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Abstract
A general four-layer structure linear theory for predicting the effects of arbitrarily
distributed roughness change on the variations of wind speed and shear stress in the surface
layer of 3D and 2D atmospheres was presented. The results derived by the theory were

agreeable to the previous ones.
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I. Introduction

When fully-developed atmospheric boundary layer encounters the surface with change in
surface roughness (such as from water to land, from lower vegetation to higher vegetation, from
suburbs to city and vice versa), the wall shear stress will undergo a variation, and the wind speed and
shear stress will, in turn, be subjected to variations. The flow pattern will differ from the original.

To understand the effects of roughness change on the surface layer of the atmosphere is of
significance and has many applications. Examples can be found in mass transfer induced by wind!,
wind load of building, and utilizatton and exploration of wind energy!? etc. Therefore, the problem
has been attracting attention of the scientists in the field of environment. atmosphere,
oceanography, meoteorology, hydrology, geography and soil physics.

Since the pioneer work of Elliott (1958)P), as far as the effects of roughness change on the
surface layer of the atmosphere is concerned, considerable advances have been made in the aspect of
theoretical analysis, observation, experiment and numerical simulation. The author has reviewed
the advances in his recent publication®, so we will no longer go into details herein.

Hitherto most theories have been based on the assumption that throughout the internal
boundary layer, the advective velocity is the upwind velocity at the top of the internal boundary
layer. This is true over most of the depth of the internal boundary layer, but isinvalid near the sur-
face, which leads to wind speed and shear stress error near the surfacels).

Furthermore, most previous theories dealt with simple 2D problems,such as flow over sudden
change in surface roughness. No general theory is available for such;complex flow as flow over
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arbitrarily distributed roughness and 3D problems.

This paper is intended to present a general theory, which overcomes all the shortcoming the
previous theories had and is applicable to arbitrarily distributed roughness change and 3D (which
can be degenerated to 2D) problems.

The theory, which borrowed the idea of Hunt et al. (1988)® for turbulent flow over low hill,
divided the surface layer of atmosphere into two regions, each consists of two sublayers. In the outer
region, turbulent shear stress perturbations is ignorable. Inertia perturbation balances the pressure
gradient perturbation. The outer region.is made up by an outer layer and a middle layer. In the outer
layer, perturbations are of potential. In the middle layer, wind shear dominates. The inner region is
composed of a shear stress layer and an inner surface layer. In the shear stress layer, acceleration
balances the shear stress and in the inner surface layer flow is adapted to the changed roughness, and
the momentum flux remains constant vertically.

II. Control Equations and Boundary Conditions

Except being indicated in particular, all the variables and parameters used in this paper are
made dimensionless with characteristic length z, (surface roughness), and characteristic velocity
tyo=(7o/0)"* (friction velocity).

For x <0 (referto Fig. 1),a fully developed turbulent boundary layer in a neutral atmosphere
and a uniform surface roughness are assumed. Horizontal distribution of the velocity is given by

u0=-[—1(—lnz (1<<2<Ch) 7 (2.1)

where #=0.4is Von Kdrman's constant, and h, dimensionless thickness of the surface layer, is
usually taken to be the order of 100m/z,.

Within the scales of 0<x<(L,, 0< y<_L,, surface roughness changes, the local roughness is
expressed by z;(x,y),

In general, the horizontal and lateral scales are much larger than the vertical scale for the
surface layer of the atmosphere. It follows that only the vertical gradient and flux are of importance.
In addition, the turbulent viscosity is much larger than the molecular viscosity (except in the viscous
sublayer close to the wall). In the surface layer, Coriolis force is small and can be neglected.
Consequently, the equations controlling the surface layer of the atmosphere are usually as follows!”!

ou ou ou op N O0ry,

“Bx to dy tTw 9z = 8x ' 08z (2.2a)
u g; +v gz + w gz =— gﬁ +a;’; (2.2b)
uaal:: +v gyw + w%zz =— gﬁ (2.2¢)
gi + g; + %‘;’ =0 (2.2d)

where 1,3 and 7,3 are turbulent shear stresses. According to the K theory they are expressed as

du

G
713=K u T23=Kn 3z

maz’

(2.3a.b)

Adopting the exchange coefficient recommended by Panofsky and Dutton!",
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Kop==rtiy2z, (2.4)
and noting that uj=r7,3 (2.3) become
du \? du OJvu
2 42 FIRL Sl b
T”—”( 9z ) ’ Sl PR P (2.5ab)

Equations (2.2) and (2.5) constitute a set of closed control equation.
The boundary condi-tions are

u=uy(2), v=w=0 as 2->h (2.6a)
$==v=w=0 as 2>z (2.6b)

Assume that after surface roughness changes, the velocities, pressure, shear stresses are
expressed in terms of their upstream values and a perturbation as

u=ty(z)+Au, v=Av, w=Aw (2.7a)
p=pi+Ap (2.7b)
Tys=1+At,, 1,=AT,, (2.7¢)

and the perturbations are smaller than their upstream. values,
[Auf, Av], [Aw]& lu,] (2.8a)
[Ap| & | pol ' (2.8b)
[AT ], ATyl (2.8¢c)

Substituting (2.7) into (2.2) and (2.5), and neglecting the higher order perturbations, we obtain
the linearized form of equation (2.2)

dAu Bu, 0Ap , 9AzT,,
Uy 3x + Aw 52 = 3x + P (2.9a)
dAv 0Ap  OA7,,
Uo ax =M—ay—+ 62 (z.gb)
dAw 0Ap
0 ax - aZ (2 . gc)
0Au dAv  OdAw
ax dy Tz =9 (2.9d)
0Au
A713=2KZTZ— (2.9e)
0Av .
Ar,,:;{z—a—z— (2.90)
In a similar way, boundary condition (2.6) becomes
Au, Av, Aw=0 as z->h (2.10a)
Au:—&:—, Av=Aw=0, aszoz (2.10b)
where M == — 12, is surtace roughness parameter, which reflects the magnitude of the change in

surface roughness. M is usually a function of x and y . if the surface roughness is arbitrarily
distributed.
Denoting the Fourier transform of any variable R(x, y . z) as [R(&,. k. 2)], the definttion is
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[R(k;, kg z)]=[ J R(x, y, z)expl—i(kx+hky)]dxdy (2.11)

—_—Q — 00

where &, and k, are wavenumbers. Takirg the Fourier transform of (2.9) with regard to x and

y, we have.

ik %‘3— (2.12a)
ikan[A0] = ik [8p) + LTl (2.12b)
ikluOEAw].—_——é%& ' (2.12¢)
i b0+ ik 80+ 208 (2.12d)
LA713]=2.'(:6[;‘:J (2.12e)
LAt,4] -KzaLA;“ (2.12f)

Similarly, taking Fourier transform of boundary condition (2.10) on x and y produces,

LAs], [Av], [(Aw]=0 as z-h (2.13a)

[Au]—L——m, [Av], [Aw]=0 as z—>2z (2.13b)

III.. Four-Layer Structure Theory

As shown in Fig. 2, the surface layer of the atmosphere is vertically dividedinto two regions, an
inner region close to the wall (z;<z</) and an outer region (/<z<h).

outer layer h>»z>h,_ ] Outler

region
/ "] middi¢ layer h,=> >!

shear stress laver
[Zz=l,

inner

region

- face lave [>:z
inner surface layer

Fig. | Fully-developed atmospheric boundary layer

flows over roughness change surlace Fig. 2 Four-layer Structure
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3.1 The outer region

In the outer region the shear stress perturbations are ignorable, and the inertia perturbatlons
balance the pressure gradient perturbation. The region is made up of an outer layer and a middle
layer. The perturbations in the outer layer are of potential and wind shears dominate in the middle
layer.

Neglecting the shear stress perturbations is the outer region, an equationfor [Aw] can be
derived from equation (2.12),

62
{—52———(ki+k2)~§dd }[Aw] 0 3.1

The variation of u, in the outer region is rather small, hence,

R (3.2)

While at the interface of the outer layer and the middle layer we have,

..o L dPu
ki+k; N d
which defines the height of the middle layer,

Bn=(1nhn) V(R + k1) V2, (3.3)

Taking (3.2) into account, equation (3.1) becomes,
2
[Zr—(hi+ D)} awi=0 (3.4)
The approximate solution* of (3.4) is,

[Aw]l=Cexpl — ~EI +RI(2—hn)] (3.5¢)

where C=[Aw];=h, isa functionof k, and k, ,and can be determined by matching the
solutions in the outer layer and the middle layer.
From momentum equation, we have

[Aul=—iCk (k! + k1) 2exp[—(ki+k})*(2—hn)] (3.5a)
[Av]l=—iCky(ki-+k3) "2exp[— (k! + ki) (2—bn)] (3.5b)
(Ap1=iCk (ki +k})"2exp[—(ki+k1)"(2—ha)] (3.5d)

In the middle layer, assume that the vertical scale is much smaller than the horizontal scale L,
and lateral scale L,, and the second term is ignorable to compare with the first ter in (3.1). The
equation for the middie layer is:

8 1 dzuo
9z% ", )[A 1=0 (3.6).
the solution is
CAw=iCht + k1) A+ B 25 (3.7¢)
Z,

* Note that  1hn,<Ch , therefore the boundary condition (3.13a) is approximately satisfied in (3.5).
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where A4 and B, functions of &, and &, , are determined by matching conditions.
The following solution can be derived from momentum equation and continuity equation,

,u
[Au]= — (k] +k})vEL (A+Bj B (kR )“2 (3.7a)
LAv]= —ky(k? +h1)-12B
(ki +h})EZ (3.7b)
[(ApI=k (k] +k}) B (3.7d)

3.2 Inner region

Inner region is composed of a shear stress layer and an inner surface layer. In the shear stress
(/ <z <), the inertia perturbation balances the shear stress perturbation. While in the inner surface
layer, the flow is adapted to the changed roughness, and the momentum flux remains constant.
In the inner region, n =z//and a small parameter ¢=1n"!/ isinduced then the velocity distribution
upstream (2.1) is rewritten as

to(n)= 1n1(1+slnn) (3.8)

In addition, the solutions to (2.12) are found by expressing the perturbations as asymptotic

series in
(AuJ=[u]+e[u']+ - (3.93)
[Avi=elv']+ - (3.9b)
(AwT=glw']+ - ’ (3.9¢)
[(Ap)=[P°T+elp'T+ - (3.9d)
[Ard=[7)]+elrisl+ (3.9e)
[Ar,g]==elT}s]+ -, (3-9f)
In the shear stress layer , [1al}|» {lan| . Substituting (3.8) and (3.9) into (2.12), by
balancing between the inertia force and shear stress we obtain,
I lnl= ‘i’f] (3.10)

This relation defines the height of the inner region. From (2.12c), we have

Epo;]:[th(k“ kz)] (3 1

The first and second order equations for velocities are derived from (2.12a) and (2.12b),

iTwT=siga(k, )an( a[“ el (3.12a)

i[u‘j:sign(kJ%( 9Lu’] >—zln17|_u°]

1
iy (3.12b)
N D VI TR
o' =gsign (k)gn(n ) —in gl p'] (3.12¢)

where sign is the sign function.
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The solutions to (3.12) are respectively,

(w*]=DK (2 insign(k,) ) (3.13a)
(u]=E [u']—n a[;;] (2—1n7n)

—HL 21+ 5 Ko 2/ Tnsiga()/3) (3.13b)
[0)=E Ko(2n/ Tnsigalhy )~ 1] (3.13¢)

where D, E; E,, functions of k, and k, , are determined by matching conditions, K| is the zero
order Bessel function.

From continuity equation,

n
(w')=—2¢% | (uJdn’ (3.13d)
™
where m=z/1.

When 2 issmall,and 1n/ and lnnp have the same order, which means the second term in
(3.8) is not neglectable, which imply that close to the wall, there exists an inner surface layer. In this
layer, flow is adapted to the changed roughness. Similar to the surface layer of the atmospheric
boundary layer (constant flux layer), it is believed that in the inner surface layer (/,=0.1/), the
momentum flux is a constant, therefore we have

8[7s] - 0L 7,s] =0
9z ! 9z
Noting (3.9), it follows that
3[1'?3]_ Aris] 3[1},]_ 3 l4a, bre
oz 0 3z 3z 0 (3.14a, bie)

Integrating the above equations, and taking the boundary layer (2.10) into account leads to

[u°]=F1n:T+w—] (3.158)
[u‘]:Holn-zi:— (3.15b)
[u*J=H,1nﬁ— (3.15¢)

where F, H,, H, functions of k, and k, are determined by matching conditions.
Finally, from the matching between the solutions in each layer,the following functions are

found,
D zfﬁﬂb’ F=_QK4_31, (3.16a, b)
K e 2 4.3
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CM1b( & T,
Ho=—+"=2 {———[M][p] (2+2y+ 3rs1gn(k1))b} (3.16d)
E, =240 p°1C (3. 16e)
1
k,
Hy=—ug=[p°1C (3.16f)
1
A=0 (3.16g)
B=—Fk(ki+k})"d (3.16h)
. a 1 =17 1 .
C=ik, (ki + k) ”u.,(h,..) (3.161)
[p°T=—ki(ki+ER;) ¢ (8.16))

where /
T. . =1
a=lﬂ'z—l—2‘y, b=(a—7tslgn(kl))

-1
c=(a-—£isign(kl)—ln2) , d=u.,(1)f" [w*dy’
2 o
and ¥ =0.5772 is Eular’s constant.

IV. Case Study and Discussion

In order to make comparison with available previous results, the variables and the parameters
used in the following examples have their dimensions.
4.1 Step change in surface roughness (2D)

Bradley (1968)® made observation on the variations of wind speed and shear stress over a step
change in surface roughness. For x<0, roughness = 0.002cm, and for x>0, roughness
z,=0.25cm. Using a second order turbulent model, Rao et al. (1974)P! investigated numerically the
step change in surface roughness on the mean flow and turbulent structure in the neutral surface
layer of the atmosphere, and made comparison with Bradley’s observation. In order to verify the
present theory, we apply the theory to the case both with results of observation and simulation. For
the case considersd,

[M]=j Mexpl[ —ikhx]dxe= "1;;[1 ,

- 00

where M =Inz,/z,=—4.85,

In Fig. 3 is shown the wind speed comparison between present theory, simulation and
observation. The agreement is good. Wall shear stress is compared in Fig. 4. The result predicted by
the present theory is slightly higher than Rao’s, which happens to be closer to the measured data.
4.2 Two subsequent abrupt changes in surface roughness (2D)

The only results available to compare with is Blom and Wartena (1969)!'"’s. For x <0 and x>0,
roughness z,= lcm, for 0<x< L, roughness z,=7.39cm, L= 185m, t4, =0.3775m/s. The surface
roughness parameter is

[MJ=%I—<1—exp£—ileJ)

where M= -2,
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-— Rao (1974)
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Fig. 3. Velocity profile x =6.42m Fig. 4 Wall Shear stress

Comparison of wind speed between the present theory and Blom and Wartena's is shown in
Fig. 5. The agreement is found to be close. In Fig. 6. the variation of wall shear stress is given. there
exists difference between the results. From the analysis of Blom and Wartena's, we are aware that
the new equilibrium occurs at the distance of 2500m after the roughness change. When the
roughness has a step change (L—»o0) . Consequently, when the roughness change is limited.
(L=185m), the new equilibrium should happen at the distance longer than the distance given by
Blom and Wartena (200m), and therefore. the present theory is believed to give the right wall shear
stresses.
4.3 Changes in roughness over limited area

In order 10 make comparison, we apply the present theory to the Edling and Cermak (1974)U1s
experiment. In the experiment, the length and the width of the roughness change area are
respectively L = 548.64cm and L, =43.18cm, the roughness parameter is

[M]—.:k—Ag—(exp[—ile,]— 1)(exp[ —ik,L,]1~1)
1v2

where M= —5.05. Other parameters in the calculation are tu,=0.36cm/s, z,=0.0012cm,
z,=0.2cm.

Horizontal velocity comparison is given in Fig. 7. The results of theory and experiment are
agreeable. In Fig. 8 is shown the lateral velocity, although there seems to be a phase difference
between the experiment and the theoretical prediction, the order of the magnitude is comparable. In
the authors’ opinion, the results given by the present theory seems to be reliable because the flow
should be symmetric about the center-line.

V. Conclusion

The variations of wind speed and shear stress in the surface layer of atmospheric boundary
layer over arbitrarily distributed changes in surface roughness are analysed in this paper.

The results show that increased (decreased) surface roughness enhances (weakens) the wall
shear stress, and reduces (enlarges) the wind speed.

Due to the existance of the change in surface roughness inthe direction perpendicular to the flow
the 3D significant feather deferring from the 2D case is the appearance of the weak lateral flow.
Streamline displacement is caused by the changes in surface roughness, which leads to pressure
perturbation in the outer region, the pressure perturbaton, in turn, drives the lateral flow.
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Fig. 7 Horizontal Velocity x=121.9cm Fig. 8 Lateral Velocity x=457.2cm z=2.86¢cm

The results given by the present theory are agreeable to the previous theory, observation data as

well as experiments.
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