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ABSTRACT: By means of an asymptotic expansion method of a regular series,
an exact higher-order analysis has been carried out for the near-tip fields of an in-
terfacial crack between two different elastic-plastic materials. The condition of plane
strain is invoked. Two group of solutions have been obtained for the crack surface
conditions: (1) traction free and (2) frictionless contact, respectively. It is found that
along the interface ahead of crack tip the stress fields are co-order continuous while
the displacement fields are cross-order continuous. The zone of dominance of the
asymptotic solutions has been estimated.
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I. INTRODUCTION

Up to now, the elastic problems in interface fracture mechanics have been widely in-
vestigated. A detailed review of its advances can be found in Ruhle et al.l!]. By comparison,
less work has been done for the elastic-plastic problems.

Recently Shih and Asarol>~% have made some numerical finite element analyses of the
near-tip fields for elastic-plastic interfacial crack, and found that the asymptotic behaviors
of the near-tip fields directly depend on the lower hardening material. As r approaches zero,
the behaviors of interfacial crack are much more similar to those of the crack lying along
the interface between a plastic solid and rigid substrate. They finally obtained a nearly
separable form of near-tip fields of the HRR type.

Wang!®! presented an exact asymptotic analysis for a crack lying on the interface be-
tween an elastic-plastic material and an elastic material. A separable singular stress field
of the HRR type has been found. These solutions only correspond to the certain mixity
parameter M?. Some other advances in this field can be found in Gao and Loul”.

Based on the work of Wangl®!, Xia and Wang/® not only extensively analyzed the
interfacial crack problem with the traction vanishing on crack surfaces and obtained the
full-continuous, separable form of solutions of the HRR type, but also obtained the sim-
ilar solutions with the frictionless contact of crack surfaces. Furthermore, for any given
mixity parameter value MP, the solution of the HRR type has been found with the weak
discontinuity of the third-order derivative.
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As for the interfacial crack problem with the frictionless contact of the crack surfaces,
Xia and Wang(® have also made a high-order asymptotic analysis for its near tip fields.
Aravas and Sharmal'® also got some results in this aspect.

In this paper an asymptotic expansion method of regular series was introduced to
implement the high-order analysis of the near-tip fields for the interfacial crack in elastic-
plastic power-law hardening bimaterials. Two different solutions in separable form have been
obtained. Among them, one corresponds to the traction free condition of the crack surfaces,
and another one corresponds to the frictionless contact condition of the crack surfaces. Qur
results indicated that along the interface ahead of crack tip, the stress fields are co-order
continuous while the displacement fields are cross-order continuous.

Using the high-order asymptotic solutions abtained here, the rational zone has been
estimated in which the solutions in separable form of asymptotic series dominate.

II. BASIC EQUATIONS

Fig.1 shows an interfacial crack between two mate-
rials. These two materials are all elastic-plastic power-
law hardening materials but with different hardening
properties. Under the plane strain condition their con-
stitutive relations can be written as

material |

¥

1+v T 3_,0c., 1P
€py =~ By T 0y 500 + 5(—) 1_21 (2.1)

material 2 .

where 0, = min{o,1, 0,2} is the smaller one of the
yield stresses of two materials. F and v are the Young’s
modulus and Poisson’s ratio, respectively. n is hard-

ening exponent; & can be expressed by the hardening Fig.1 Interface crack tip region

coefficient ¢, i.e. & = a;1(0,/0,1)™ ! for upper part, and @ = a(0,/0,2)"2"! for lower
part. All properties mentioned abvove will take different values for upper material 1 and
lower material 2, respectively. i.e. (Ey,v1,n1,&;) and (Ez, v, ng, &2).

In (2.1),

Opp = 0r +0g Pgy =0py — Eapp‘sﬁv

1
where ' = —(1+ v)v + (5 —v)? in the asymptotic sense; o, is the effective stress. For our

high-order analysis it is accurate enough to write the effective stress in the following form

3
o, = \/—(0’.,- —0g)? + 374, (2.2)

Note that Greek letters are used for subscript indices running over 1, 2.
The stresses can be expressed in terms of the stress functions

(2,129
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where ¢ = ¢/L? is the nondimensional stress function, r = 7/L is the nondimensional radial
coordinate. And L is the characteristic length of crack.
Let

¢ = 0. Kr?¢(p,0) (2.4)
we have .
or = 0, K(+ 2¢ + ¥/'Q)
o9 = 0, K(2¢ + 3¢'Q + "0 + 'QQ) (2.5)
Tro = ToK [~ (¥ + ¥'Q)]

a
where () = 27(), () = g5
dp
Suppose
oG
Q=Y cip* =cip+cap® +c3p’ + .. (2.7)
k=1
and _
1
Y= F.(0)+ Fo(0) + pR(0) + 1*Fa(6) + . (28)
Therefore, stresses can be written as
1. . .
Ipy = UOK{;Uﬁ% +0pyo + Gy, o0} (2.9)
where

Gry = Fu + (2 - &1)F.

Gp, = (2-c1)(1 —c1)F (2.10a)
Fro. = —(1 — c)F.

Org :F* +2Fy — e F,

Goo = 2Fp + (c1 — 3)coFL (2.10b)
7.:1'90 = _FO + C2F*

5'-,-1 = FI + (2 + Cl)Fl — c3F,

6o, = (2+c1)(1+c1)Fi — 3esFl (2.10c)
7-7‘91 = —(1 + CI)FI + C3F*

Substituting (2.9) into (2.2) yields an expression for the effective stress

2
Oe 1 . ~ - .
(—> = Kz;z-[o-c?. + (paeo + pzae1 + pao'ez + )] (211)

2]
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where

3
Ue. = Z(&r' - &0*)2 + 37’:39'

3 - ~ . . - ~
Oep = 2[1(0-1'* - 00.)(0ru - 090) + 3779* T.,.go}

(2.12)

3,. . - 3. . . - .-
Oey = Z(U'f‘o - 090)2 + 37—1?00 + 2[Z(UT~ - 0'9_)(0'“ - 091) + 37’1'9.7'7'911

- 3, . . . . ..
Oep = 2[1(07‘. - 09~)(UT2 - 092) + 37—7‘9* Tré

3,. - - N . -
+Z(UT0 - 090)(07'1 - 091) + 37?90Tr91] J

As r — 0, the quantity in parentheses is much smaller than the first term in (2.11), so
that

o, n—1 Kn-l
(Z—E) = F(A*—}—Aop%—Alpz%—...) (2.13)
where

A, = (62)n-D)/2

n—1 5 (n-3)/25
AO = 2 (Ue.) er (214)

n—1)(n—-3) . - n—1,_ _ -
Ay = ( )8( )(o_g‘)(n—s)/za_go + (Ug*)(n 3)/20.‘31

From (2.1), we can get the strains

ooK . . N V., GogK™ - -
€ay = E—p(ef,% +PES + PRES )+ B (&5, +peh + P85 +..) (215

where
€fyi = 1+ V)(Erp.yi — 848 ;) (i=%,0,1) (2.16)
ntl
3727 _a-
&, =& =T (6. — bs.)
s 4 (2.17a)
~ T a1,
530. = 4 g 7 2%,
Efo = _égo = Al(&f‘o - 690) + AZ%‘:’OD
, A, (2.17b)

€160 = 5 (Tro = T8o) + AsTrg

éfl = _501 = Al(&"'l - 691) + AZ%T‘él + By
. Az _ _ _ (2.170)
€rp, = 7(0r1 — Gg,) + AsTrg, + B .
where g and coefficients Ay, Az, A3, By, B are given in Appendix A.
The strain compatibility equation is

1 82 1 82 18 2 82

T oz (1) F T et T g T 7 grap U ere) =0 (2.18)

Substituting (2.15) into (2.18), we can obtain the governing equations of all orders
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(1) pin: & —nei(ner —2)88 - 2(1 —ney)éry, =0 (2.19)
(2) pnl_li £ro = (n = Derl(n = 1)es - 207 — 2[1 — (n = Lea]érgo

= n[(2n — 1)cica — 2¢,)E2 — 27’1,625:.79, (2.20)
(6 5 Ea—(n=2ail(n - e — A ~ 21~ (= Delély

= {2nc3[(n — 1)c; — 1] + nc3(n — 1)}éP.

+{(n — 1)[e1(2n — 3) — 2]caé?y — 2n63559_ — 2(n — 1)caélg, (2.21)

In addition, there is a term which is related with the elasticity of the material:

(4) ;}: Er 48, — el — )&, —2(1 - c1)érg. (2.22)

1
(2.22) will be added to the right side of the governing equation of the order - after
divided by aK"~1.

The boundary conditions have two different cases:
(1) Traction free condition on the crack face

06lgesn =0  Trolgoyy =0 (2.23)
(2) Frictionless contact condition on the crack face
Ul — |y, =0
Tely = oy, =0 (224)
UB|9=1r = U9‘9=—w <0
The traction continuity on interface requires
of —0, =0 Th—T1,=0 9=0 (2.25)

And the displacement continuity on interface requires

Erlg_a—Erlg__ =20
‘9_+0 |9_ 0 (2.26)

(Er — 2,9 — 295;9)[0:% —(&r — 269 — 295;9)'9:_0 =0

Eqs.(2.19)-(2.26) comprise the governing equations for the asymptotic expansion.

IIT. SOLUTION OF GOVERNING EQUATIONS

It is noted that, our analysing method is only suitable to the cases where both n; and
ny take integer values. In what follows a interfacial crack problem with n; = 5,n, = 3 will
be investigated in detail.

For the first-order near-tip field, its governing equation is (2.19), in which n = n
within 0 < 8 < 7 while n = ny in 0 < § < 7. The corresponding boundary condition on
crack faces can be expressed by the stress function as

(1) Traction free

F.(+7) = Fu(£m) =0 (3.1a)
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(2) Frictionless contact

Fo(tm)=F.(m)=0  Fur)=F.(-7)<0 (3.1b)
The traction continuity on the interface
FH0) = F[(0) FF(0) = F7(0) (3.2)
The displacement continuity on the interface

=P

€r.

P v
o =0 [En, =21 —mic1)él I, o =0 (3.3)

The solution of the first-order near-tip fields has been obtained by Xia and Wang/®!

using the normalization max{&,., } = 1, shown in Fig.2(a) and Fig.3(a). The results proved

that
with

Normalized stresses

the singular exponent c; is determined by the lower hardening material (i.e. the material
larger n), i.e. ¢1 =1/(ny +1).
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Fig.2 Traction free condition on the crack faces n; = 5,n2 = 3, M? = 0.937284
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Fig.3 Frictionless contact condition on the crack faces ny = 5,n2 = 3, M? = —0.515412
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Fig.2{a) and Fig.3(a) correspond to the traction free condition and frictionless con-
tact condition on the crack faces, respectively. Their mixity parameters are M7, =
0.937284 and M?%, ... = —0.515412. (The mixity parameter is defined by Shih[*3l: MP =
2 (&9(0)

—tg — .
T 7,9(0)

The analogous analysis can be carried out for the second-order near-tip fields. Its
governing equation is (2.20). Here n = n; in the upper part and n = ny in the lower part.

The boundary conditions on the crack faces and the traction continuity conditions on
the interface are the same as (3.1a), (3.1b) and (3.2) except that F, is replaced by Fp.

The second-order displacement continuity on the interface is

550\9:+0 =0 (3.4)
{ro — 2[1 = (n1 — 1)c16%g + 2n1core. } omi0 =0

Through a simple analysis, we find that, the solutions of the second-order fields are
cz(nq + 1) times as large as those of the first order fields, i.e.

5’57‘ = Cz(nl + 1)5’g7. (35)
However, the situation becomes relatively complicated for the third-order near-tip
fields. Using (2.21) and (2.22) directly yields the governing equation

DiF1 + DoFy + D3Fy + DyFy + DsFy = c3D, 0<h<

1 (3.6)
W‘Db T<@ S 0

DyFy + DoFy + DyFy + DyFy + DsFy = 3D, —
where the coefficients D; to D5, D, and D, are the functions of F, and its corresponding
derivatives, given in Appendix A.

The boundary conditions of the third-order fields are
(1) Traction free

F] (iﬂ') =0
| (3.7)
Fl(j:ﬂ') =0
(2) Frictionless contact
Fi(£7) =0 )
: Fl(ﬂ') = Fl(—ﬂ') S 0
a K™ (.p . _ - 3.8
E, { m — 2[1 = (- 2)c1]5’r’91 +2(ny — l)czsfeo + 271163559’} ’9:# (3.8)
S KT
=2 (& —2eh, + 2n2¢180 1[o__,
2 /
The traction continuity on the interface
F{(0) = F{ (0) } (3.9)
F{(0) = F; (0)
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The displacement continuity on the interface

ak™ @K™ \
El (61'1)|9:+0 - E—2(€£*) —_0
élenl %2 - - -~
E, {En —2[1 — (n1 — 2)e1]ély 4 2(n1 — L)ezély + 2n1c:36f9*} ‘9=+0 (3.10)
&ZKHZ P - ’ ~
= €, —28%, +2nyc€7
E2 [ M ré., 2¢1 7"0*]|9=—0 )

(3.10) can be further expressed in terms of the stress functions as

a1 B (0) + agFi(0) + ag Fy (0) = 221 Kma=miqy 4 cyag ]
a1 L2 B (3.10)
i (0) + baFi (0) + by (0) + buFy (0) = SEEK™ aby + coby f
2

where the coeflicients a; to as and b, td be are only associated with the first-order fields.
Their expressions are given in Appendix A.
Similarly, the third equation of (3.8) can be written as

ax By

B Fy (1) + by () + BBy () -+ b, Fy () = K™ ™Mb 4 cybl (3.11)

Qi bz

where b} to b can be found in Appendix A. Analogous to the method used by Xia and
Wang!'¥!, we may solve (3.6)—(3.11) to get the third-order stress field

. b W 1 _(2) . (3)
O3y = QIEQK T %3’}’1 + 2Kn2 loﬂ’h + C30ﬂ71 (312)
where 0'( ) bears a relationship with the first-order fields
~(3) _ (ng +1) .
Og = 5 b (3.13)

[7/(;7)1 and &;27)1 are shown as in Fig.2(b), (c) and Fig.3(b), (c). Here Figs.2 correspond to the
case when crack faces open freely while Figs.3 the case when crack faces contact each other

without friction.

IV. DISCUSSION

Sum up the computation and analyses of above section, we can obtain the stress field
around the interfacial crack tip

+1 _
O3~ _Ooh{[ +C2(7L1+1)+C3(127)p]0‘57*
aky n1 5(1) 1 _(2)
+p[a1E2K Tpm W%J} (4.1)

where eigenvalue ¢; has been determined through the solution of the first-order fields, i.e.

c1 =1/(ny+1). cp and c; are two arbitrary coefficients. Their values can be decided by the

comparison with the numerical full-field solutions of the finite element computations.
Letting both ¢, and c3 equal to zero will lead to a simple form of the stress field
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1. az By (1) I @
— g K { - Kmmm S -
7= {paﬁ”‘ e [dlEz Tom T Gakrma1 o
e e - e ) 1 -@
~ oK {(;)n1+ o N [d1E2K TMog, + azKﬂ-z—laﬁ’h (4.2)

Provided that the elastic moduli of two interface materials are equal to each other, i.e.
E, = E;; furthermore, 11 = v = 0.3; 01 = az = 0.1; but 0,] # 0,2; n1 = 5,n2 = 3; we have

o nz—l o n241
a; =a; =01 &2:a2< "1) :0.1< "1) (4.3)

To2 002

According to Shih and Asarol®!| the amplitude K is

J 1/(n1+1)
K () ws

A10,E0
Under the small yielding condition!?]
J =AK.K, ’ (4.5)

where K, is the complex stress intensity factor, and

1-v2 1-02
= Ly -2 h?m 4.
A ( E, - ) /(2 cos €) (4.6)

"As mentioned above, we have assumed that E; = F»,v; = vy. Therefore € = 0. It leads to

1—v?
A= 4.
- (46)
If the characteristic length is further taken to be L = (K.K.)/cZ, then
1 — 2 ﬁ
K= ( d ) o144 (4.7)
a
Moreover,
- 5, E 1 (00 1 10 (0.,2\?
e &) I (4.8)
a Fa K2 \ o, Gp K21 K2 \ o,

Therefore, (4.2) can be written as

1)/° 1 (o2)’ o\ ) (2)
_ ~ o 1/6 o ~(1 ~
o6y = Lado { (;) %ot 142 (%1) i {(%2) o 10%7‘] } (.9)

In what follows, two different cases will be considered: (1) g42/001 = 2; (2) 002/001 = 5.
The angular distributions of ag,/(1.440¢/r¢) for above two cases are shown by Fig.4
and Fig.5, respectively. Here Fig.4(a) and Fig.5(a) correspond to r = 10~8 while Fig.4(b)
and Fig.5(b) to r = 1075, Moreover, Fig.6(a), (b) present the radial distributions of
08,/(1.440,7'/8) for two cases. They indicate that the leading singular term of the stress
solution (corresponding to the first term of (4.9)) will dominate within the range of r < 1075,
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Fig.4 Angular distribution of the stresses for the traction free condition
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Fig.5 Angular distribution of the stresses for the traction free condition

on the crack faces (oo2/001 = 5)

Based on the principle that the second term has to be smaller than the leading singular

term (-)'/855,, in (4.8), we can estimate the rational existing zone of the stress solution
T
(4.9)

(1) r<257x107° for 0o2/001 =2 (4.10)

(2) r<1x10°® for Go2/001 =5 (4.11)
It can be found that the extent of the rational zone will change for different values
of the ratio g,2/0,1. But generally speaking, the separable form of near-tip fields for the

interfacial crack discussed here only dominate within a very small range (r < 107¢). This
result coincides with that of Shih'1.

1994
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Compared with the above discussed case (i.e. the crack faces open freely), the range
in which the asymptotic solutions dominate will be much larger for the frictionless contact
condition on the crack faces. This feature can be seen clearly in Fig.3.

T VTG Rt
”ﬂ»/(ﬂoK“’l‘l LR Y )

-2 e -8 -5 -3 -1z - -8 -€~5
loglri KR/ a$)] log{r: KK:0%)]

@l goeroer =2 (b) goz/001=5

Fig.6 Radial distribution of the stresses for the traction free condition
on the crack faces (8 = 0°, ny =5, ny = 3)

V. CONCLUSIONS

In this paper an asymptotic expanding method of a regular series is introduced to
investigate the interfacial crack in two different elastic power-law hardening materials. An
exactly higher-order analysis is carried out for its near-tip stress strain fields. The solutions
including first three terms are derived for asymptotic series of the stress field, with two
different boundary conditions on the crack faces being considered: (1) traction free and (2)
frictionless contact.

Our analyses show that along the interface ahead of the crack tip the stress fields of
the upper part will keep co-order continuous with those of the lower part. But for the
displacement fields, the first-, the second-order fields of the upper part are equal to zero on
the interface; the third-order field of the upper part will be continuous with the first-order
one of the lower part. These co-order continuity of the stress field and cross-order continuity
of the displacement field are important features of the near-tip stress strain fields of the
interfacial crack in two dissimilar elastic-plastic materials.

According to our investigations, the solutions of the fully continuous, first-order stress
field can be only obtained for two specific mixity parameter M?. For n; = 5,ns = 3, they
are MP . = 0.937284, M}, ... = —0.515412.

The second-order stress field is simply equal to ca(n; + 1) times the first-order stress
field, i.e. &34, = ca(ni + 1)dp4.. For the third-order stress field, its solution is composed of
three parts (see (3.12)).

In the case of n; = 5,ny = 3, the rational existing range of the asymptotic series
solutions is estimated for the traction free condition on the crack faces. It is shown that if
Go2/Toy =2, 7 < 2.57x 1078 and if 02/0, =5, 7 < 1 x 1076,
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APPENDIX A
Note that n = n; for upper part while n = ny for lower part.

8 = A1(Grg — Goo) + A2ty

=P Az

€roy = 7(~To — G9,) + AsTre,

& = A1(&r, — Go,) + A2Tre, + Ba

Ay, - .
= TZ_(O'T1 — Go,) + AsTrg, + B2
where
glnty/z N )
4= I - 1) + )
3(n+t1)/2 — o
2 —4—9( 3)/2[2(” - 1)3,, 7ra.]
gedniz .
Az = — 9 " 2(n - 1)775, + )]
- =2 -2 - 1 . -
9=58r, T Tr. Sy = §(C’n — G6.)
3(n—1,_5\(n—3)/2,3,. - . -
Br= S {T50 (52) " (56 — 300)" + 37,
-1, n— L. n—1)(n—-3) ,. n—~5)/2 _o .
# I (02)  ugs + P (52 ) 05,
3 -1 ,_ n— 3,. - 2 e
B = 5 { "5 (82) " 5 (Gro — 5w0)? + 87, s,
2 2 4
-1, n— L. - 1)(n—-3) ,. n—5)/2 .o .
P 2L (62) Y g, + BT U) (2 yon 5,
In (3.6)
Dy = A

. 1
Dy =2A, — (1 + Cl)Az — ECbAZ
Dy = A, — 2(1 + Cl)Az — (2 =+ 61)61A1 — Ca A1 — Cb[EAz — (1 + Cl)As]

Dy = —[(1 + CI)AZ +2(2+ Cl)ClAl] + Ca_(l +ec1)Az + Cb[(]. + 61)A3 + 5(2 + Cl)ClAZ]

. 1 .
Ds=—(2+c1)e1Ar + ca(2 + 1)1 AL + ECb(2 +c1)e1de

}
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where
In (3.10°)

\

1= A

Xia & Wang: Higher-Order Analysis of Near-Tip Fields
D, = 2n[(n — 1)er — 1]EF, — 2né%,

—{2(A1F,.. =+ ‘2A1F* + AIF*) + AQF* + 2A2F* + AzF*}

Fea(241Fu + A2FL) + cy(A2Fu + A2 Eu + AsFu + AsF)

Db = \‘_:::“ + Cl\‘_:f.)_ — Cl(l — C])E-'gir — 2(1 — Cl)éigﬁ
ca = (n—2c1[(n—2)ey — 2], ce =2[1—(n—2)c]

ar = A1|9:+0

az = —(1+ CI)A2\9:+0

as = —(2 + C1)61A1|9:+0

— £P
ag4 = &, 9=—_0

(2F. AL+ FuAs)|,_ o

2
«
I

o=-+0

> = ~[(14 c1)A2 + <1 —(n1 - 2)61>A2 - A1]|9=+0
3= {2+ a)ad +(1+ 1) Az — 21 — (m1 — 2)ea](1 + CJ)ASH
4= —{(2+e1)erAr — [1 - (n1 - 2)a](2 + cl)c1}|9=+0

— [gP _ogP =P
by = {&7, ~ 280, + 2n261€ra,}|

9=—0

be = {2m1%_ + AP + (241 + Az — 2[1 — nq — 2)c1)As) F.

+<2A1 —- [1 — (TL1 — 2)61]A2>A2F*}

=+0

9=+0
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(A.6)

(A7)

(A.8)

The expressions of b] to bg in (3.11) are the same as (A.8) except that values taken at § = +0 and
—0 should be taken at 8 = 7 and —m, respectively.



