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ABSTRACT : In the paper the wave altenuation in a two layer fluid system is studied . The tluid 1n the top
layer is 1deal and that in the lower layer is the Voigt model of the viscoelastic medium . A dispersion relation
15> denved and the rate of the wave decay is computed . The approximate explicit expressions of the decay rate
for different water depth arc given. where the viscoelasticity 1s either very large or very small . Compared with
the numerical results . our results are very accurate . which can be used by an engineer. '
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I. INTRODUCTION

In offshore engineering the classical water wave theory can be used under the assumption
that the fluid is ideal with a rigid and nonporous bottom . Because of the energy dissipation due
to percolation, viscosity and bottom friction, wave attenuates in the coast engineering,
especially for a mud bottom . -

The effect of mud bottom on wave attenuation can be verified from the following reports .
Tubman and Suhayda[” discovered that the energy loss of surface wave due to the mud
movement is much larger than that due to the percolation and friction. Gade!” reported that
there is a “mud hole "in the Gulf of Mexico, which is used as an emergency harbor by fishing
boats because of the great attenuation of waves due to the mud bottom . It is said that there is
a mud hole near the Yellow River mouth too . Macphersonm reported that during the SW mon-
soon season , incident storm waves on the mud bottom of Kerala . India, are almost completely
damped out within a distance of only 4 — 8 wavelengths . All these show that it is not sufficient
to consider the bottom friction only and it is neccessary to study the mechanism of wave
attenuation on a mud bed.

Early in the 1950s . Gade'" studied this mechanism. He made experiments for the wave
attenuation in a channel with a two- fluid system of kerosine and water- sugar solution . derived
the dispersion relation of waves under the assumption of long waves and studied the wave
attenuation . Dalrymple and Liu'™ studied the wave attenuation in two layers of fluid . They
used -a model with three boundary layers and two layers of ideal fluid to replace the model with
two layers of viscous fluid. and obtained” a explicit expression for the coefficient of wave
attenuation . Hsiao et al ® . and Macpherson!® studied the wave attenuation in two- fluid sys-
tem with ideal and viscous fluid in upper and lower layers, respectively . In Hsiao et al.’s paper,
the condition of continuous pressure on the interface replaced the correct condition of continuous
stress, and the error occurred . Macpherson introduced a potential function and a stream
function , considered the whole flow as the superposition of the ideal flow and the viscous
rotational flow. studied the case where the depth of the lower layer is infinite. derived the
coefficient of the wave decay and compared it with numerical results .

The viscous model is suitable for describing the movement of the floating mud . But for the
mud lying on the bottom . the viscoelastic model gives a more realistic constitutive equation
for the mud in nature. It has been demonstrated by Magniotm with the laboratory
measurements that the orbit motion induced by wave does occur in mud layer and that soft
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layer can exhibit properties similar to those found in fluids. So, the wave attenuation on the
mud can be reduced to a wave problem in two layers of fluid .

Based on the wave theory with small amplitude, this paper studies the surfice wave
attenuation in two layers of fluid. The fluid in the top layer is ideal, and that in the lower
layer is viscoelastic. The governing equations for Voigt fluid and boundary conditions are
discussed and the accurate dispersion relation is given in 1I. When the viscosity or elasticity are
very large or very small, the explicit expressions for wave damping coefficients suitable for
different depth of upper and lower layers are derived in III. At last, in IV, we check the
accuracy of these explicit expressions by comparing them with numerical results .

II. DERIVATION OF DISPERSION RELATION

The coordinate system and the rotations are
shown in Fig.1. The wave is propagating in x

g direction . The fluid in the top layer is ideal with
m x depth #; and the lower layer is viscoelastic with
!\/ ~— depth A,. Due to the stability condition, p,>p,.

h m The free surface displacement is denoted by

1

n(x.p)=a - exp(ilkx—or)) and the interface be-
) = tween two fluids is &(x,r)=b * exp(i(kx—gt)).
¢ The fluids both in upper and lower layers are
& @ homogeneous , the fluid in lower layer is a Voigt

L ) body and the stress- strain relationship is
1=Getué (1)
Fig.1 Schematic figure for the two layer fluid model Where t is shear stress, G shear modulus., u
dynamic viscosity , ¢ shear strain and ¢ rate of shear
strain . If the mud is incompressible, G and yu are constant and the convective term is of the se-

cond order and is neglected . The equation for lower-layer fluid is expressed as ¥

™

Pu _ G oo odu 1 Op
T Viu+yw Fp > (2)
a0 G - 5 0w 1 &p
=Y giharwr 2 -0
or? p Vot ot p 0Oz0t 3)

where # and w are the horizontal and vertical velocity components , respectively , p pressure ,
v=y/p kinetic viscosity . p density of lower- layer fluid .
The stream function y is introduced as

u=. w=—1y, (4)
Since we consider linear wave motions we can assume
Yy=S5(z)exp[i(kx—ot)] (5)

Substituting (5) into (2) and (3) and eliminating p we get the following fourth- order ordinary
different equation for S(z)

4 . 2 R
Zi +<—2k2+ —‘\’)')—d‘j +(k“— —'zk )S=0 (6)
where
v,=y+ 16 {7)
po

is effective viscosity . It is a complex , its real part is the viscosity and the imaginary part is a
‘measure of elasticity .
The solution of Eq .(6) is
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S(z)=Aexp(kz)+ Bexp(—kz)+Ce" +Dexp (—mz) (8)
where A, B, C, and D are constants determined by the boundary conditions, and
m?=k= =7 )

Assuming that the upper layer fluid is incompressible and the motion is irrotational we
introduce the potential function ¢, then

Vip=0 (10)
U=, W= (. (11)
Now we consider the boundary conditions . There are two conditions on the free surface
p=0 at  z=n(x,1) (12)
W=, at  -=nlx,1) (13)
On the bottom , there are two conditions
u=w=0 at -=-(h+hy) (14)
On the interface , the normal stress and the shear stress are continuous
O-l:::O-Z:: at ~=_/71+é(t“') “5)
T1,.=0 at  z=-—htE&(e,r) (16)
the normal velocity is continuous and is equal to the normal velocity of the interface
w =w,=¢, at  z=-—h+E(x.0) (17)

where the subscripts 1 and 2 indicate the upper and lower layers, respectively . The boundary
condition (15) different from Hsiao'’s condition of continuous pressure . The later is only an
approximation when |v,! is small, [6] does not show how much is the error due to this approxi-
mation and there is no other paper discussing it either. So. we use the accurate condition
of the continuous stress and the results are different from [6) .

The solution for the top layer fluid satisfying the Eq.(10) and the boundry conditioas (12)
and (13) are

_ 9| ket O hke (x—
¢=-— [chl\h+ ok shk.}exp[z(kx ot)] (18)
The boundary condition (15) can be written as
i 517

Expressing the boundary conditions (14)—(17) by ¢, 5 and 4, B, C, D in (8) at the bal-
ance position, we get

KAexpl—k (h,+hy)) —kBexplk (h,+h,)] +Cmexpl=mh +h )]—mDexplm (h +hy)] =
at 2= —(h,+hy) (20)

AeXp[—k (h\+hy )l +Bexp[k (hy+hy |+ Cexpl—m (h +h:)1+ Dexplm (h,+h,)]=0
’ at =~ +h) (21)

—ki
Pave

|:(p2—p, )gb+piga <chkh|— T;-/i_ sh khl>:|=A exp (—kh ) (m?+ Kk
—Bexp (kh,)(m2+kl)k+2mk2Cexp(-mh,)—2mkzDexp(mh,) at z=-h  (22)

2k*(Aexp (—kh )+ Bexp (kh )+m? + ) C exp— mh, ) Dexp(mh,))=0
at z=-h, (23)
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"

. .
- gT I:sh kh, — f]; ch k/z,]=Aexp (—kh 7+ Bexp (kh | )+ Cexp (—mh , y+Dexp (mh )= % b

i
\

at o=—h, (24)

Solving A, B, C and D from (20). (21), (23) and (24). sub;tituting them into (22), we
obtain the dispersion relation

Q[(l—y)(% thkhl—1>—~,) <1— g—; th kh, >:|=thk/zl— :A (25)
where
Q= %k (m*=k*) 4k chk hysh mha—dnich mhych kh ;] {26a)
A=4k (m>+ k> )Y (kshmh,shkh.—mchkh,chmh2)+ 16 k*m (msh kh ,shmh,
—kchmh.chkhy )+ 16k m (m*+k*) (26b)
T=p/p (26c)

Now we discuss the dispersion relation .

When the depth of the lower layer fluid is very small, h,— 0. from (26a). Q— 0. then
the dispersion relation (25) becomes

o =gkthkh, (27)
(27) is just the dispersion relation for upper layer water waves .

When the density of the lower layer fluid is very large. y— 0, we can imagine that the
lower- layer fluid is just like a solid and the dispersion relation should agree with that for the
top layer water . (25) has confirmed that fact .

If the fluid in the lower layer is very tough, very sticky and hardly different from the solid .
fv,l> o, then, m— k, @ — 0, the dispersion refation (25)becomes that for the top layer
fluid too .

If the viscosity and elasticity of the lower-layer fluid are all small. the fluid in the lower
layer can be thought to be an ideal one. then. m — x, Q — thkh,. the dispersion
relation (25) becomes

0% (p,cthkhy cth khy+ p, ) —a’p, (cth kh,+cth khy ) gk +(p.—p, Jg k=0 (28)
This is just the dispersion relation for a two layer fluid I .
Using (9). it can be proved that the dispersion relation (25) is consistant with (3.20)

in [3].
From (24), the amplitude ratio between the interface wave and the free surface wave is

b chkh - B shim, (29)
a o°

It is valuable to mention the case of pure elasticity, v=0. From (9). m is real or pure
imaginary . Q must be real according to (26a). Therefore, k determined by (25) is real. It
means that wave does not decay in the case of pure elasticity . It is the same as Mallard and
Dalrymple s conclusion .

IIT. EXPLICIT EXPRESSIONS FOR WAVE ATTENUATION COEFFICIENTS

Usually a numerical method must be used to solve the root A=k, +k, of the dispersion
relation (25) To show the cffect of each factor on wave attenuation,to supply a simple formula
for engineering design, and to provide a reliable method to check the numerical results, it is
necessary to simplity ( 25) to get a simple explicit expression for wave attenuation
. coefficient .

Under the assumption that the depth of the lower layer fluid is infinite and that wave length
is long and v, is very large or very small, [3] got the explicit expressions for the wave
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attenuation . The explicit expressions will be derived here without first two assumptions and the °
application range of the explicit expressions will be extented . Usually the wave attenuation
coefficients are small, so we let

k=kotk =ko+k, + ik, (30)
where k, is real, k, is a complex correction and |k /ky| « 1. Therefore, exp(—k,x) is a fac-
tor of wave attenuation and k; is the wave attenuation coefficient .

3.1 v=v+iG /pa—~ 0 or k’lv /o«

From (9).
k2 /mtl=kilv,] /o« 1 (31)
_mé/a_/(zve) (—l+i)<1+%ik(2)ve/0'> (32)
where | | is the module of a complex . Expanding (25) in powers of small k/m, we get

a 2
Q=thkh2[1— % th ik, (cth kh,— th ks )= 2 (thzmhzsechzkh2+4)j'+0(k3/m3) (33)
m

(1) h—=0, kghy<Imlh,«1
Q=kh2|:% (mh2)2—4k2/m2] (34)

Substituting (34) into (35), expanding (25) in powers of small k. then
O'Z':gkothkohl (35)

ko h3 ] 1
3kl /e %sh2koh,+ koh,

\/ghl ol kv
D= = (Imkl)=zk0h2 ;_ [4+

(36)

Since |mh,l « 1, ghi/lv,I« 1, so D« 1 in (36).

(2) khyx 1, lmhl» 1, khi«1

The first two terms in (33) should be retained for Q and the first is the main one.
Expanding (25), we have

O'Zzgké(hl‘*'hz) (37)

— 1 _ kOhth ?02k0h1h3 kOhZ
YT [“ Dt ¢ +— g hmh (38)

In (38) there is an imaginary part in the third term only, and

1 ,
v a/(Gpa) (T G;pa + 1) v« G/po

m=m,+im,-={ (39)
Jeory (1+i) v>»> G/ po
] <thmh2) —m;thm h,+ —zl—m,sin2m,-hzsech2m,h1 )
m = 40
mhy (m?+m?Yh,(cos>m, hy+th> m, hysin?m;h,)
Using Imh,l » 1 .
b v gh k= (hy /hy)'"? 1 y
= mk, = V> g
o 't hm) R Vo b P (41a)
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v /_ @ _ 1 / v /| @
_ th< 2G/po N G/po hz) 4 / sm( /pa hz)sech ( 2G /po G/po hz)

2 202 a
cos sin” | ———— h

<2G/pa N\ G/pa h’) N G/po h
. (hl/h2)"’2/[2(1+hl/hz)m\ G%pa hzi| v« G/po (41b)

If Imh,| » G/(pov). (41b) becomes

D=(h1/h2)”2/ [2(1+h1/h3)m\/ G‘/’pa hz} v« G/pa (42)

(3) kh,=0(1), |mhyl>»1, ki« 1
In this case,  includes the first two terms in (33), and the first is the main term . We ex-
pand (25) and obtain

O'zzgkothkohz (43)

v gh koh,
D=5 (Imkp)= ] 0 Kohy 1 v> G/po (44)
7 = sh2kohytkoh, ¥ Wkoha [ 4
2 2
N2y

when v « G/pe the only modification is to multiply (44) by a factor similar to the first factor
in (41b)

@4) kohy<1, lmh,l=00), kgh,=0(1)

Q still contains the first two terms in (33), which have the same order

ngkothkoh] (45)
JT /ﬁ / koh, 1
D=—=~ "o N thkh _;_shzkoh,-f-kohl

. g | a
th /&5 - L | 9 2/ 0
J 2y sm2\ v h,sech NET h,
2 g 2 a 2 a
cos \/ 5y h,+th \// 5y hasin \/ v h,

If v« G/po . the last factor in (46) must be replaced by a factor similar to the first factor
in (41b).
(5) hy—~ o.i.¢e.kyhy»1

v» G/po (46)

Q=1-4(k*/m")
k, satisfies the following equation

(=1}

(1—y)k2g2thkohl—gkoa'2+ya4thk0h,=<1+ 4k )(gkoa ‘thkogh—c*)
The solution of this equation is "

ot =gk, ol=gk,thk, —'—— (47a)
For surface wave, we use o =gk, . then ’

‘o o 1—thkyh, 47b)
L 1+(2y—1)thkyhy
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If kehy< 1, i.e. in the long wave case»
D=4kihiv/ gn? (48)

The attenuation coefficient in (48) is independent of G, and agrees with that in [3] .

32 v,=v+iG/po—> o, i.e. o/ v, I )« 1

From (9),
m=k[ 1- ie /2k*v,)] (49)
After some careful operations and neglecting the higher order, we have
0=—1% (L chokh,—khy)/ (ch2h+iCh2) (50)
2k%y, \ 2

From the dispersion relation (25 ).

=gk thkyh, 1)
1
— sh2koh—koh»
p=r | _kohi o v 2 T T ! (52)
2N kol kg V4G plet chkohytkih; L s ko by thoh,

. 2
From the above formula, the attenuation coefficient is inversely proportional to v when
v» G/po. If v« G/po, D is proportional to v.
For the case of long wave and thick mud layer. kj h, » [, kohy< 1, (52)is simplified as
follows
Y &V gh) y v 1 o y
D= - = 4 —_ (53)
o’ v2+HGYpl 4 koh, ki vIHGUPES
It is the same result as that in {3] . The formula in [3] is a special case of (52) only.
If two layers are both thin, i. e. kh,« 1, kh,« 1, (52) is simplified to

»> 1 e ¥
4 koh, k3 VH+GYpS (54)

D=2 tkohy

This means that compared with the case 4,— oo, the attenuation coefficient in the case 4,—> 0,
can almost be neglected when |v,| is large .

From the above explicit expressions, we can see that

1) when kA >» 1, 1.e.the water in the upper layer is very deep or the wave length is short,
waves do mnot decay due to this mechanism., D=0. It is consistent with the physical
intuition .

2) In the case of long wave , large viscosity and (o/k*lv,]) Koh=0(1), i.e. v=
0(g>h)"?/6%), we have D=0(1), and D« | in other cases .

The classification in different cases is dependent on k when v, 0. and the formulae for k
are different in different cases . So there are some difficuities to classify each case. We show
here that in all cases k, can be computed by

=gkythk,(h,+h,) (55)

(35), (37), (43), (45) and (47a) are the first term approximation of (55) in each case. All
approximate ko in the next paragraph are computed by (55) when |v.| is very small.

IV. COMPARISON WITH THE NUMERICAL RESULTS

In this paragraph, we compare the approximate formulae (the dashed lines in figures) with
the numerical results (the solid lines in figures) .
The first model is Gade’s experiment. The top layer fluid is kerosine with density
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0.8593 g/em® and depth 3.8lcm. A water-sugar solution with density 1.504g/cm?® and viscosity

2.6cm®/s is in the lower-layer. The wave fre-
quency ¢ i1s 4.4857 . In Fig.2. we use two ap-
proximate formulae ( 44) and ( 46) to
approach’ the curve. The approximation is
very ‘good except in the neighbourhood of
the highest point. where the approximate for- .
mulae give an overestimated value . In the re-
gion where Hy=(0/2v)' %h, is small. our ap-
proximation is almost the same as Gade's
long wave approximation . At large H,, our
results have almost the same accuracy as those
from the boundary layer theory of [5], but
the application region is wider . In this exam -
ple. small kyh, in (44) is applicable up to
0.2, but kyh, as order O( 1) is only
0.2— 0.6. Small kyh, in (46) is applicable
up to 0.18. but kyh as order O(1) is
Fig.2 Comparison of D by different method for Gade's only 0.2— 0.25. a little bit larger than k..

experiment model If small quantities koA, in (44) and kyh- in
—  numerical result (25) —— approximation (44) and (46) 46y gre smaller, the approximation will
+ Gade's experimental point be better .

The relationship between the attenuation
and the mud depth is shown in Fig.3 and 4.
The parameters in Fig.3 are p,=1.028 g/cm® &, =400cm , p,=1.800g/cm’, G=0, v=10"cm’/s
and ¢=0.52. The two formulae (42) and (46) are used to approach the curve. The approxima-
tion is very good when H,<2.6., and the accuracy is good for the whole curve. In this
example , small quantities are all near 0.25. |v,| is large in Fig. 4. The parameters are
o =lg/em®, p,=2g/em?, h =1000cm ., G=2x 10%dyn/cm*, v=10°cm*/s and ¢=.52. In this
case onty one formula (52) or (54) is needed to cover the whole curve . The attenuation is very
small and the case can be considered as of no attenuation .

1.007~
3.001
0.80
E 0.60

0.16—

Q 0.08—

0.04 -

0.00
0.00

.... Gade's long wave theory and
.... the boundary layer theory in [5]

0.40

DI(x 100)
D(x 1. E10)

O.ZOT
|

1 0.00|, | !
0.00 2.00 4.00 6.00 8.00 0.00 2.00 4.00 6.00 8.00

Depth H 3 (Depth)

Fig.3 Attenuation coefficient versus dimensionless
mud depth

Fig. 5 and 6 show the relationship between the attenuation and the dimensionless
viscosity (v/(gh})' ™). Because of small error and the use of logarithm coordinate system . the
two curves are overlapped in the figure . The parameters in Fig.5 are p,=lg/em’, p,=2g/cm’,
hy=10%cm A =5x 10°cm. G =0 and ¢=0.52. It is the case where the depth of the mud is
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infinite . In Fig.6. the depth of the mud has & limited thickness. The parameters are the same
as in Fig.5 except h,=5x 10°cm .It is shown in the two figures that there is an optimum
viscosity where the attenuation is maxmum . Our approximation reveals the optimum value very
well. The maximum attenuation in Figs.5 and 6 are the intersection points ol (47b) and (52)
and of (46) and (52). respectively .

=0.0¢
—0.00
e - 2.0(#
i
8 —4,001— —4.00
B -
= —6.00
-6.00 =
—8.00—
-8 . - 10.00}*
—10.00 l | L L I —12.00 - 1 I | | J
—6.00 —4.00 —2.00 0.00 2.00 4.00 6.00 8.00 —6.00 —4.00 —2.00 0.0u 2.00 4.00 6.00
1g(Viscosity) 1g(Viscosity)
Fig 5 Attenuation coefficient versus dimensionless Fig.6  Attenuation coclficient versus dimensionless
viscosily .y’ ah ;, viscosity 7.4/ o 1|

Though each approximate lormula is-derived in each special case, from the above compari-
son they are shown to have a good accuracy in a large region and only one or two formulae
are needed to cover a whole curve. This does offer some convenience for discussing the effects
of each physical factor and can relieve us from the numerical computation .
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