

the response of SFTP due to wave forces at Qiandao Lake using hydroelastic analysis method. Using the different 

tunnel end connectors, the distribution of tunnel defection and axial forces at connectors are compared. Under the 

wave condition at Qiandao Lake, deflections of SFTP are only at the same order of millimeters weather stress 

relaxation device is used in tunnel end connectors or not. If only one stress relaxation device is used in either tunnel 

end connector, the maximum axial membrane force occurs at the other end connector. However, if stress relaxation 

device is used in each tunnel end connector, the axial membrane forces will increase at each tube segment connector. 

(a) (b) (c)

(d) (e) (f) 
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