CSTAM2012-D01-0069

Determination of temperatures using CH radical emission spectroscopy

Qiang-Suo Yang¹⁾, Jun-Huo Song, Nai-Yi Zhu
(Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100190)

Abstract: An improved Boltzmann plot method where the intensity is taken as the integral of the experimental spectrum within a special band for a cluster of rotational line of R and Q branches is proposed in the current study. This method aims to deduce rotational and vibrational temperatures using CH radical $A^2\Delta - X^2\Pi$ band emission spectroscopy accurately. In addition, the data relative to the rotation lines of $CH(A^2\Delta - X^2\Pi)$ for both temperatures are assembled. The emission spectrum of $CH(A^2\Delta - X^2\Pi)$ at the inner cone of an acetylene-oxygen flame in a rich oxygen state is recorded and both the temperatures are determined by the method above. The avlues were recorded as 3141 K and 3097 K, for the rotational and vibrational temperatures, respectively. This result reveals that the equilibrium between the rotation and vibration states is achieved. A simple discussion for this method is also provided.

Keywords: temperature measurement; CH radical; emission spectrum; Boltzmann plot method

¹⁾ Email: qsyang@imech.ac.cn