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ABSTRACT: In this paper, the waves’ breaking in the lee waves is successfully
simulated by the atmospheric mesoscale numerical model with a second-order tur-
bulent closure. It is further proved that the turbulence in the wave-breaking region
plays the role of intense mixing for the average field, which leads to the trapping
of upward propagating waves and thus promotes the development of the downslope
wind. The turbulent structure in the wave-breaking region is discussed and the fol-
lowing conclusions are obtained: (1) In the wave-breaking region, the turbulent heat
fluxes transfer from inside to outside and the turbulent momentum fluxes transfer
from outside to inside. (2) In the wave-breaking region, the turbulent energy mainly
comes from the wind shear and the buoyancy promotes the turbulent development
only in part of the region. (3) In the upper part of the wave-breaking region, the
turbulent momentum fluxes behave as a counter-gradient transfer. (4) The turbulent
mixing in the wave-breaking region is non-local.
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1. INTRODUCTION

The theoretical researches on lee waves’ breaking have always been the focus of many
scholars both in the circles of fluid mechanics and of mountain meteorology. The turbu-
lence connected with lee waves’ breaking not only provides the feedback on the airflow over
mountain but is also the main cause leading to the computational instability in simulating
lee waves’ breaking. Therefore, in recent years, researchers have begun to study the role of
the turbulence in the wave-breaking region. Peltier & Clark!! pointed out for the first time
that the turbulent mixing in the lee waves’ breaking region makes the internal gravity waves
coming from the low levels reflect at the interface of the wave-breaking region and results in
the downslope windstorm. The famous Smith’s theoretical modell?! was founded just on the
assumption that the turbulence mixes fully in the wave-breaking region. Blumenl3! discussed
the influences of the turbulent mixing in the wave-breaking region on the airflow over moun-
tain. However, so far the researches have not gone further into the turbulent structure in
the wave-breaking region and the researches on the turbulence in the wave-breaking region
are not systematical. '

In the simulation of lee waves’ breaking, whether by the hydrostatic equilibrium or
non-hydrostatic equilibrium, all the turbulent diffusion terms have to be introduced in the
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model equations so as to avoid the computational instability caused by the turbulent pertur-
bation in the wave-breaking region. However, the simple parameterization to the turbulence
inevitably reveals the inadequacy of the above models in discribing the turbulent structure.
In view of the facts that the scheme of the higher-order turbulent closure has been well used
in the description of the turbulent structure in the atmospheric boundary layer and in the
successful discovery of the processes of the turbulent transfer in the atmospheric boundary
layer, etc. , in our mesoscale numerical model, the scheme of the second- order turbulent clo-
sure is adopted to systematically study the turbulence in lee waves’ breaking region. By this
modelling, the turbulent structure and behaviour in the wave-breaking region are analysed

and discussed.

II. MODEL
2.1 Basic Equations
It is assumed that the model atmosphere is dry and incompressible and satisfies the
hydrostatic equilibrium. The terrain coordinate transformation is

= Z—SG
S—5¢

z¥ =

in which S, the height of the model top, Sg, the terrain function and uniform in the y
direction. In the terrain coordinate system, the two-dimensional motion equations, potential-
temperature equation and continuity equation are

%:—0g—g+fv+g-z*§§-aaic+§_§SG-a(_a?) (2.1)
W g fut o= o ‘9(‘8?) (2.2)
T3 —gsG AT 23)
o 3 5 =0 24)
ol _ S-5¢ 9 (2.5)

in which,
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ug is the geostrophic wind in the x direction and the variables with the prime are turbulent

quantities. In order to effectively simulate the turbulent structure in the broken lee waves,
we close the above equations by the second-order moment turbulent equations. In the
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second-order moment equations, the pressure correlation terms, molecular viscous terms
and third-order correlation terms are expressed by Mellor & Yamada’s parameterization
scheme.!¥) In the terrain coordinate system, the second-order moment equations are
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8o, ap are respectively the potential-temperature and specific volume of the atmospheric ref-
erence state. agg is the value of o at the surface. 4, j, & run over 1, 2, 3. ({3,12) = (A1, A3l),
(A1, A2) = (Bil,Bal), Ay = Ao = A3 = 0.23l, (A, A2, By, By) = (0.78,0.78,15.0, 8.0),
C; = 0.056. [ is the mixing length: ‘

LiLy/(Li + L2)  86/8z>0 (2.9)

in which, )
Ly = [xz*S/(8 - 86)I/{1 + [xz*S/(S - Sa)l]}

L = 0334/ 2.(5 - Sc) /31

lpb=0.1 fo qz [S/(S - SG)]de*/fo [¢S/(8 — Sg))dz*
Eqgs.(2.1)—(2.8) therefore make up a group of closed basic equations.

2.2 Computation Scheme

(1) Grids structure

31 grid points are evenly spaced in the horizontal direction with Az = 5km. Grid
points are not evenly spaced in the vertical direction and there are 92 layers in all. The
positions of layer 1 to layer 50 are given in Table 1. Layer 51 to layer 92 are evenly spaced
with Az = 350m. The integration time interval is 12s.

Table 1 (Unit: m)

0.1 14.5 48.4 96.0 152.4 307.0 4724 6434 818.0 995.0

1173.8 1353.8 1534.8 1716.7 1899.2 2082.2 2265.8 2449.7 2634.0 2818. 6
3003.4 3188.5 3373.8 3559.3 3745.0 3930.8 4116.7 4303.8 4489.0 4675.3
4861.7 5048.2 5234.8 5421.5 5608.2 5795.0 5981.9 6168.9 6355.9 6543.0
6730.0 6917.3 7104.5 7291.8 7479.1 T7666.4 7853.8 8041.2 8228.7 8416.2
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(2) Difference scheme and calculation steps
For each variables’ distribution in the above grids, the stagger scheme is used. u, v, 0,11

are at the odd grid points of the vertical layers. The second-order variables uéu},w,ﬁ
and w are at the even grid points of the vertical layers. For the nonlinear advection terms
the explicit up-stream difference scheme is used. For the pressure correlation terms, viscous
terms and third-order correlation terms in Eqs.(2.6)-(2.8), the implicit scheme is used. In
order to simulate the internal gravity waves effectively, in the present calculation we adopt

the foreward- backward scheme proposed by Sun!®.

2.3 Initial, Boundary Conditions

(1) Bottom boundary conditions

The bottom boundary is assumed to be a smooth boundary and the heat source effect
of the surface is ignored!®!. The second-order variables ?u;., W, 6’2 are obtained from the
second-order moment equations’ calculation. The terms of the local variation with time,
advection terms and diffusion terms in (2.6)—(2.8) are assumed to be small and neglected in
the surface layer. Egs. (2.6)-(2.8) thus become a group of diagnostic equations. According to
the new values of average variables, the second-order variables’ values are obtained through
iteration.

(2) Top boundary conditions

At the top of the model, u, v and 88/3z are set as constants. The second-order variables
are all zero. Il is given according to the geostrophic balance relation. Between layer 70 and
layer 92, the horizontal smoothing effect gradually increases with the increasing height so
as to absorb the reflected waves at the model’s top!®l. The smoothing scheme is

¢ = (1 —b)g; + g(¢i—1 + ¢it1) (2.10)

where ¢; represents u,v or §. The smoothing coefficient b is
T -z
b= bpsin?(~ . —— 8
2 ZT — 2B
in which by = 0.5, 2 = 12km, 27 = 22 km. The above smoothing processes are done once
for each step.

(3) Lateral boundary conditions

At the lateral boundaries, u,v and 8 are given according to the radiation boundary
condition!”). And the part within distance 4 Az from the two lateral boundaries is taken
as sponge boundary layers. The horizontal smoothing gradually increases from inside to
outside in the sponge layers. The smoothing scheme still takes the form of (2.10). The
smoothing coefficient a is

.2, I — ZTin
a = apsin®(z - ———

) 2 Zout — Tin
where a,,, = 0.5, z,,; represents the two lateral boundaries, z;, expresses the positions at
the distance 4 Az from the lateral boundaries. The other variables’ first-order derivatives

are zero at the lateral boundaries.

(4) Initial conditions
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It is assumed that each variable is uniform in the hotizontal direction at the initial
time. The stratosphere is assumed to be the isothermal atmosphere. The stratification in
the troposphere and with the other initial values the model requires will be given in the
following concrete problems, respectively.

III. TEST OF MODEL

In order to verify that the above model can simulate the lee waves’ breaking and the
turbulent structure in the breaking region, we carry out the calculation for the Boulder
downslope windstorm observed in America on the 11th of January, 1972 by this model. As
Klemp & Lilly/®8] pointed out, the terrain is taken as in the bell shape and the mountain
height  h,, =2km, half width a=10km. The simulated and observed results are shown in
Figs.1(a, b, c) and 1(d, €) respectively. Comparing Figs.1(a, b) with Figs.1(d, e}, it can be
seen that they are basically identical.

In Fig.1(c), there is a high-value region for the turbulent kinetic energy, in which
the maximum turbulent kinetic energy is slightly less than that observed by the sounding
airplanel®l. The above facts basically prove that the model has the ability to simulate the
waves’ breaking and the turbulent structure in the wave-breaking region.

IV. NUMERICAL SIMULATION ON LEE WAVES’ BREAKING

The terrain is taken as the bell shape, i.e., Sg(z) = a®h.,/(a® + z?), and the mountain
height h,,=1km, half width a=10km. At the initial time, the horizontal speed u=10 ms™?!,
the increasing rate of the potential-temperature with height in the troposphere is assumed

o0
to be — = 0.0033 km~! and 6y = 289K. According to the above parameters, the Rossby

numberzRo = u/(f *a) >> 1, so the Coriolis force can be neglected; the reciprocal of the
mountain Frounde number Fr=! = N x h,,/u = 1.1. Under the above conditions and with
the integral time of the model increasing, the lee waves gradually develop. When the model is
integrated for 20hr, the closed vortex occurs over the lee slope(See Fig.2(a)); the downslope
wind at the low levels increases to 21.9ms ™! and the wind speed of the reversed airflow is
up to -0.32ms~! (See Fig.2(b)). Accordingly the isoentropes in the potential-temperature
field are nearly vertical (See Fig.2(c)) and in the field of the turbulent kinetic energy, there
is a high-value region in which the maximum is 2.7m?s~2 (See Fig.5(a)). It is thus clear
that the typical waves’ breaking appears in the lee waves. 1]

V. TURBULENT ROLE IN WAVE-BREAKING REGION

In order to discover the effects of the turbulence in the wave-breaking region on the
fluid field and potential-temperature field, we respectively compute the various terms in
the motion equation and potential-temperature equation (shown in Figs.3(a, b, ¢) and 4(a,
b)). From Figs.3(a, b, c) and 4(a, b), it is easily found that the turbulent mixing mainly
occurs in the wave-breaking region and in the region where the turbulent diffusion term is of
the same order of magnitude as the nonlinear advection term both in the motion equation
and potential-temperature equation. It is thus obvious that in the wave-breaking region,
the turbulence has a strong influence on the average field in the way of intense mixing.
However, in the whole two-dimensional computation field, the extrema of the turbulent
diffusion terms in the above intense turbulent mixing region are still less than the extrema
of the nonlinear advection in the motion equation and potential-temperature equation by one
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order of magnitude. Moreover, the extremum regions of the nonlinear advection term and
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pressure gradient in the motion eqution and the extremum region of the nonlinear advection
term in the potential-temperature equation are all situated below the wave-breaking region.
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Fig.1(d,e) The z-z structure of (d) isentropes and (e) winds observed across a portion of central

Colorado during the downslope wind storm on the 11 January 1972 (from Lilly (1978)).

These show that the average flow field’s and potential-temperature field’s evolution mainly
occurs below the wave-breaking region, which proves that the turbulent-mixing region caused
by the waves’ breaking traps the upward propagating waves.[!l When the integral time of the
model continually increases, the results show that the downslope wind trapped strengthens
further. Durran!®) gave a physical picture of the downslope wind’s development after the



Vol.9, No.3 Qi Ying et al.: Turbulence in Broken Lee Waves
5416 . ’ — 5416
G145 » = @ # 2 & £ 7 o LR A IO 5145
48_’55-.--- PR .:l.-....,.,- Jr
LA A 2R A S LA N
4604 Vot o, 4604
I I [P
BBL pawamoaog 4333
406329-..;-..-.-.‘\‘lll:..,._ 4067
TGP > et -.‘\,:II:,... 379,
K I Y - e > L I
620}, . N . 3620 -G.310933
3250»:::::..‘\\\ CE e 325¢ ) !
- - Y
oo ) I 2o
52915.-;9--;99-9‘\\‘¢aitr‘; :~1.
%ZUBboooﬁoooé‘\\\vli"" & 2708
§2437 o*aooooﬁ‘\\\.zllll: £2437
2166 »‘QQO*Q-’-‘\\\‘JIIIII o166
R R RS SR R EEER
1895 ) 1895
EEEEE LR N \‘944111
IGES»...--.-04‘\\\~§+-’444 1625
13541 o = o » @ + o 4 » ‘§\\-9—)-’-?3-0 1354
jogsf = 2 oo e s a2 ‘\\\9—)9-—’—7.@- lC-83'_
8Lz b e e s s e s \‘\)_).).).’.; .
s s 4 e a0 o b X 2o g
541 N 541
b e a0 4 s . \%_)_)9_)—,
270 53PS > 770
[ 4 al
— 50 —40 —30 10 20 30 : —50 —40 —3; =20 —10 0 10 20 30 40 wm
MAX =m0 Integral hour= 20hr MAX =21.71 MIN= — 0.410533 INTER=1.1c1045
v(km) Integral hcurs= obr
xtkm}
T 5416
5145|

Height(m)

82 8 g

= oty

2 8 8
%

[ )

Height(m)
[E IS
2R 88 9 8 &%
S s ow R @ ow o
- -
T

210 Fig.2(c)

MAX =34 (17782

Q
=5) —40 —30-20 -0 Q 1020 30 40
MIN =289, 110764 INTER=0.75035

Integral hcur=2nr

rtkmi

4.458% 1‘«)*“

—57 —40-30 —20—10 ¢ 10 20 30 40 50
MAX = 4458 % 107 MIN=-0,022314 INTER=1 338x 10"

(km) Integral hour= 20hr

Fig.2 The distributions of average variables when the integral time = 20hr (a) Velocity vectors
(u; +wi) (b) Horizontal speeds (m/s) (c) Potential-temperatures (K)
Fig.3 The distribution of the various terms in the motion equation when the integral time = 20hr

(a) Nonlinear advection term

217



218

Height(m)

1leight(m)

ACTA MECHANICA SINICA

U
\

5145

4875

4604
4333

s062]

3791
3520
3250
2079
2708
2437
2166
1895
1625
1354
1083
812
541
270

0
—5) —40 —30—20 —10 0

J
20 30 40 N0
INTER=1.982x 10"
Integral hour=20hr

10

MAX =¢.022325 MIN = ~532%10~°

x{km)
v T AN
Ly I b hY /\ \
L S S \/
|1 VoA
. , i ] N =
N\
;s ! '
bt [ -
o p ! f~2.8x 107 i
' v

4.02x107%

MAX=402%107" MIN= —1.748% 1072

-5 —40 ~30—20-10 0 20 30 4¢ 50
INTER=1.07x157¢
Integral hour=20hr

x(km)

Height(m)

Height(m)

=

—40 —30—20—100
MAX=713x10"*

10

MIN=-793x ("4

x(km)

NPT

T.13x107¢

\
— 7.99 x 1074

J
20 40 50

30

INTER=7.5 x 10~

Integral hour=2zo0hr

1354
1083
812
541
270

MAX=37x 1073

Fig.3 (b)Pressure term (c¢) Turbulent diffusion term

V)
—50 —40 —30—20 —100

10
MIN=—4 2x107*

rlkm)

Iy II\
@M 1673

20
INTER= 3 x 10-
Integral hour=20hr

30 40 50

1993

Fig.4 The distribution of the various terms in the potential-temperature equation when the integral

time = 20hr (a) Nonlinear advection term (b) Turbulent diffusion term



Vol.9, No.3 Qi Ying et al.: Turbulence in Broken Lee Waves 219

waves break, and the discussion will not be given in this paper.

VI. TURBULENT STRUCTURE IN WAVE-BREAKING REGION

Figs.5(a, b, c, d) are the distribution of the various turbulent quantities at the integral
time =20hr. It can be known from Fig.5(a) that the wave-breaking region corresponds to
that with extremely great turbulent kinetic energy. Comparing Fig.5{(b) with Fig.5(a), it
can be seen that in the lower part of the extremum region of the turbulent energy, the heat
fluxes (6w’) are negative, i.e., the heat is transferred downwards by the turbulence and in the
upper part of the extremum region of the turbulent energy , the heat fluxes are positive, i.e.,
the heat is transferred upwards by the turbulence. Therefore, the turbulent heat fluxes in
the wave-breaking region transfer from inside to outside and the downward transfer is much
greater than the upward transfer. Comparing Fig.5(c) with Fig.5(b), it can be seen that
the distribution of the turbulent momentum fluxes (u'w’) is exactly opposite to that of the
heat fluxes and the momentum is postitive in the lower part of the extremum region of the
turbulent energy and negative only in a small area of the upper part of the extremum region.
This distribution law shows that in the wave-breaking region, the turbulent momentum
fluxes transfer from outside to inside, but the upward momentum transferred is greater than
downward one by one order of magnitude, which is due to the strong downslope wind at the
low levels. Fig.5(d) shows the distribution of 2. In Fig.5(d) and Fig.5(a), the extremely
great value region of 62 corresponds to that of the turbulent kinetic energy.

In order to further analyse the turbulent structure in the wave-breaking region, we
compute simultaneously various terms in the equation of the turbulent kinetic energy: shear
term, buoyancy term, diffusion term and molecular dissipation term (shown in Figs.6(a,
b, ¢, d)). By comparing Fig.6(b) with Fig.6(a), it can be seen that there are positive
values not only in Fig.6(a) but also in Fig.6(b). Therefore, in the wave-breaking region
the buoyancy term promotes the turbulent development besides the shear term which is
the term to generate the turbulent energy. However, the buoyancy term is less than the
shear term by one order of magnitude and the negative extremum area of the buoyancy
term corrospands to the positive extremum area of the shear term. Therefore the buoyancy
promotes the turbulent development only in the upper part of the wave-breaking region
and the turbulence in the wave-breaking region mainly comes from the wind shear. This
conclusion also proves that the lee waves’ breaking is caused by the Kelvin- Helmholtz
instability.

It is worth noticing that in the upper part of the wave-breaking region, the shear term
is negative, i.e., —u/w'0u/8z < 0. This shows that the turbulent momentum fluxes behave
as a counter- gradient transfer. The region of the counter-gradient transfer is exactly in the
region of positive buoyancy term. It can be infered, similar to the analysis of the modern
convective boundary layer theory, that the counter-gradient phenomenon is the result that
the turbulence in the lower part is entrained into the upper part of the wave-breaking region.

By comparing Fig.6(d) with Fig.6(c), it can be seen that the diffusion term and the
dissipation term are of about the same order of magnitude in the turbulent energy equation.
It is found from the similar computations that the diffusion term and the pressure correlation
term are also of about the same order of magnitude, respectively in the equations of uww’ and
6'w’. Therefore in the wave-breaking region, the turbulent momentum fluxes, heat fluxes,
turbulent energy etc. at a certain position relate not only to the local quantities such as the
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wind shear, potential-temperature gradient, etc. but also to the state of the whole wave-
breaking region. The turbulent mixing is related not only to microscale eddies but also to
macroscale eddies. It is thus ebvious that the turbulent mixing in the wave-breaking region
is non-local.

VII. CONCLUSIONS

In this paper, a two-dimensional atmospheric mesoscale numerical model with a higher-
order turbulent closure is developed. By this model, Boulder downslope windstorm in Amer-
ica on the 11th of January, 1972 is successfully reproduced. The waves’ breaking in the lee
waves is well simulated theoretically. It is further proved that the turbulence in the wave-
breaking region plays the role of intense mixing for the average field, which leads to the
trapping of the upward propagating waves and the development of the downslope wind.
The turbulent structure in the wave-breaking region is discussed and the following conclu-
sions are drawn:

1. In the wave-breaking region, the turbulent heat fluxes transfer from inside to outside
and the turbulent momentum fluxes transfer from outside to inside.

2. In the wave-breaking region, the turbulent energy mainly comes from the wind shear
and the buoyancy promotes the turbulent development only in part of the region.

3. In the upper part of the wave-breaking region, the turbulent momentum fluxes behave
as a counter-gradient transfer.

4. The turbulent mixing in the wave-breaking region is non- local.
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