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Abstract

The instability theory of shock wave was extended from the case with an infinite
front'V) to the case of a channel with a rectangular cross section. First, the
mathematical formulation of the problem was given which included a system of
disturbed equations and three kinds of boundary conditions. Then, the general solutions
of the equations upstream and downstream were given and each contained five
constants to be determined. Thirdly, under one boundary condition and one
assumption, it was proved that all of the disturbances in front of the shock front and
one of the two acoustic disturbances behind the shock front should be zero. The
boundary condition was that all of the disturbed physical quantities should approach to
zero at infinity. The assumption was that only the unstable shock wave was concerned
here. So it was reasonable to assume @=iY, ¥ was the instability growth rate and
was a positive real number. Another kind of boundary conditions was that the normal
disturbed velocities should be zero at the solid wall of the channel, and it led to the
result that the wave number of disturbances could only be a set of discrete values.
Finally, a total of five conservation equations across the disturbed shock front was the
third kind of boundary conditions which was used to determine the remained four
undetermined constants downstream and an undetermined constant representing the
amplitude of disturbed shock front. Then a dispersion relation was derived. The results
show that a positive real P does exist, so the assumption made above Iis
self-consistent, and there are two modes, instead of one, for unstable shock. One mode
corresponds to Y=—W -k (W<C0). It is a newly discovered mode and represents an
absolute instability of shock. The instability criterion derived from another mode is
nearly the same as the one obtained in (2, 3], in addition, its growth rate is newly
derived in this paper, and on this basis, it is further pointed out that
at 38V JOP)y=1+2M the shock wave is most unstable, i.e. its nondimensional
growth rate I"'=o0o

If ® is assumed 10 be a complex number with 1m(w)20 instead of being
assumed a pure imaginary number at the beginning, it can be proved in Section V that
there are still two modes for the instability criteria, besides, the roots ® of the

dispersion equation are still imaginary.

Key words shock wave, shock wave in a channel, instability theory of
shock wave, shock wave stability
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I. Introduction

There are two approaches in the study on shock wave stability. One of them was initiated
by Landau and Lifshitz!4 (what is called the evolutionarity of shock.wavel), and for the case of
one dimensional small disturbances, the stability criterion they obtained is M,>1 and M.<l.
In 1982, Xu's) proved that for two dimensional small disturbances, M,>1 and M,<1 is no
longer the necessary and sufficient condition for the stability of shock wave front, no matter
the front is infinite or bounded in a channel. In fact, the stability (or evolutionary) criterion is
influenced yet by the frequency of the two dimensional small disturbance. Generally speaking,
shock wave front is nonevolutionary (unstable) if the small disturbances it suffers are not one
dimensional.

The other approach was initiated by Dyakov!?? who used a method called normal mode
analysis, then Swan and Fowles(?) followed. They supposed that the Hugoniot curve of shock
wave is arbitrary, then the instability region obtained is

@V /0P)g<<—1 or j*(3V /3P)g>1+2M

Fowles and Houwing!é! showed that when the above condition is satisfied, a shock wave front
will split spontaneously into two shock waves and a contact discontinuity. Book!” used the
above criterion to discuss the stability problem of Sedov’s point e'xplosion wave. Xutl) gave
further the expression of the growth rate, when the above criterion for instability is satisfied.

The small disturbances behind an infinite plane shock wave consist of four independent
disturbances, which are one entropy, one vurtex as well as two sound disturbances. In
discussing the stability problem of shock wawe, everyone of the four disturbances should share
the same o and £, but / might be different in general. There is a flaw in either Dyakov’s or
Swan and Fowles’ paper. They discard, in fact, one sound disturbance and remain another-one
but without any proof or announcement. Such a proof is supplemented in Xu’s work!!2, and as
a consequence, two (instead of one) instability modes are obtained. One mode is a newly
discovered one, which represents an absolute instability of shock wave; the other is the same as
the one obtained by Dyakov!?], Swan and Fowles 3.

In this paper, shock wave instability in channel with a rectangular cross section is
discussed. Since it is three dimensional in essence, the small disturbances downstream consist
of five (instead of four) independent disturbances: one entropy, two vortex, and two sound
disturbances. As long as our interest is focused on the problem of shock instability, the
condition that the amplitudes of the disturbed physical quantities at infinity (both downstream
and upstream) should be zero leads to the effect that no disturbance is allowed to occur
upstream, and only one of the two sound disturbances is allowed to occur downstream, so we
need not to assume that there is no disturbances upstream beforehand. After substituting the
remained four independent small disturbances into the conservation equations.at the shock
front, we obtained a dispersion relation. It shows that, similar to the result obtained by Xut!J,
there are still two instability modes for shock wave. What is new is that the Dyakov’s criterion
for instability is now modified as '

]

)<t o (25,
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II. The Equations for Small Disturbance and Its General Solution

The Catesian coordinates system Oxyz is fixed on the shock, its x-axis conincides with
the axis of channel, and the undisturbed shock front is located at x=0. Gas flows from the
region x>0 (with velocity W) to x<<0 (with velocity ). We use as more as possible the same
symbols that Swan and Fowles!®! used. Suppose that

M=-W,/C,>1, M=-W/C<L1

and the Hugoniot curve of shock might be arbitrary.
The continuity, momentum and isentropic equations for small disturbances downstream

are
6u,+W 6u,+ % 32
aﬂ,+W 6ﬂ,+V ?95 -0
T =
36_1;_*_W ap+cz %1;. au,_l_au,) -0

35 o5 3 3 C* .\ _
S AW g =0 o (Gt W 3 )(p+r0) =0
If we substitute W, V and C with W, V, and C,, we also get the corresponding governing

equations for upstream region.
The general solution of the disturbance equations downstream is:

#,= (cosk,-y) - (cosk.-z) exp[-;‘_wt][Bk,exp[illx] +E-k.explil;x]

yie

(1
Vi mexp[il‘z’x]]

+F ST exp[ilVx]+ G-

@, =i(sink,y) - (cosk:z)exp[—iwt] [ —Bliexp[il,x]

+ F I;;I —nexplilx] 4G _%;(z)exp[ilﬂ’x]]

#;=i(CO8k,y) - (sink;2)exp[ —iwt] [ —FElLexp[ilix]

+ F Vk’(”exp[il“’x]+G-—%—)exp[:l<z’x] ]

p=(cosk,y) - (Cosk.z)exp[ —iwt] [Aexp[illxj

L7z -
F—K- explil " (J——F—,»exn ey J

P (Cosk,y) - (coskyzienpi --iot) [FexplillVx]+ Gexp[il™x] ]
where

x<0, |yi<a, [2[<b
ky=nn/a ("=1’2’3’"')
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k,=mn/b (m=1,2,3,+")
lLL=w/W, R*=Rk}+Ek]}

—-Wa)-l—/\/ szz_l_czszz_Cﬂkz .

D=

CZ—W"
jo o —Wo—n Co+CEW =CF_
= Ci-W?

A, B, E, F, G are arbitrary constants, represent the amplitudes of one entropy, two vortex and
two sound disturbances respectively. It is easy to see that the boundary conditions at the solid
wall of channel have been satisfied automatically, i.e. #y],.,a=0 and %:]:.,s=0.

Similarly, the general solution of disturbance equations upstream is:

i, =COS8R,y COSRzeXP[ —iwt] [Bok,exp[illux] +E kexplilox]

{o (2)
+ F“%}%BXP E§Yx] + Guw%";;’,o—m—)exp[ils“x] ]

n,=isink,y-c'osk,zexp[—imt][-—Bulmexp[ihnx]
+ F —w-'—exp[il“;x] +G Vohy exp[il“‘x]]
=i X Pk o= D :

%, =iCOSR,y Sink,zexp —iwt] [ — Eolexpliliox]

V kz . , V kz .
+ Fn-g__"TI;l,exp LSt x) + Go—a—)—_—ﬁ/—;‘n?exp[,[g%)x] ]

? =cosk,y-cosk.zexpl — iwt) [Anexp[illnxj
Vi (L Vi .
- F‘,—C—:"—exp[:lg1 x) —-G[,.Wexp[zlg2 x) ]

P =cosk,y-coskzexp[ —iwt] [Fexplil{! x]+Gexp[il{¥x]]
where
x>0, |yl<a, |z|<b
k,=nn/a (n=1,2,3,-)
z=mn/b (m=1,2,3,...)
ho=0/W, k=kj+k]
. WotNCila*+CilEW ; —~Cik?

& w;-C:
o0 Wew=nNCia*+Ci W — Cik?
° wi—C3

A, B,, E,, F,, G, are arbitrary constants, represent the amplitudes of an entropy, two vortex
and two sound disturbances respectively, and W, C,, ¥, are flow velocity, sound speed and
specific volume upstream respectively. Also, the boundary conditions at the solid walls are
automatically satisfied by the general solution upstream.

The remained boundary conditions to be satisfied could be devided into two classes. One
of them is the conservation relations for various disturbance quantities at the shock front, and
will be discussed in Section III. The other which will be discussed now is that the amplitudes
of disturbed physical quantities should be zero at infinity, i.e. as
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x—»ioo, U,, Uy, 4,, 7, p—>0

From the above demands, the following inequalities should be satisfied:

Im())<0 for x<<0, where / represents /, or I¢*’ or [(¥); and

Im(/)>0 for x>0, where I, represents /o or I1{*’ or I§2.

Since the gas concerned is nondissipative, and we are only interested in the instability
problem, we suppose that @=iyp,where ¥ is a positive real number. Substituting ® into the
expression of /, we have:

Im(/,)<0, Im( §<1)>0 and Im( }2))<0 for x<0, as well as

Im(/1,)<0, Im({{»)<<0 and Im(}{?’)<0 for x>0.

Hence in the upstream region (x>0), all of the five disturbances should be discarded
{correspondingly, each of the 4,, B,, E,, F,, G, should be zero); and in the downstream region
(x<<0), only the sound disturbance related to I’ should be discarded (F=0).

It is unnecessary and somewhat unnatural to suppose beforehand that @ 1is a pure
imaginary number, and we will discuss the general case that o is complex in Section V. It
will be showed that even when @ is complex, no new instability region appears.

III. The System of Conservation Equations Across the Shock and the
Dispersion Relation
Suppose that the geometry of the disturbed shock is:

x=g(y,2,t) =go-CO8k,y-COSk.z-eXDP[ —iwt]

then
the unit normal vector is: n= (1, —dg/dy, —0g/d=z)

the unit tangent vectors are: t,=(—dg/dy, —1,0)

From the momentum equation, the tangent velocities (upstream and downstream) must be
equal at the disturbed shock, so we have

(W+ﬁul-‘nl_‘=) ‘ty= (WD,O,O)t,

at x=0
{ (W48,,8,,8:) L= (W,,0,0)¢,

Similarly, the jump in the normal components of velocity across the shock (x=0) is given by
(W +18., 8, B.)n— (W,,0,0) -n—[(V,=V —8) - (P—Po+)1}
The Hugoniot curve of shock and the mass conservation equation demand that at x=0
7= (OP/0V) -
(D=W )2 =Vi(P+4—P) -}y —p--V)!
where D is the velocity of disturbed shodk, and
D=08g/6t = —iwg,CO8k,:-coskzexXp[ —iwt ]

The solution we are interested in is nontrivial, i.e. not all of the five constants 4, B, E, G
and g, are zero, and there are five conservation equations also at the shock, we then obtain
the dispersion relation
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e el )l s 1 35))

where

) =wwr=(5)

. w
jt= (poWo)z':( V:
ke =k} k2

and [‘¢' is a given function of . Substituting this function for ’l-(2 ’ into the above dispersion
relation, we get an algebraic equation of @, it is the roots of the algebraic equation that
determine the modes of instability. Let £2=w/Ck, the algebraic equation of w is trans-
formed into the one of Q: ‘

2-%(1—M2)Q(92+M2)
[1}
_( w
-G

IV. Two Modes of Instability

Qz+M2)(Q—M m) [1 +jz( gz )H]

It can easily be seen from the dispersion relation that there is a solution

Q=iM
which makes Q4 M?=0. It can also be rewritten as
I'=y/Ck=M
or
y=—W--k (W<0)
In the following, a transformation is made for solving the dispersion relation.
Let
" Q=i(1=M#)"2/shd or I'=y/Chk=(1—M?*)1"2/sh@

then

I . M-—chf
E  'A1=Mrsh?

Substituting them into the algebraic equation of £, we obtain, the dispersion equation in the
final form that is easy to solve:

(Mchf—1) (fch20+4gch84-k) =0

in which

f=M*-[14j2(0V /3P)x]
g=2M(Q -MYW /W,

= —[ar +—V’VV—0(1— ) |1+ (5 H]+2WLO(1 = M)
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The first instability mode correspondes to the root chf=1 /M, then, shf=
Q—-M¥)"2 /M, Q=iM,'=M,p=CkM = ~WE£>0(W <0), this root corresponds a new
instability mode which is called the “absolute instability”. It did not appear in either Dyakov S
paper'?) or Swan-Fowles’ paper'?), and has already mentioned above.

We now discuss the second instability mode. It can be proved directly that if

j*(V /éP)g<~1 or j OV /OP)g>142M
then we have the following two tenable inequalities:
(1) g*—4fh>0

i.e., the two roots of the quadratic equation of ¢ch@ are real number, and

(2) If+h|>Igl and [h]I>|f]

i.c., both of the absolute values of the two real roots are greater than one, though one of the
roots is positive and the other is negative.

The positive root with magnitude greater than one corresponds to a positive shd, from
the expression of £, it is easy to see that it is this root that corresponds to the instability, and
the value of ch# is

chb=[—gtn g"=1fR1/2f
Case 1 If j2(0V /dP) g<<—1, then f<<0and f4<0, the positive real root is
cho=[—g~N"g*=1fh1/2f
and the growth rate of instaﬁilityl" is

-2 1=M.§
N 2gt—Afh—4f*+29 JF 4]
Case 2 If j2(0V /0P)g>1+42M, then f>0and fh<C0, the positive real root is
| chf=[—g+n/ GF=ifh1/2f
and correspondingly, the growth rate of instability I is

e 2N T=M. f
TN 2@ —4fh— 4 —2gn g —1]F

It is casy to check that P(or I') we obtain in this section is positive indeed, so it is
consistent with the assumption made in Section II.

I'=

V. In Case of Complex

In this section, we relax our restriction (the assumption of a pure imaginary ®) and
consider a general case in which © might be complex. We stilll focus our attention on the
problem of instability. What we will prove is that:

(1) the form of the dispersion relation is the same as the one obtained in the previous
section;

(2) the parameter region that instability occurs is also the same as the one obtained in the
previous section.

So far, we avoid to discuss the problem of shock wave stability in general. The reason is
that if the problem discussed is shock wave stability, then the disturbances might occur
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upstream, and the whole formulafion of the problem should be reconsidered. In this case, one
of the appropriate research approaches might be the theory on shock wave evolutionarity (see
Landau and Lifshitz4! and Xu'*)).

A complex @ corresponds a complex shf, chf and @, so we suppose this time

0=—“0,+5'0‘
then
ch0=C,+iC;=chf,cos6,+ishf,sinb,
sh0=S,+iS;=shf,cosb,+ichb,sinb,
and
_NI=M® A 1T=M*
Q="grysT Sitigipsr S
(AT (¢ 1 1
(5 <5)= srgsT 7= She-[Moosdi:xchd,)

— A2
Im(l‘)— Al,f'\é,l_{_é‘{ -Se
From the expresson of £ above, it is easy to see that the sufficiént and necessary condition for
shock instability is S, >0, and while S,>0, we always have Im(,/k)<0, so one entropy
and two vortex disturbances downstream should not be discarded. From the expression of
Im(I<*/k, [ /R), we see that one value of (Mcosfxch@,) is always positive and the other is
negative. The prerequisite of retaining the sound disturbance G (retaining the /‘*) branch) and
discarding the sound disturbance F (discarding the [‘'' branch) is omnly #,>0 and
—n/2<6i<m/2 owing to S,>0.

In fact, the assumption that ,>0 and —n/2<0;<x/2 does not lose generality.
Because if 8,<0, then 7/2<0,<3%/2 owing to S, >0, and a new dispersion relation can be
obtained with sound disturbance F branch retained and sound disturbance G branch discarded.
It is easy to show that the signs of the roots ché are changed while the values of growth rates
§2 are unchanged.

On the other hand, since we already have four independent disturbances (unknowns) be-
hind the shock, from a mathematical view, the dispersion relation could not be determined if
the disturbances upstream are not zero. Therefore, we are going to prove that if the shock is
unstable, then the disturbed physical quantities upstream have to be zero. Let

2 _g-i¥Mi-
C chtp
where @ is complex,

p=@»+ips

chg=0C,+iC0¢=chgp, -cosg;+ishe,.sing,

shp=28,+i8;=shg,cosp;+iche,sing,
and

IS e 1 .
(5, =) =gror 7= cose [ £sing — Miche,]

Since the sufficient and necessary condition for shock instability is Im(£2,)>0, and from
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Mi—1 . ~
QD:WOO: . (a(+10r) s C,=chg,cosg,
the sufficient and necessary condition for shock instability transforms into  @,>0, i.e. chg,.
cos@; >0, i.e. cos@; >0 . Therefore, we have both

Igl) 11()2)
Im(=S—, —*— )<o and

[
Im( ’,‘2" )=— Al{o "é%jmlchwcosw@
i.e. as long as the shock is unstable, the disturbed physical quantities in front of the shock
have to be zero. So far, we have proved that as long as the shock is unstable and 6,>>0 as
well as  —x/2<6,<n/2, we still have
F=A4,=B,=E=F,=G,=0
even when a complex o is conerned now.
Following the example in Section II and III, we obtain the same dispersion relation:

(Mchf—1) (fch?8+gchf+h) =0

where the coefficients f, g and A have the same expression as previous. From the expression of
chd and shé, it is easy to see that under the condition 8,>>0, the C, and S, share the same
sign, and when one is zero, the another will be zero too.

-We now give a criterion to divide unstablecase from stable case for the second instability
mode when j2(8V /3P)y varies in the region (—oo, oo). The criterion is:

(1) If one of the two roots satisfies C;=9 and C,>1, or C,;s 0 and C,>0, then the shock
wave 1s unstable;

(2) If one of the two roots satisfies Cy=0and C,=1, or C;# 0 and C, =0, then

(A) as [" =0, the shock wave is marginal stable;

(B) as " =oo, the shock wave is most unstable;

(3) If it does not pelong to the above two cases, then the shock wave is stable.

We now discuss the shock wave instability based on the dispersion relation using the
above criterion. The first mode is an instability one and is still the same as-previous:

ché=1/M  (Ci=0, C,>1)

For the quadric equation of ché in the dispersion relation, we divide the value of
j*(8V /3P) g on the real axis into five regions and will discuss them individually. From g*—
4fh=0, we obtain

oA VN A G-—-MHYW/W,
a=i(gp),= Q=1+ T+ (=M (A =T Wy
T 4 (=MW /W,

A=Gp),~ =TT =W Wy

Obviously, we have

- 1<A<Q<14-2M
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When A=j*(3V /0P)g€(Q:,Q,), because f>0, so g*—4fh<0.the two roots of
qudratic equation are a pair of conjugate complex number, whose Cy.=C,_<<0 and C(#0.
According to the above criterion, the shock wave is stable in this region. When A is outside
the region ( Q,,Q, ), we have two roots of real number (C:=0), and from the requirement of
instability: ch6>1, we get the prerequisite for the presence of instability: A< —1 orA>14-2.
M. Hence there is no shock wave instability in the regions —1<<A<<Q and Q. <A1 +2M.

Table 1
At aV the first root the second root
=2(2. situation of stabilit
( aP /% (ch)y=C, +iC;y (chd)_=C,_+iC;_ y
A< —1 C;+.=0, C,1>1 Cy-=0, C,_<~1 unstable (U)
(1+8)>0" Cia=0, Crr=—1/M C;-=0,C,_—c0, T—0 marginal stable (mS)
A=—1 Cii=0 Cii=-1/M none
—1<A<Ql Ci+=ou Cri<1 Ci—=0, C'_<—1 stable (S)
0:1<A<Q: Ci»0, €. <0 Ci-=0, C,,=C, <0 stable (S)
A<<ALL+2M Cii=0, Cn<1 C;-=0, C,.<1 stable (S)
A=1+2M Cii=0,Cp=1, N'=+oc Ci-=0, C,_.<~-1 most unstable (MU)
A>1+2M Civ=0, Cei>1 Ci-=0, C,_.<—1 unstable (U)

We now discuss the penformance of roots in the vincinity of A=~—1 and A=1+4+2M. As
(A+1)->07, C,,~>—1/M and C,_->+oo, the latter corresponds to "0, i.e. marginal
stability. However at A= —1, there is only one root:C,=—1/M. As(A—1—2M)->0" C,,
—>1*and C,_<{ —1, the former corresponds to "= + oo, hence A=1+2M is the most unstable
point (in the meaning of maximum instability growth rate). At A=1+2M, C,,=1 and C,.

< —1, the former also corresponds to "= +oco.
VI. Conclusions

1. The shock wave instability in a channel with a rectangular cross section has been
discussed and solved strictly in mathematics.

First, two sets of general solutions of perturbation equations are qbtained. ©me set
corresponds to upstream and‘the other to downstream of shock front, and each set contains
five constants, representing five kinds of disturbances correspondingly, to be determined

Secondly, three kinds of boundary conditions are given. The first one demands that the
amplitudes of all disturbed physical quantities should approach to zero as x— *oo. Since it
‘is assumed that only the shock wave instability, instead of stability, is concerned, we might
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assume that w=iy at the beginning where ¥ is the growth rate of instability ( >>0 ). Based
on this assumption and the first kind of boundary conditions, it could be proved that all of the
five undetermined constants for upstream set should be zero, i.c. there are no disturbances
upstream, and for downstream set, one of the two acoustic disturbances should be vanished, i.
e. one of the other five undetermined constants should be zero. The sécond kind of boundary
conditions demands that the normal disturbance velocity should be zero at the solid wall of
channel, so that only a particular set of discrete values should be assigned to the wave number
of disturbances. The third kind of boundary conditions consists of five conservation equations
for disturbed physical quantities that should be valid at the disturbed shock front.

Thirdly, the remained four undetermined constants for downstream set and a constant
representing the amplitnde of disturbed shock are determined by the five conservation
cqhations; then a dispersion relation is obtained. Based on this dispersion relation, it is easy to
check that positive real ¥ does exist (so it is consistent with the previous assumption), and
easy to derive the eofresponding criteria for instability.

Fourthly, to generalize our results, a complex o with its imaginary part being positive real
number is also assumed instead of being assumed a pure imaginary number at the beginning.
The problem is treated in a similar way, and the same dispersion relation is also obtained. Its
roots as well as the instability criteria obtained are also the same as before. It means that o
could be proved to be a pure imaginary number as long as only the shock instability is
concerned.

2. After analysing the obtained dispersion relation, we find that there are two modes,
instead of one, for shock instability in a channel with a rectangular cross section. One mode is
an absolute instability and it is a newly discovered one. This mode has nothing to do with the
thermodynamical properties of gases (such as j2(6V /0P)x), and its growth rate is p=
—W .k (W<0) or I'=M. It represents a type of short-wave-instability, and shows that a
weak shock might be more unstable than a strong shock under certain circumstances.

The instability criteria derived from second mode are

fz(% H<—1 ' or jz( g}z )H>1+2M

they are closely related with the thermodynamical and flow properties of gases, and have
almost the same form as those from Dyakov'?! and Swan-Fowlest®], Moreover, an expression
of instability growth rate is further given in this paper. It shows that the second instability
mode is also a short-wave-instability, and o is really a pure imaginary number. In addition,
we further point out that-at j*(8V /0P)s= —1", the shock wave is neutrally stable; and at
j2(V /8P)g=1-+42M , it is most unstable.

3. When j2(0V /OP)y varies along the real number axis, the variation of the situation
of second mode is shown in table.

4. When the width 2a and height 2b of the cross section of a channel approach infinity,
then the results derived in this paper degenerate inio the case with an infinite shock front. In
comparison with the results in [2, 3], the improvement in this paper are: 1) the instability
problem of shock wave with an infinite shock front is stric\tly solved from a-mathematical
view; 2) two instability modes, instead of one, are obtained; 3) the @ of the second instability
mode is proved to be a pure imaginary number as long as only shock instability is concerned,;
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i.e. the disturbed physical quantities grow exponentially as long as instability occurs.

5. In comparison with [1], a geometrical extension from two to three dimensional case, a
channel with a rectangular cross section, is realized. In addition, a discussion about the
variation of the situation of second mode is supplemented in the table, which shows that
j*@V /oP) ;= ~1" is the point of neutral stability and j2(3) /dP)g="1+2M is the most
unstable point.

References

[1] Xu Fu, Shou\ wave instability, Proc. Int. Conf. Fluid Mech., Beijing (1987), 243 —247.

[2] Dyakov, S. P., On the stability of shock waves, Zh. Exsp. Teor. Fiz., 27, 3 (1954), 288 —
295. (in Russian)

[3] Swab, G. M. and G. R. Fowles, Shock wave stability, Phys. Fluids, 18 (1975), 28 —35.

[4]1 Landau. L. D. and E. M. Lifschitz, Fluid Mechanics, Addison-Wesley Reading M. A.
(1959).

[5] Xu Fu, Interaction of a gasdynamic shock with small disturbances, Acta Mechanica
Sinica (English Edition), 3 (1987), 113 —122.

[6] Fowles, G. R. and A. F. P. Houwing, Instabilities of shock and detonation waves, Phys.
Fluids, 27 (1984), 1982 — 1990.

(71 Book, D. L., Role of the boundary conditions in the problem of the linear stability of
the Sedov point blast solution, Proc. 5th Int. Symp. Shock Waves and Shock Tubes, D.
Bershader et al Eds. (1986), 431 —437.



