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Abstract

This paper deals with the motion of vidcous liquid column with finite
length and two free surfaces in a vertical straight capillary tube. It is
assumcd that fluid is Newtonian. Linearizing the boundary conditions,
analytic expressions in the form of infinite series have been obtained
for velocity, piressure and free surface at low Reynelds number. The
numerical calculation is carried out for a set of cylinder’s length of
water and blood. It has been revealed that there are considerable cir-
culating currents at the upper and lower meniscuses. Its maximum ve-
locity is about 57% of the average velocity of the mainstream. Iner-
tial effect is also studied in this paper. Using the time-dependent method
in finite difference techniques, numerical solution of the correspondiug
nonlinear equation at Re<<24.5 is computed. Comparing it with analytic
exact solution at low Reynolds number shows that inertial effect is
negligible provided Re<({24.5.

I. Governing Equations and Boundary Conditions

The circles of medical science follow the mechanism of thrombus formation,

which is related to many complicated physiologi-
cal phenomena and hydrodynamic characteristics
with great interest, In 1958, Chandler devised
an apparatus of rotating circular loop. The loop
made of plastic tube was rotated at a certain
angular speed. A sample of whole blood flows
relatively to the tube in the lower half loop.
After a few minutes of rotation, an artificial
thrombus was formed in vitro (see Fig, 1). Re-
cently, M. Q. Qian developed an apparatus which Fig, 1
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we call rotating belt-loop. A loop of plastic tube was set on two pulleys like a
belt, This lobp was driven by a rotating pulley and a sample of whole blood flows
relatively to the tube in the straight segment of the loop. After a few minutes
of rotation, thrombus was also- found to have formed (Fig. 1). This paper studies
the motion of viscous liquid column with finite length in a vertical straight
capillary tube. By means of revealing the flow characteristics near the location
of thrombus formation we intend to clarify the hydrodynamical conditions for
thrombus formation, B

Consider the motion.of liquid column of finite length in the vertical straight
capillary tube under the action of gravity. Observations show that over a
period of time liquid column falls at constant speed due to simultaneous action
of gravity, surface tension and viscous force, For simplicity we fix the coordi-
nate system with the liquid column descended as a whole at speed U (U is also
the average speed for any profile of liquid column relative to absolute coordinate
system fixed with capillary). Then the wall of capillary has an upward motion
at speed U, and the ‘motion of liquid column is steady. It is easy to imagine
that as the wall of capillary moves upwards it causes the viscous fluid located
at its neighbour to move upwards with it, As soon as the fluid particles reach
the upper meniscus, it diverts due to occlusion and travels along the free surface.
Then, changing direction, they flow further in the direction of the axis. As a
result, a circuiating current is formed in the upper meniscus. Similarly, we can
conclude that the same circulating current exists in the lower meniscus,

Now, starting from governing equations of viscous fluid we consider the
hydrodynamic characters of the circulating current in more detail, In other wotds
we will determine its flow pattern, velocity, pressure, shear
stress and form of free surface. For simplicity it is assumed
that: |

1) The fluid is considered as Newtonian, viscous and r "’T’
incompressible. \ d

2) The fluid motion is steady. L

u

3) The liquid layer which remains at the wall is in-
finitely thin,

4) There are gravity and surface tension on free surface,
acting on the fluid,

Suppose the length of the fluid column is 2I (the in-
tersections of the wall and the upper and lower meniscuses
are taken as its starting point and end point). It is con-
venient to work with a columnar system of coordinates
(x,r,0), (see Flg 2) the origin of which is located at the

¥ 442 ¢

L i JRD W A W S R

=~

PR I N W W CN Y

a8
(=

S WA W T Wit NN




uwu

centre of the liquid column, U, a, , uU are employéd as the characteristic

scales of velocity, length, pressure and surface tension. Then, we have

x=x"a, r=71'a, L=Ja,

4 - Yy wy
4 u=u'y, v=v'U, p=p’ —, =p/i—=
o U’ U p p a pa pa a (1.1)
.y _ 9a® iy
T=T"uy, G= U’ Re = v

where quantities with index /? are dimensionless, while quantities without «/»
‘are correspondingly diménsional, and they are the components of the velocity,
respectively, p is pressure, T is surface tension, @ is radius of capillary, p, is
atmosphere, g is acceleration of gravity, ¢ and v are kinematic and dynamic
‘\'/;iscosity respectively. The steédy motion of viscous liquid column in a vertical

capillary tube satisfies the following dimensionless equations and boundary

conditions.

' u U \N_ . _dp  du  d'u 1 ou

Re(u——ax +v———ar )— G o% + e + o +—r— ar
ov ov\_ _ ap ' 9w 1 gv _ v

Re(u % +v o )_ ar + ox + o7 +  or i (1.2)
—ai'f' av +L=0
ax ar r
u=-1, v=90for r=1 (1.3)
v=1_0 for 1;0 - (1.4

on the free surface x= FA+Fz(7)

un, +on, =0 (1.5)
v ou 2 2 au _ av =

(_—ax * o )(n, n,)+2(——ax rr )n,n, 0 , (1,6)

p=p.- (- +-L Ghpz, 0%y, (OY  OUY,

pP=p, R1+R2)T +2[axn,+arn,+ é?x+6r n,n,] 1,7)

where F (r) represent the functions of the free surfaces, n,, n, R,, R, are com-
ponents x and r of unit vector normal to free surface and their principal radii of

curvature, They have the following relations with F.(r):

TS S sy (LT B O S >
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1f the free surfaces are spherical, then

1 1
—+
R, R,

=2 |F%(1+F{2)~%% (1.10)

‘Thereafter we assume spherical free surfaces, so that (1,10) helds. It should be
pointed out, that due to the assumption of infinite thin liquid layer remained
at the wall r=1 on the free surface are singularities. At these points velocity
«can take any value in the interval from -[U to free surfaces.

Both equations (1,2) and the boundary conditions (1,3)—(1,7) are nonlinear;
It is difficult to solve it analytically or numerically. For the sake of simplifica-
tion we linearize the nonlinear boundary conditions. Assume that the free sur-
faces are close to straight lines, Therefore, F;, F% are small compared to unity;
but FZ is still the quantity of zero order, thus surface tension which play an
important role in capillary flow is retained, The boundary conditions (1,5), (1.6)
{1,7) are now satisfied at x= F ) rathdr than on free surface. Neglecting the
small quantity of higher order, we have:

u= -1, v=0 far r=1 (1,11)

v=0 for r=9 (1,12>

u=90 3 (1.13)

ov _ -

Fx__o [for x=TFA (1.14)
au ’

p=p,- 2T |F% +2—F5— , (1,13)

ax

Linearization of the boundary conditions on the free surface leads to consider-
.able simplification of the problem, Now, velocity, pressure and free surface are
separated. At first one may selve #, v, p, from equatien (1,2) and boundary
conditions (1,11)—(1,14) and then solve F: from (1,15) using ¥ and p.

Assess the magnitude of Reynelds number in considered problem. In the fol-
lowing we present two sets of experimental data,

(1) Water is the fluid medium, capillary is glassg-blown, Thus i =(,01g/cm-see,
p=1g/cmd, g=980cm/sec?, T/ =72,5 dyne/em, a=10°, P, =1,013 % 10*dyne/om,
By the experimental data at a=0,021 om, velogity of dessent U/U. versus dimen-
sionless length of liquid column A=L/a is shown in Table 1. Take account of the
fact that at A= oo there is§ Poiscuille flow in all the capillary, gravity is balanced

2

. It results that U, =5,402, for A=o0,

with viscous force, Then G=8= 3;
Pigure 3 plots U/U. versus A.

oo
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Fable 1

A b 10 20 30 @
U(cm/sec) 1 1.76 3 4 6.40
G 43.22 14.70 14.40 10.80 8
T 7250 4143 2417 1813 1342
Re 2.1 3.7 6.3 8.4 11.3
(2) Blood is the working fluid and the
g_ capillary is glassmade. Then #=(,04g/cm - sec,
".'0r g =980cm/sec®, p=1,055g/em, surface tension=
0.8 54dyne/cm, @ =48°. By eXperimental results we
have U =0,53 for A=18. Correspondingly, Re=0,7,
0.6¢
G =115,6, T =2641,50.
0.4t It is evident that in oyr problem Reynolds
0.2p number is not very high, usually it is less than
o4 100, Hence we can restrict our study, first of all,

Fig. 3 at low Reynolds number and then consider the

inertial effect.

II. Analytic Solution at Low Reynolds Number

In the case of low Reynolds number inertia term ean be neglected. Eq. (1,2)

becomes.
ou 1 3(rv)
—_m—t—— ——5=0
0x r or (2.1
VD=Gé, +V*¥

where 2, is the unit vector in x direction, ¥ is the velocity vector, First of all
we abstract the hydrostatic pressure G(x+ i) and surface tension p,— 2Tcosa, pro-
viding equilibrium from pressure expression, where a is the angle of contact
between liquid and wall in the state of equilibrium, Later we separate the velo-
city profile of Poiseuille flow ¥, =-=1+2¢1-r?) from the velocity expression. In
consonance with that it must be subtracted —-8(x+ 1) from pressure expression.

Considering all above, we have:

= ~-1+2(1-7*)+u’
V=0
P=(G—-8)(X+A)+p,— 2Tcosa +p’ (2.2)
72

= -5 (I=T) Y
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where u’, v/, p/, Y’ are velocity components of circulating current, pressutre and
stream function respectively. Substituting (2.,2) into (2,3) and (1,11)—(1,15),
it leads to:

ou’ 1 9wy _ o)

O 7 1=9 |
ax r a7 ! (2.3)
VD =Vip J
u’ =0 (2.4)
for r=1
1), =O (2.5)
v’ =0 for r=0 (2.6)
u' = ~(1-2r%) (2,7
’ o N ‘
2" - for x= T4 (2.8)
ox ‘
NI
: p’=-(G—S)(x+l)+2TCOS(l—2T]F’;I+2“6—x— (2.9)

Introduce function f/ which satisfies the following equations:

,__ 1 4 ( 3f , O
wi=-—— ar(r—ér—) Y = rox

Therefore, equation of continuit); is satisfied identically. Rewrite %’ into the
following form:

v =-p L 9 (7015 01 -y 0l _4yep

*r er\ or. T orgx ox

where &, &, are unit basic vectors in x and r directions, When it is substituted
into the second equation in (2,3). one obtains:..

vo vy s g - (2.10)
ax X +" ) . .

Eq. (2.10) i's satisfied if

Vi =0 1 , .
; _w Of . €2.11)
p =V > j | |

Now we must solve the biharmonic equation
Vif =0 T T - (2,12)

When f’ is obtained, #/, v’, p’ and stream function 3’ can be 'detcrmined‘
by the following formulas:

we-L 0 (o) e g\

r or or drox
: (2,13)
’ —2 of’ ’ - o’ !
p' =V 67 1/) =r ar j
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It is obvious that our flow variables are symmetrical or antisymmetrical about
axis r. As it has been done in paper [1], a solution of (2,12), which satisfies the

conditions (2,4) and (2.8), can be found:

’ , ) o - hk M k sinh k,,x Jo(knr)
17 (%) ZA..[{ [2+k.atanh kAT e+ kxR aRiT (k)
= I.(p,r) - . rl (Pnt) }]
+ Y 'B,,.cosp, {~-—-r~~~- - : (2.10)
=P U D () T P L2 e () + Pl (P

where A, and B,, are arbitrary constants, J; and I; denote the ith order Bessel
functions and modified Bessel functions of the first kind respectively, k, is the
nth root of the equation Jy(x) =0, pm_fﬂfi/Z)I

When (2.14) is substituted into (2,13), one obtains the following equations

for the x and r components of the velocity:

u' = ZAn[{_ [2+k,,}.tanh k,,A.] COSh k,,x T x anh k,,x} Jn(k"r) .

1t cosh k,.A+ " cosh ki) J,(k,)
- B,.cos mx{ 1o(par) _ 2o (Pal) + Dol 1y (Put) }] 2 15
" o Lo (pn) 214 (Pa) + Pul 1 (Pr) ( )

v = ZA [{[] +k, 4 tanhk, 1] Si00 KX _ g xCOSh'knx} Ji(k,r)

= coshk, i "eoshk,A) J, (k)
Z . I,(p.r) _ P.r1o(Pat) }]

- B,,,,,Sln mx{“l‘" \ 2.1
L B X (y + bul P (2.16)

U sing the orthogonality relations of sine functions sinp,x, one finds:

Ak , sin(m+—1—)7r
AREEpDT (P Paly <pm>

B..= (2.17)

We shall determine the constants A, with boundary condition 2.7. B‘y applying
the orthogonality properties of Bessel functions we have:

(2,18)

It is easy to verify that condition (2,6) is satisfied identically. Therefore
a solution of biharmonic eq. (2,14), which satisfies all boundary conditions, is
found, A, and B,, in this expression are determined by (2,17) and (2,18), res-
pectively, o
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The pressure p’ and the stream function 3’ can be obtained from (2,13):

ot inhk x 7,51 . 21, (P,
! = An n e * 0 + Bum mS1n mx”“‘ﬁoL_’”_""] .
P 2.:1 [zk coshk,A 7,(k,) .nzl PnSI0P 214(P,) + Dyl 1 (Pw) (2.19)

¢ = i“ A,[_{ ~[2+k,Atanb k,4]

n=1

cosh k,x k sinh khx} -ry (k)
coshk, " coshka) k,Jg,(k)

- rl (par) rlo(put)
+ B,, COS Dpx§—1x=m 2 . oM S L 2.2
E cosp Pulo{Pn) 21, (p,) + 2.l , (Pw) }] (2.20)

having w’, v/, p/ and y’, ic, v, P and P can be calculated with (2,2).

The forms of the upper and lower meniscuses are determined by applying
the condition (2,9). Obviously, that

4
/| = cosa + -1 [—'+ zu] .
[F|=c LA (2.21)
14
7| =cosa~—2 [ - 24 -8) -9, +29%) 2.22)
|[F7| =c 7T 2A(G~8)~p’ 26x+ (2.22)
Taking |[F¥|=-F”, |FY|=F%, F(1)=0, F/(0) into account and integrating

(2.21) and (2.22), one obtains:

F_(ry==25%2 1) —%Emr) -D(1)] = —°°28“(r2 ~1)+Fe(r)  (2.23)
F,(r) =254 (r”-1)+§%—(G—8) (rz—l)—~2~,1r—[D(r)—D(1)]
_ cosa __‘L - 2 _
-[ e A 8](r* = 1) + Fe(r) (2.24)
where F.(r) = —711,—[D(r)-D(1)] is deviation of meniscuses due to circulating

current and

v _ Ack,r)
D(r) = gm[{ztanh k(2 +k.atanh k.1) - 2k} )

= . 1 6B(P,r) +2C(P.T) 2B(p.r)
3 B,, L); - .2
+ sm(m 5 )1{17”[210(17”) +0.01,(2)71  Pula(Pr) }] (2,25

m=1

A(v) =J.I:[Io(v)dv]dv X
B(v) =J’I:[I‘o(v)d'v]dv (2.26)
c(v) =H:tvll(v)dv]va
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In the process of deduction we use the properties p/ =p’ and gl;%= -—-g-;%.

It is worthwhile to indicate that dimensionless velocity and pressure pro-
files are independent on the properties of liquid ahd geometric parameters of tube,.
while the form of free surface is seriously dependent upon it. In what follows:
we shall first of all calc ulate the velocity and pressure profiles which are app-
lied to whatever liquid, and later we shall determine the form of free surface
for both water and blood.

Numerical results for velocity, pressure and shear stress are obtained for
four different cases of A: 2, 5, 10, 20, 30. In the calculation we take n=30, m
=60. It is sufficient to carry out the calculation for half of the liquid column
due to symmetry of w, ¢/ and antisymmetry of v/, p’.

The results of the calculation show that the circulating current eccurs mainly
within one radius distance from the free surface, out of which it is rapidly
vanished and the velocity profile is nearly a Poiseuille flow. For example at a
distance from the free surface, velocity profile is 999 of the Poiseuillian, It fol-
lows that, effect of the free surface on flow motion is remarkable only within one
radius distance from it. In order to emphasize on the circulating current, flow
patterns, velocity, pressure and shear stress profiles are plotted merely in the
region from the free surface to the location that is one radius distance out of it
(here results of calculation at 1 =5 are employed. Results at another A is nearly

the same as at A=5), Fig. 4 presents sketch of eleven dimensionless velocity

1.9
0. TN
0.6 \
% \\\X\
0.2
RN -
0.2
0.4=3/Y] L
0.6 /1=T=5
0.8
1.0 :
~5.0 ~4.9-48-4.7-46 -45-44-43-4.2-4.1-4.0 x/a

Fig. 4

profiles in the region —5<<A<<{ -4 with respect to the coordinate system fixed

with the wall of capillary. Examining the sketch of %- and — 5 ,
that the basic forms of these velocity profiles are similar to the bolus flows. The

it is found

only difference between them is: in bolus flow x= F 1 are walls, at which velo-
city of fluid motion must be vanished, while in our problem x= F 7 are free
surfaces, at which ¥ =0 but » can take nonzero value, Therefore the intensity of

—3— at x=F ) is stronger than bolus flow. Concretely speaking, the maximum



velocity of % reaches 0,54, while in bolus flow it only goes to (,3. Further-
more, velocity of the circulating current has its maximum value on the free sur-
face, while velocity of bolus flow which approaches to x= T4 must be gradually
decreased and finally it becomes to zero, So it is not difficult to understand that
the length of space enough to develop the flow into Poiseuillian profile in -our

case it is shorter than that in bolus flow, For example, in our problem —I-JIL'z
1,98 at x= - A+ 1 while in bolus flow it has the value about 1,7.

The streamlines in left part of liquid column relative to the observed which
is fixed with respect to the capillary and liquid column both are sketched in
Fig. 5. In the coordinate system fixed with liquid column the circulating cur-
rent can be seen clearly, The streamlines in the coordinate system fixed with

capillary are bulged outward at x= — A.

oD oo
O NSNS

-3

xz/a

-5.0-4.0 -4.8 ~4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1-4.0

Fig. b

Fig. 6 depicts shear stress and pressure profiles, Near the meniscus the shear
stress at the wall is greater than that of the Poiseuillian one, while near the
axis it is smaller, Pressure distribution is consistent with circulating velocity v.
As r moves toward axis, the pressure continuously decreases. It is this pressure
gradient which causes the occurrence of circulating velocity v. Both pressure
gradient and » reach the maximum value at the meniscus.

ST
N, L

o<

0-4.9-4.8 -4.7T-4.6 -4.5-4.4 ~4.3 -4.2 -4.1-4.0

Fig. 6

-« 450.



Finally, we discuss the forms of upper and lower menisci which are related
to properties of fluid and geometry of capillary, We distinguish two cases—water
and blood.

(1) Water

Using the data in Table 1 and executing the calculation, one obtains

Table 1
r | 0 o1 |02 03| 0405 ] 06| 07| 08 | 0.8 1
Fc(r) | 0.001 | 0,001 | 0.001 | 0.00t | 0-001 | 0001 [0.001 | 0 0 0o | o

It is interesting to note that within the accuracy of 0,001, F(r) is indepesndent
of A.Viz, Fc(r) hav;e same results for A=2, 5, 10, 20, 30;- Ac5cord1;:hg‘ to (2,23) and
(2.24), Fc(r) bends in the upper meniscus and flats in the lower. But the
shift, which is much smaller than %=0‘.492, can _V_be"“en‘t.ir'ely ignored, On
that account, we propose the following approximate formulas‘to determine the

form of meniscuses with proper accuracy.

F(r)= S22 (y2_1) : (2.27)
_[eose A . '
F+<r>—[ e B 8)](7 1) (2.28)

From these formulas the following results are obtained:

A 5 l 10 ‘ 20 30

o 10° ‘ 10° 10° 10°

o, 16.15° 19.18° 21.29° 20.20°
(2) Blood

Substitute the data of blood illustrated in section one into (2,27), (2,28)
giving:

a_=48°9 a+=85.26°

Hence, the upper meniscus is principally the same one as that which is in equi-
librium and the lower one must be modified by gravity and Poiseuillian pres-

sure,
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[II. Inertial Effect

Consider the nonlinear inertial effect, viz if the inertial terms in the left
sides of egs. (1,2) are retained, what will be brought about in the solutions?

It is very difficult to solve the eqs. (1.2) analytically under the boundary
conditions (1,11)—(1.15). In what follows we apply the effective time-dependent
method in finite-diIference techniques to solve this problem, With the stream
function ¢ and the vorticity £ as dependent variables, the governing equations

and boundary conditions for unmsteady fluid motion may be expressed as:

(3.1)

9 ., ), M) _ 1 (8% 8% . 1 8 _ ¢
8t+ ar * ar ~ Re \gxt " grt ' v Tor ,z)

___+——__—=—TC (3.2)

Yp=0at r=1 ) 3.3

¥=0, =0 at r=0 3.4

¥v=0, £=0atx=%F1 (3.5)
where

¢=-2% - g‘:, u:%%i_, _vz'%_l%lff (3.6)

The stresses are determined in terms of the velocity gradients:

ou

T,y=2 ot T,,\=Zax 3.7

xr

v -
’ ":90:27; T,,=T,, =

The second upwind differencing scheme are used for advection terms in (3,1)%,

Hence equation (3,1) can be written in the following finite-difference form:

{31 =Ch, ) - At (ADQR + ADQX) + AL (birti ¥ ot = 2bins

Cisivi+8iri1 = 26is; +Cn,‘+l =&isjo1 _ Cirj

AT or AT, ri (3.8

+
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where

ADQR=___”RCn;rvLCL e R
Ci vR>0 €i—l 'UL>0
CR = Cr=
Cj+l ’UR<0 C] vL<0
ADOX = uglp — Usly un=u"“+u" uL___ui+u|‘—l
Ax ’ 2 2
IC.' up>0 Gioy U0
Cr= L=
2 CHI up <0 g u,<<0

here %,,,%*! designate the { value which is referred to (i, j) point at k time
level and k+1 time level, respectively. Equation (3,2) for y is solved by using
“successive overrelaxation” method., Its corresponding finite-difference equation
is:

1
= (1-@)y}; + w{m('ﬁ?u,ﬂ'#’?ti.i +BE; ¥hia+tBE YL,

_AXBii g + AX.Bi,; a1
sl LLATS H T} NP Al L AN

. 2E. .
2':‘ i 21',- .71 +r1Ax|€:,; (3.9)

where B;,;= AA’:' , ® is relaxation factor,
i
The procedure of time-dependent method to solve steady fluld motion can be

formulated as follows:
(1) The intervals in x and r directions are divided into i and j equal mesh

spacing, To ensure stability of the scheme, time step must be chosen to be less

than At,,;

At = 1

2 { 1 1 lulml: [vlmix
Re \Ax2+Ar1)+ Ax T Ar

(2) Take the solutions at low Reynolds number as the initial distribution.
Once the new £ distribution in mesh system subtracted from the poundary nodes.
at time t= At is obtained from (3,8), the new ¢ distribution at time At is found
from (3.9) by iteration until the change in the stream-function value at each
point in the field is not greater than 10~°. The boundary condition for y gives
tﬁe value of ¥ at the boundary nodes. All of them is equal to zero,
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(3) Equation
C - ]. wj—'g

Ar;  2a4rir

is used to obtain the vorticity on the solid boundary {(the vorticity on other
boundaries are known from boundary condi‘z\tio'ns). Velocity components % and v
are then computed from (3,6). Now, all physical guantities at (time At are com-
puted. )

(4) The previous procedure is contiﬁﬁed intil the change in the total vorti-
city of the fluid is of the order of 3x 10”2 or less. We assume that this is the
time required to reach the “steady state”,’

Numerical computations were being p'ferformed using the previous method
for A=2 and Re=24,5. A regulaf mesh con;taining 201 x 41 points was used (i=
201, j=41). The solutions at low Reynolds number were taken as the. initial
values.- At was 0,0lsec. Relaxation factor equals 1,75. Computational experiment
shows that the solutions approach very rapidly to the steady state, After four
time levels the relative change in the total vorticity was less than ¢,003. All
physical quantities at two neighbouring time have three equal figures. Now we
consider this in terms of our solution for the steady motion.

Nonlinear velocity profiles at Re=24,5 and A =2 are shown in Fig, 7. In the

same figure the linear one is sketched for the sake of comparison,
AN

rla

1.0

0.5}, ~ ~

6 6L% U \\ N

0.4

1 T N N \

[} L

0.23 \ =enoplinear sofgtion
0.4J \ ~=wlinsar solutica
05wy |1 ’ Rom14.§,4m2
0.8[1 ’ +80d

.ole

L Thes 168 —1.52 -1.38 -1.76 ~1.04 TS

Fig. 7

This figure clearly demonstrates that the .difference between the nonlinear
and linear solutions is very small provided Re=24,5. Maximum shift occurs at
the free surface., Both velocity profiles at another séc_tion are nearly coincided
with eéach other. It follows that the inertial effect can be vigno‘red at Re<<24.,5.

' The following table shows the u, », ¥ values cbmputed at Re=24,5 and A=2
within one radius distance from the meniscus. Nonlineér solﬁti'Ons are unsymme-
trical with respect to axis r. But the uﬁsymhetrical 'behaviour is not serious.

so only numerical results at upper meniscus are presented.
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Table 2

wjU
-2 —1.84 ~1.68 i -1.52 ~1.36 ~1.20 -1.04 -0.88
0 0.00000 | ©.36658 | 0.64876. | 0.32250 | 0.91103 | 0.94853 | 0.96485 | 0.97094 .
0.1 | 0.00000 | 0.36359 | 0.64110 | 0.81016 | 0.89516 | 0.93173 | 0.04621 | 0.95202
02 | 0.00000 | 0.35436 | 0.61668 | 0.77132 0.84581 | 0.87664 | 0.88869 | 0.80367
0.3 | 0.00000 | 0.33864 | 0.57428 | 0.70478 | 0.76241 | 0.78455 | 0.79304 | 0.79683
0.4 | 0.00000 | 0.31485 | 0.51416 | 0.60700 | 0.84268 | 0.85439 | 0.65885 | 0.86126
0.5 | 0.00000 | 0.27948 | 0.42480 | 0.47169 | 0.48330 | 0.48498 ' 0.48569 | 0.48676
0.6 | 0.00000 | 0.22568 | 0.292717 | .0.29135 | 0.28147 | 0.27521 | 0.27321 | 0.27317
0.7 | 0.00000 | 0.13877 | 0.10506 | 0.05892 | 0.03469 | 0.02451 | 0.02122 | 0.02034
0.8 | 0.00000 |-0.01705 |-0.16004 |~0.23086 | —0.25783 | —0.26710 |- 0.27031 |-0.27181
0.9 | 0.00000 ;—0.32875 |—0.52006 |—0.57754 |—0.59454 |—0.59890 |—0.50126 |- 0.60331
1.0 |~1.00000 |-1.00000 |-1.00000 |-1.00000 |-1.00000 |-1.00000 |-1.00000 |~ 1.00000
YL
-2 | ~184 | -188 | -1.2 j ~1.36 | -120 | -1i04 | o088
0 0.00000 | 0.c0000 | 0.00000 | "6.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.1 |~0.09661 |=0.08310 |—0.05617 |—0.03092 |—0.01422 |-0.00578 |—0.00227 |—0.00094
0.2 |-0.18928 |-0.18317 |-0.10834 |- 0.05858 {—0.02641 |—0.01059 |-0.00418 |~0.00176 -
0.3 |-0.27919 |[-0.23701 |—0.15208 |—-0.07996 |—0.03478 | —0€.01362 |- 0.00546 | —0.00236
0.4 |-0.36325 | -0.30089 |~0.18309 {—0.09160 |—0.03805 |—0.01443 |—0.00597 |- 0.00267
0.5 [~0.43806 |—0.34945 |—0.19864 |- 0.09097 |—0.03575 |—0.01302 | —0.00572 |—0.00289
0.6 |-0.50247 |—0.37359 |-0.18735 |-0.07833 |—0.02861 |—0.00991 |- 0.00488 |- 0.00243
0-7 |~0.55062 |—0.35889 |—0.15145 |—0.05614 |—0.01861 |—-0.00607 |—~0.00369 |—0.00194
0.8 (- 0.56363 |—0.28407 |—0.09318 |—0.02896 (—0.00870 | —0.00263 {—0.00239 |—0.00130
0.9 [-0.57402 |—0.13104 |—0.03107 |-0.00853 |-0.00198 |—0.00053 |—0.00106 |— 0.00056
1.0 | 0-00000 | 0.00000 | 0.00000 |. 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
P/Ua2
-2 ~1.84 ~1.68 | ~1.52 | -1.38 -1.20 | -1.04 | -o0.88
0 0-00000 | 0.00000 | 0.00000 | 0.00000 | ~0.00000 | 0.00000 [ 0.00000 | 9.00000
0.1 | 0.00000 | 0.00183 | 0.00323 | 0.00409 | 0.00452 | 0.00471 | 0.00479 | 0.00482
0.2 | 0.00006 | 0.00721 | 0.01267 | 0.01596 | 0.01760 | 0.01829 | 0.01857 | 0.01868
0.3 | 0.00000 | 0.01588 | 0.02757 | 0.03444 | 0.03773 | 0.03909 | 0.03962 | 0.03984
04 | 0.00000 | 0.02734 | 0.04665 | 0.05745 | 0.06237 | 0.06431 | 0.06507 | 0.06540
0.5 | 0.00000 | 0.04075 | 0.06788 | 0.08181 | 0.08777 | 0.09001 | 0.09088 | 0.09128
0.6 | G-00000 | 0.05473 | 0.08778 | 0.10293 { 0.10890 | 0.11099 | 0.11182 | 0.11225
0-7 | 0.00000 | 0.086879 | 0.10099 | 0.11450 | 0.11930 | 0.12083 | 0.12147 | 0.12187
0-8 | 0.00000 | 0.07196 | 0.09938 | 0.10829 | 0.11107 | 0.11184 | 0.11222 | 0.t1253
0.9 | 0.00000 | 0.05886 | 0.07103 | 0.07414 | 0.07497 | 0.07514 | 0.07528 | 0.07646
1.0 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
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IV. Conclansion

(1) There are considerable circulating currents near the menisci. Maximum
circulating velocity is about 57% of the average velocity of the mainstream,

(2) Domain of circulating. current viz. domain of influence is mainly situ-
ated within one radius distance from the free surface, out of which there is
Poiseuille flow,

(3) The effect of circulating current-on meniscus is very weak. Upper me-
niscus is prineipally the same as it is in equilibrium and the lower one must
be modified by gravity and Peiseuillian pressure,

(4) Inertial effect is not considerable and can be ignored provided Re<2‘4.5.

» * » » *
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