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ABSTRACT :  Accurate high-order asymptotic analyses were carried out for Mode II plane strain crack in
power hardening materials. The second-order crack tip fields have been obtained. It is found that the
amplitude coeflicient k2 of the second term of the asymptotic field is correlated to the first order field as the
hardening exponent n<n *(n *zS)‘ but as nzn *, k2 tums to become an independent parameter. Our re
sults also indicated that. the second term of the asymptotic field has little influence om the nearcrack-tip field
and can be neglected when n<n ", In fact, k2 directly reflects the effects of triaxiality near the crack tip. the
crack geometry and the loading mode, so that besides J-integral it can be used as another characteristic
parameter in the two-parameter criterion .
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I. INTRODUCTION

Since the well-known J-integralm and the HRR singular fields 2~ 4 were proposed, much the-
oretical and experimental work has been done in order to employ the J-integral as a ductile frac-
ture criterion . In recent years, the critical value of the J-integral denoted by J,- has been ac-
cepted as a measure of the toughness of ductile materials . But from a strict point of view, the
onset of crack growth can be phrased in terms of the attainment of Ji~- only when the region
dominated by the J-characterized HRR singular fields encloses completely the fracture process
zone . This naturally brings up some requirements for specimen, including configuration geome-
try, material properties and loading mode . For the Mode I plane strain crack problem, these re-
quirements have been disscussed in detail by Shih and German 7 McMecking and Parks®,
Needleman and Tvergaad”] and Wang!® . All of these analyses have indicated that the size re-
quirements about the ligament for the bend crack geometries are quite different from those for
the tension crack geometries. For the bend crack geometries, the ligament ¢ roughly obeys
¢225Jc/0 g, while for the tension crack geometries, ¢=200J¢/0p0y -

As a matter of fact, the above two different conditions certainly have something to do with
the triaxial stress state near the crack tip. Thus, some researchers proposed to use two
parameters for characterizing the stress state near crack tip. The first parameter is J-integral,
and the second one is a parameter which can reflect the triaxiality at the crack tip. Li and
Wangm made a high-order asymptotic analysis on the Mode 1 plane strain crack problem, and
obtained the second-order asymptotic fields. Using two amplitude coefficients k, and k,, the ef
fect of the configuration geometry can be characterized . In this way, a theoretical foundation is
provided for two-parameter tracture criterion .

Recently, O 'Dowd and Shih!" ! introduced the concept of J-Q annulus. Within the
annulus , the full range of both high and low triaxiality ficlds can be parameterized by Q and
J/6,, where o, is the yield stress. Q can be interpreted as a (non-dimensional ) stress triaxiality
parameter , which in fact is the same as %, of Li and Wang[gl. Betegon and Hancock ''? have
also discussed the two-parameter charaterization of elastic-plastic crack tip fields. The different
near-tip fields at large-scale yielding in bend and tension geometries have been matched with the
small-scale yielding fields, which are obtained by a modified boundary layer formulation based
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on the K;-field and the T-stress of the asymptotic series of the elastic field .

Bradford !'¥! apalysed a Mode II crack using the finite element method. Crack tip stress
and strain fields are investigated and shown to be in agreement with the HRR fields at all
loading levels from small-scale yielding to general yielding . This demonstrates that an initiation
value of J may be used as a criterion for the onset of crack growth. The study mentioned
above is only for the edge-cracked square plate of power hardening material with hardening expo-
nent n=3 . Therefore, it is still difficult to reach a general conclusion for the Mode II crack
problems . .

This paper is an extension of the work by Li and Wang'” . A similar investigation is made
for the Mode II plane strain crack . It is proved that the contribution of the second-order solu-
tion to the crack tip stress field is much smallar as compared with that of the first-order (i.e.
the HRR solution ), and that the amplitude coefficient & , is related to the first-order ficld if the
hardening exponent n is smaller than n” where n'~ 5. If n>n’ , k, becomes an independent
parameter which relates not only to the material properties, but also to the crack geometry and
yielding scale .

) II. GOVERNING EQUATION
In this paper, the Ramberg-Osgood hardening material is investigated , whose constitutive re-

lation in uniaxial tension can be expressed as
e=c+oc" 2.1)

where ¢ and ¢ are the non-dimensional stress and strain respectively, which are in turn
defined as
c=0/0, e=¢ /&,
where , @, is the yield stress; and g, is the corresponding yield strain equal to ¢, /E; E is the
initial slope of the stress-strain curve (i.e. Young's modulus); « and n are hardening coefficient
and hardening exponent, respectively . Throughout this paper , all unbarred stress and strain will
be non-dimensional . Italic letters i, j, k are used for subscript indices running over 1, 2, 3,
and Greek letters f. y, p for subscript indices running over 1, 2.
Under multi-axial stress states, the strain is given as
' (1-2y) 3 -
£y =(1+v)8;+ 3 ‘Ukkéij"'fdaz lsij 2.2)
where S;; is the stress deviator , g, the effective stress and v Poisson’s ratio .
8,=0¢,—0 73 223 S S
ij- 0T 0 0kk Te™ 5 Py

In asymptotic analysis for near-crack-tip field in plane strain, (2.2) can be further written
in the brief form :

&g, =85, ey, =(U+v)ag,+dp,T 0, ,tASy, 2.3)
3 1 :
where A=7aa;"1; ==(+vhv+ > - .

If a nondimensional stress function ¢ is introduced , stress components can be given as
2
g=L(le 1 00
r\ar r p9*
9= 52 (2.4)

-0 (L %
VT \ 7 o6

where p=¢/o,L*, r=r/L, L is the characteristic length of the specimen .
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Let _
e=K,;r'1*2 g, (0)+K,r’2*2p,(9)

then, by Eq.(2.4), the stress takes the form:
op, =K r'1l G5, (@) +nrti2gy,,6)]

where B
0= 1+(Sl+2)(p,
g =(s,+2) (s, ¥ ),  U=1,2)
:EIOI= _(S[+ l )J);
7’=K2/K1 A32=52_‘51

and

~2
0'32

o,
af—"Kfr“laezl |:1+<2qr“2 = +r,2r“’2 =

El O'El

rr:'lzK{"‘r‘"'””c,r:"l"[l+11(n-—1)r“2
o7,

where

~_ 3 G ~a. V4372

O 4 Gy~ 04, Tro

- 3 o e e - - -

Gern= G (0,,— a9, ) (0,2~ 0p3) +37,4,7,4,

A SO R L

(Y} 3 0,2~ 0g2 Tré2

Substituting (2.6) into (2.3), we obtain

g, =K1’ (Ef’vl+'7rngf?v2 )

Sy =aKir (&, 4 iEy,,)

where

E?ivl=(1+")&ﬂvl+5ﬁvr‘;ppl ’ =1,2)

3V

J

)]

As r— 0, the quantity in parentheses of (2.8) is an infinitesimal one. Therefore

v

}

- 3 - - -
651=T¢7:1 (6,,— aq,)
~p ~p
Eg1T T &
~ 3 ~pog~
5!91—7021 Tr01
o,
~ 3~ 12 -~ o~ ~ -~
afz=—z-aﬁll[(n—1)-7 (6,,~09, )+ (6,,—04,) ]
€1
~p -
Epn= T &
o,
~r _ 3 ~u ey~ ~
6r92—70'e"l [(H_l) -&2 1'.79]_’-":702]
e

1

1992

(2.5)

*.6)

2.7)

2.8)

2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The displacement near the crack tip can be obtained by integration of Eq.(2.14). Neg

lecting the rigid displacement ., we get

upg=K;r’t*! (17;]+r,rA“2ii”ﬂ2)+aKl"r"”” (E‘;l+ nris2 1752)+

(2.15)
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where
ut =gl /(1+s,) }
;€9l=(2zfgl‘_;erl, )/S(

:tfl=£,pl /(I+ns1)
uy =QE%,~a?)/ns,
ut,=et, /(1 +s5+As,) }

u%,=(2%5,—u%, )/ (s, +As;)

ul,=el, /(1+ns,+As,)
iy =Q&l, " )/ (ns,+As,)

The strain compatibility equation is

1 8 1 ¢* 1 a8  _ 2 & -
r et BN S e T By 8T T Grag o) T0

Substituting (2.3) and (2.11) into (2.20) gives

aK [T A a Ky rnitt ATy K T K g TR [T =0

where
P o~ - -
M, =¢,,—ns (ns,+2)el,—2(ns;+1) ey,
M=%~ (ns,+As,) (ns+As,+2)80,~2(ns +As;+ 1) 8%,

Hi_—_—_Efrlﬂ_slzi).‘,s‘ (51+1)55|"2(31+1)Eer91

5= 55, (51t As et (s, Asy) (s, F Asy+ 1) 5,~2 (s, F Asy+ 1) 3%,

The stress free condition on the crack face requires
oolrs m)=t,4(r, n)=0

which leads to _ _,
o (m)=¢ (n)=0
(272(71):&2,(7‘!)=0
At §=0, we have _ .
¢ 0)=¢,(0)=0 }
@ (0)=¢,0)=0
The normalized conditions are : .
9, 0)=1 ¢, (0)=1

159,

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

2.22)

2.23)

(2.24)

(2.25)

(2.26)

Equations from (2.21) through (2.26) are the governing equations for the asymptotic fields .

Il . SOLUTION OF GOVERNING EQUATIONS

It is noted that As,>0, so that (2.21) first leads to
=0

(3.1)

therefore . the first-order field can be obtained by the solution of (3.1) with (2.24) and (2.25).

This problem has been solved by Rice and Rosengren 2l and Hutchinson

known to be

. The eigenvalue is
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-1 :
Sl-— n+1 (3-2)

In the following, the solution of the second-order field will be discussed .

First , assume
ns+As,~2<s;-2 (3.3)
or

0<As,< +i (3.4)

then the term a K7yr"*!*452721]8 corresponds to the contribution of the second term of the
asymptotic solution, which leads to the following equation :

;=0 (3.5)
Using (2.14), Eq.(3.5) can be transformed into a linear equation :
I,=D,¢{"+D;¢ 14+Ds¢{+Dyp;+Ds5¢,=0 (3.6)

where D, ~ Ds are functions of @, ~ ¢ {”, 5, and As, , which are given in the Appendix .
Since Eq.(3.6) is a linear ordinary equation of @, (0), we can first obtain the two particu-
lar solutions which satisfy the conditions

(i) @,(0)=1 ®,(0)=0 (3.7)
(i) $,0)=0 0 J0)=1 ~ (3.8)

respectively . Using the four-order Runge-Kutta method in which each integrating step length can
be adjusted automatically as expected, one can integrate Eq .(3.6) from the initial conditions of
(2.25) and (3.7) (or (3.8)). During the solving process, the numerical accuracy of each inte-
gration step can be controlled . In principle ., it is possible to get any high accuracy solutions.
But in practical calculating, the accuracy of each integration step is controlled within 107% . Af
ter obtaining the two particular solutions »,"’(6) and %’ (#), we can form the general solu-
tion of Eq.(3.6) as

@ 0)=C, o (0)+C, 05 (8) (3.9)
The satisfaction of boundary condition (2.24) yields
C[(P(l)(ﬂ)Jf'Cz(Pu)(?T.) 0 }

Clom)+C, P (r)=0

(3.10)

Eq .(3.10) has non-zero solution (C,, C,) if and only if its determinant is equal to zero .,
i.e.

A= gaz”(n)lpm (m)— tp(lz)) (n)qozz)(n) 0 (3.11)

A is obviously the function of As,. We can adjust the value of As, to make A equal to zero,
so as to get the solution of eigenfunction ¢, (6).
Our calculation shows that no value of As, exists within the range of (3.4) which makes A

of (3.11) vanish for 1<n<n'(n'~5). Therefore, let As,= +i (i.e. As;=0.5 and
As,=0.25), we turn to solve the following equation derived from Eq.(2.27).
oo+m;=0 (3.12)

where the assumption n=1/a K[! has been introduced .
Eq. (3.12) can be further written as:

D1¢£”/+D2¢'2”+Drs(}2/q'D4(}2/+D552——[6,1 S 86 sy (1), —2(,+1)655,]  (3.13)
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Table 1
Mode I
n 5 10
As)y 0.66158988 0.49810168
52 0.49492321 0.40719259

As the first step, we can solve a particular solution (}g‘” (6) of Eq.(3.13), which satisfies
the homogeneous initial conditions .

~

22 0)=0,0)=¢,0)=¢, (0)=0 (.14)
Combined with (3.9), the general solution of (3.13) becomes
(;2=C'l(j,‘21’+cz(’b;”+@‘2°’ (3.15)

where the unknown coefficients C; and C, can be determined by the boundary conditions :

Ciop M+ Cr ¢ (W)=~ ()
} (3.16)

C, @;”'(n)+C2 (};2)/(7r)= -0 ;‘”&)

Since the determinant A of (3.16) is not equal to zero, there exists the unique solu-
tion (C,, C,).

_The corresponding angular distributions of stress components 5,2, 0oy > ?,92 and ‘;fz {equal
10 oe ), /c;el ) are plotted in Fig.1. (The Poisson’s ratio v=0.3).

However , when n increases and is equel to or larger than n " (where n° & 5), there indeed
exist those As, which make A of (3.9) vanish within the range of (3.4). The calculated As,
are given in Table 1. The stresses derived from Eq.(3.9) are depicted in Fig.2.

0.0

—-0.2

|
|
—0.4 L____“_‘

Fig.1 Angular distribution of o5, ;92, 7,9 and ;92
for n=3 (the subscript 2 omitted)

0.0

—20

—25

Fig.2 Angular distribution of E,,_\ 592, ;792 and ;22
for (a) n=5.(b) n=10 (the subscript 2 omitted )
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IV. DETERMINATION OF k&,
From Eqgs. (2.6), we can easily find that the stresses take the following asymptotic

expansion :
_ r 1~ T 52~
G','j—k1<'7/ao ) aijl(0)+k2<7/'a—0 ) U,‘j2(9) (4-1)
As mentioned in section 2, r=rL, and J is the dimensional value of the J-integral,
J= Jf . The relation between k,, k; and X,, X, are

0

[T\
kl—(aoL) Kl

(I
k2—< GOL ) Kl

If the characteristic length is taken as L=J /g, , we have k,=K,, k,=K,. Eq.(4.1) can
be also written as

(4.2)

0',-j= klr"l(;,-“(B)+k2r’2gl.j2(0) (4'3)

1y -
kl—( T ) , 4.4)

!

here k; is given by

The coefficient k; depends only on material property while £, depends not only on the mate-
rial property, but also on the specimen geometry and the yielding level . Here k, is the same as
Q of O'Dowd and Shih "+ '), which is interpreted as a stress triaxiality parameter .

According to Li and Wang'” , the values of k, can be determined by matching the
two-term expansion with the full-field solution of Shih and German'®! and Needleman and
Tvergaad!” for Mode I plane strain crack . For Mode II plane strain crack problem, if n>n"
(where n "~ 5), the values of k, can be determined in the same way as that for Mode 1. Since
the numerical results concerned with Mode II have not been found . the detailed values of k,
remains to be determined .

On the other hand, if n<n", for example, n=3, k, is related to k, as afore-mentioned .

As

1

K,=nK = 4.5)
2 '1 1 ﬂ aKl”_l
therefore
K= —1 4.6)
aKln—Z
or
1
ky= —— 4.7)
2 akln—z

Table 2 gives some important values , by which the contribution of the second-order stress field
for n=3 can be calculated . Here, E and ¢, are set to 210x 10° MPa and 107 , respectively
and v=0.3, a=1. The value of /, can be obtained from Symington Shih and Ortiz!" .

The ratio of the second-order stress to the first-order stress takes the form :

n=1

f,-,(B)=Iqr(m)g,-jz(ﬂ)/c;,-“(ﬂ)l (48)

Over the range: 0<r<50, the maximum values of £,;(6) are given in Table 3.
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Table 2

Mode II plane strain crack . n=3

5y 52 179, (0) 7r92(0) c61(45°) cg2(45°) I k) ka2 n
-0.25 0.25 0.750 -0.171 —-0.893 0.301 0.95 5.696 | 0.176 0.0308
Table 3
Mode II
Eromax (0°) Egmax (45 )
0.0187 0.0276

From Table 3, it can be seen that the contribution of the second-order stress is very small
and can be ignored. In other words, the first-order stress field (i.e. the HRR solution) is a
good approach to the near-crack-tip field . This agrees completely with that in Bradford '),

V. CONCLUSIONS

For Mode II plane strain crack, if n<n" (where n'x~5), the second term of the
asymptotic expansion series is coupled with the first elastic strain term of the same series. It is
also indicated that the second-order stresses are too small as compared with the frist-order ones
and can be neglected . On the other hand . the amplitude &, for n>n " has no relation with k, ,
but depends on material properties, crack geometry and yieling level . As we are short of the
further numerical results, the value of k, is not determined yet. However, comparing the re-
sults with that of Li and Wanglg], we can find thatthe value of s, in Mode II is larger than
the corresponding one in Mode 1. That is to say. as the crack tip is approached , the second
term of the series becomes less important to the near-tip stress field for Mode II than that in
Mode I.
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APPENDIX
Using Eqs. (2.10). (2.13) and (2.14), the plastic strain can be written as

Ef2=A(Er2_362)+B;702 }
Erpﬂz=B (Erz—gﬂz)/2+ C?r92

where
A=0{[(n-1)8%+312?%)
B=Q{2(n-l)§r];r91§2}
C=Q{2[ n~1)7%,+21 2%}
§,,=% @, - 55,) g=S%, +12,
ntl n=7

Q=0 * /4)g I

1992

A.1)

(A.2)

(A .3)

Substituting (A . 1) into (2.22) and (3.12), we can obtain (3.12). In (3.12), the coefficients

D,(i=1~ 5) are given as follows .

D=4
Dy=24" —(ns1+ Asa+sy+2)B

Di=A4"—(ns 1 +An+ 252+ 3)B " ~[ns1+As2) (ns1+ Asy+2)
+ (524 2)s2] A+2(nsi+As2+1)(s2+1)C

Di=~G2+1)B"~2(s242)s24 ' +[ (ns1+Asy ) (ns1+As2+2) (2+1)
+ sy+As2+1)(52+2)2) B4+2(ns1+Asy+ 1) (s2+1)C7

Ds=~(5242)24 "+ (ns1i+As2) (ns 1+ As2+2) 52+ 2)524
+ (ns1+Asy+1)(s34+2)s2B

(A.4)



