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Abstract
In this paper, a method is developed to detect the appearance of stochasticity in a kind
of near-integrable Hamiltonian system with two time-scales. One is fast and the other slow.
The stochasticity is showed to be chaos in the sense of Smale horseshoes actually. A

stochastic web is discovered in our example, by use of the results obtained in this paper.
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I. Introduction

The numerical results show an extraordinary picture of phase space: islands within islands and
densely interwoven stochastic layers among them in many near-intcgrabie Hamiltonian systems.
We are interested mainly in the appearance of stochasticity near resonances. It is believed that the
transversal intersections of the separatrices near resonances might be responsible for it, which is not,
however, proved theoretically!'-2 5768,

As pointed out in[1-2, 4], Melnikov method is invalid when applied to verify the intersections
in the system with one time-scale explicitly, because the corresponding Melnikov function has no
simple zeros, containing exponential small terms.

On the basis of the above analysis, we try to study a kind of near-integrable Hamiltonian
systems with two time-scales. One is fast and the other slow. And thus we obtain some results, which
canbe used to show that stochasticity in the systems is chaos in the sense of Smale horseshoe. And
an example is given to verify the validity of our results and a stochastic web is discovered in
the exampie.

II. Preliminary

The Hamiltonian system we shall study can be described in the form:

*Supported partly by the iNaiunal Natural Science Foundations of China.
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H(J,0,t)=H(J)+eH(J,0,t)+eH,(J,6,t) (2.1)

where (J,0) is an action-angle variable, ;i)—)=%-, 'tg,,—'——--:-,,—, ®=Pﬁalj('ﬂ- and
ry 8, r’, s'integers, and £ +o(e) are the frequencies of H, and H, 1n 1, respectively.
Obviously, the system has two time-scales, one 7 and the other et

By some transformations, which are actually diffeomorphic, we obtain a new system in the

form, in the degenerate case:

E=ef(x,t)+e2g(x,et,t) (2.2)

where f and g are C"(r=2) functions, periodic of T, and T, in ? respectively and g is of Tin 7 ,
T=e¢gt .

For details, see [1] or section JV in this paper.

Suppose that g0 and T,/T,=m/n, m, n, integers, the latter leading to the same period of
both fand g, nT, or mT, in ¢, denoted still by T,.

By the following diffeomorphism®

x=y+euw(y,v)+e'v(y,7,t) (2.3)
system (2.2) can be transformed into the topologically equivalent one!>
g=ef(y)+eLF.(y)+9(y,7)I+e%(y,v,1,¢e) (2.4)

where £ is continuous, bounded and

F) == w01, 9(u,0) =7 aty, 00d1,

and f1(9)=7%:‘;[:"! Df(y,t)u(y,t)dt , the averaging part of D f (y, Huly, t) and u can be

solved from the equation:

dufot=F(y,1), F(y,t)=Ff(y,t)~F(y),
In short, to study the dynamical behaviours of systems (2.1) and (2.2), it is enough to study
those of system (2.4).

III. The Detection of Chaos in the System with Two Time-Scales

For convenience, system (2.4) in the previous section is described as follows:
x,=f(x)+89(x’7)+82h(x’797/395) (3.1)

where fand g areC’(r}Z)functions, the latter being periodic of Tin r, x€DcR*, D ,a
bounded closed set and x’=dx/dx.

We are interested in the relationship of dynamical behaviours between (3. 1) and the following
system:

§=f(y)+eg(y,e) (3.2)

Suppose that x( 'z ,7) be a solution of (3.1) with initial condition x(0, 0) = x, and y(v) of (3.2)
with initial condition y(0) =y, .
By Gronwall inequality, we have
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20, =) <o —pil +(Li+eLa) | [2(s,5/e) —y(s) | ds +Mx

2

M
<CU%=yol +7-5ps @XPL(Li+eL,)7],

where L, and L, are Lipschitz constants of fand gin y, M is a supper bound of 4. This implies that:
Lemma3.l1 [%(7,t)—y(z)|=o(e?) , v = O(1) if |%,—Yyo|=0(et), forthe
above functions x( 7 ,?) and y(r).
We constryct the Poincaré mappings corresponding to systems (3.1) and (3.2):
P:: Ero"-_)'zﬂp
P, Sy—>2y,

where 2y, ={(x,7)EDX S{|r=7,€[0,T]}, S;=R/T .

Notice that the error will come out when P!, as the Poincaré mapping of (3.1), is used to discuss
the dynamical behaviours, because 4 is of the different periods in = and ¢, or /¢ . When we
restrict ourselves to the torus Dx S+, rin t/e isdistorted.

It is fortunate that the error has no effect on our discussion up to o{e*) , known by the
anologous deduction as that in Lemma 3.1.

By Lemma 3.1, we have

Plx—P.x=o0(e) forevery x€D ,
Theorem 3.1 The mappings P! and P, satisfy the following relation:
P:=P,+0(82)_

If chaos in the sense of Smale horseshoes occurs to (3.2), P,has an invariant set /4([2—3]).

In 1970, 8. Smale proved that P, is £2-stable([2—3]), which implies that P!also has an invariant
set when e is sufficiently small. The Q-stability also makes us know that P ;can be used to study the
dynamical properties of (3. 1) when & is sufficiently small.

Finally, we have:

Theorem 3.2 If the corresponding Melmkov function of (3.2) has simple zeros independent
of &, chaos in the sense of Smale horseshoes occurs to system (3.1).

- Up to now, we can discuss chaos, or stochasticity in the systems such as (2.1) and (3.1).

IV. Application

In this section, our results in Section III will be used to study a near-integrable system and a
stochastic web is discoverd, which is, in fact, a chaotic structure based on Smale horseshoes
The system we study is as follows:

H(x 'Y 9t)='E'yz =+ —;-w"xz—g %COS(kx —t)

+2¢e*fx*sin(20 —qe)t - o (4.1)

where No={J, and N is an integer. The system describes the motions near resonances m a kind of
accelerator®,

Using the transformation:
x=(2J /o) *sind, y=(2Jw)"*cosd,

we change system (4.1) into a new Hamiltonian system:
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(.0 t)—-a)f—e—-z J (k( )/z)cos(nG—Qt)

==

+ ezg-g—(l—cosze)sin(m—qa)t (4.2)

where (J, ) is an action-angie variable and J,(-) are Bessel functions for all n.
Notice that Nw=( and take the gernerating function:

F=(N§—-Qt)I,

we have

I?’(I,cp,t)=ﬂ(f,0,t)+—a§ (4.3)

a new Hamiltonian system in the action-angle (/,9), cf, {1, 5—6].
From the previous two sections, we only need to pay attention to the system, Wthh
corresponds to (3.2):

* .

=-‘£«’N(kp)sin¢p+e-———cos ( qr)—ea(p)smq)
N e : (4.4)
@ = w: J,',(kp)cos<p+e——5’§~ sin(%‘f’r—qr)~eb(p)cos<p

where P=(2NI[/a)V%, 1= ¢t

System (4.4) can be obtained by the procedures anologous to those in section Il orin [1, 5 6].
‘The concrete forms of a( o ) and & o ) are omitted, which, as we can observe, have no effect on our
calculations.

The unperturbed system of (4.4) has Hamiltonian:

Ho(I ,@)=—~ x(kp)cosp, (4.5)

and the sets of the corresponding hyperbolic and elliptic fixed points are
Pr={(p*,¢*)| I u(ko*)=0, ¢p*=1n/2},
Pe={(p*,0*) | (kp*)=0, ¢*=0, =},
The equations of the separatrices joining (p*,+x/2) for every p* satisfying
I n(kp*)=0 are p=p* and @ =+x/2 , thatis, in the form of 7 :

(p(r),0(2)) = (o 2arcte( th(Far)))

where a= QJ)\;C; Ji(kp*) and @(T) are odd functions.

It is easy to calculate the corresponding Melnikov function:

* o .
M (z))= 4“51 j cosqocos(—%g-—qr)dr-cosqro,
0

having simple zeros independent of e . This implies that all arc separatrices break and the

transversal intersections happen under small perturbations.

EN
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]
The separatrices joining (o}, +7/2) and (p%, +=/2)for any PY and p?% satisfying
J x(kp)=0, for example, 4B is Fig.1, can be solved:

(p(),0()=(p*(1), B,

Obviously, Jx(kp*(7))->0, ,as 7->+oo.
The calculated Melnikov function is

Mie=—[  -FIutkor (N 2Lsin
(F—ate +2))ae
=l,cosqr,+1,8ingr,,
where
- « elliptic fixed point
ly= —_%V_S ]N(p*(r))sin(ﬁ—qr)dr ’ % hyperbolic fixed point

Fig. 1

b= (" Lu(on(e))cos(fy—ar)ds.

The Melnikov function has simple zeros independent of ¢ since at least one of /, and /, is not
equal to zero, except for at most countable ¢’s!',

We conclude that all straight separatrices also break and the transversal intersections happen
as ¢ is sufficiently small. _

By Bessel function having infinite zeros and its properties, we have a web consisting of infinite
separatrices for the unperturbed system of (4.4) as in Fig.l and therefore a chaotic web occurs to
(4.4), based on Smale horseshoes, as ¢ is sufficiently small®-3 11,

By Theroem 3.2, a stochastic web, a chaotic structure in the sense of Smale horseshoes actually,
appears in system (4.1).
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