Journal of Shanghai University (English Edition), 2004 8(2); 113~116

Article ID: 1007-6417(2004) 02-0113-04

°Letters °

Multi-scale Equations for Incompressible Turbulent Flows

GAO Zhi (&%), ZHUANG Fenggan (EiE +)°

1. Institute of Mechawics, Chinese Academy of Sciences, Beijing 100080, P. R. China
2. China Aeraspace Science Technology Corporation, Beijing 100830, P. R. China

Abstract The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for

the short range eddy stress were given. A concept of resonant-range interactions between extremely contiguous scales was introduced

and some formulae for the resonant-range eddy stress were also derived. Multi-scle equations for the incompressible turbulent flows

were proposed.
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1 Introduction

Turbulent flow contains a wide range of time- and
spacescales. The interactions between different
scales play a key role in the evolution of turbulent
flow. In the traditional theory of turbulence, eddy-
viscosity was introduced a century ago by J. Boussi-
nesq and developed later by G. I. Taylor and L.
Prandtl, and they claimed that the interactions are
mainly between widely separated scaled "? . This is
so-caled long-range interactions between scales.
However, it is generally believed that the dominant
interactions are between contiguous, rather than
widely separated. scaled U This may be called short-
range interactions between scales. Both the “ direct
interaction” theory? presented by R. Kraichnan and
the numerical inference acquired through the analysis
of direct numerical simulation databases for channel
turbulent flow by J. Domaradzki et al'? confirmed
that the interactions are mainly between contiguous
wave numbers. The aim of this paper is to extend the
multiscale model of turbulence? and to confirm fur-
ther short-range property of interactions between
scales, which is applied to space-average analysis of
turbulence and to deduce multi-scale equations for the
incompressible turbulent flows.
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2 ShortRange Interactions between
Scales in Turbulence

Starting from the space-average Navier-Stokes
(NS) equations for the incompressible flows, we
prove the interactions being mainly between contigu-
ous rather than widely separated, scales and derive
expressions of short-range turbulent (or call eddy, the
same below) stress and then introduce a concept of
resonant-range interactions between extremely con-
tiguaus scales and deduce expressions of resonant-
range eddy stress. The space-average NS equations
for the incompressible flow can be written as
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a -3 xi, the time ¢, the velocity w;, the pressure p,
the temperature 7' and the total energy e: are normal-
ized with reference to the boundary characteristic
length L, L/U-, Uy W2, T and U, where the
subscript ©©denotes the free stream conditions; e:=

GT+ %umi is the total energy; v is the viscous

stress. Since the solutions u;, p and e; of the NS e-
quations and the solutions U,;, p. and e of the space-
average NS equations are continuous and differen-
tiable the following expressions can be deduced from
the definition (2.3) of eddy stress.
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and V<<V, Day<< D,y Dyp<< Dy,, Dzp< Az, (for
short, Axr<< Ax,., the same below). Suppose that
without losing generality, the side-length of the vol-
ume dements (cuboids) V. and V satisfy Axy/ A=

Dy s/ Dyo.=Dzs/ Dz, then we deduce from Eq. (2.9 )
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Fj (Fg) represents the eddy stress of the whole scale
range with scales Ax<< Axy (A< Ax,) acting on the

ch(Ufj, €ct )=

scale range with scales &> Ay (Ax™> A, ), and Fepi
represents the eddy stress of the contiguous scales
ranging from Axrto &x. acting on the scale range with
scales Ax > Ax.. From Egs. (2. 14) and (2. 15) we
know that Fyi is only &}/ Ax? of Fei and that Fes is
(1— McfAx.?) of Fi. When Avy/Ax, equals 2 1
3 'and 5 ', F;/F4 equals to 0.25, 0.11 and 0. 04
respectively; Fei/Fei equals 0. 75, 0.89 and 0. 96,
respectively. Therefore, one may deduce that the in-
teractions between scales A > &re and A< Axe are
mainly short-range ones between scales &> Ay, and
the contiguous scales ranging from Axy to Ax,, where
Ax ¢ should equal (0. 2—0. 5) Ax,. Since the space-
average velocities U.; and Uy; are continuous and dif-
ferentiable, the differential formula for the short-
range eddy stress Fr; can be deduced from its integral
expression (2.15).
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Through similar operations, some expressions simi-
lar to Egs. (2. 15 ) and (2. 16 ) can be obtained.
These expressions give the integral and differential
formulae for the short-range eddy heat transfer E,
the short-range eddy pressurepower P, and the
shortrange eddy stress-power, dissipation
Ikyr. They are respectively
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Discussion. The short-range interactions between
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scales imply that as to the space-average analysis of
turbulent flow, it would be best to adopt a multi-scale
model, at least a two-scale model. In addition, an in-
spiration acquired from all the differential formulae
2.16), (2.18), (2.20) and (2.22 ) of the short-
range interactions is that we should introduce a con-
cept of resonant-range interactions between scales,

which define the interactions between scales x> Ax,
and the small scales being smaller than Az, but ex-
tremely near it. According to the definitions of the
space-average velodties we know that the Uy tends to
Us; as the Axy tends to &x., Therefore, the differen-
tial formula of the resonant-range eddy stress can be
deduced directly from the formula (2. 16) of the short-
range stress.
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Similarly, for the scale Axy, the differential formu-
lae of the resonant-range eddy stress FZ:, the reso-
nant-range eddy heat transfer E}lf, the resonant-range
eddy pressure power P}lf and the resonant-range eddy
dissipation IIjf are respectively
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3 Multi-scale Equations for Incompress-
ible Turbulent Flows

Dividing beforehand the resolved scales into two or
more scale-ranges and utilizing all the integral and dif-
ferential formulae of the short-and resonant-range in-
teractions given in the above section ,we can obtain

multi-scale equations of turbulence. Consider the case
of two scaleranges, in which the resolved scalerange
(Axy, 1) are divided into small scale-one (Dxy, Dx,)
and large scale-one (Ax., 1). The large-scale equa-
tions governing the average motions of the large scale-
range are
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The small-scale equations governing the fluctuation
motions of the small-scale (or, say, fine-grid) aver-
age quantities relating to the large scale (coarse-grid)
average ones are as follows:
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defined in Egs. (2.2) and (2. 10). Both the integral
and differential formulae of the short-range interac-
tions Fefi, Eers Per and Iky can be used and are given
in the formulae (2. 15)— (2. 22), respectively. The
differential formulae Ff?lﬂ, E}lf, P}lf and H}; expressing
the resonant-range interactions are given in Egs.

(2.24)— (2.27). In general, Axr is consistent with
the filtered scale in the large eddy simulations (LES),

and suppose Axc =(2 ~5)Axr. The multi-scale equa-
tions with scale-ranges being more than two can be
similarly deduced. The large-small scale (LSS) equa-
tions (3.1) and (3.2) can be used to determine the
ten unknown quantities Uq, Uy (1 =1, 2, 3), Pq, Py,

eq Cor T¢) and ey, Cor Ty ). Therefore the LSS equa-
tions (3.1) and (3.2) are approximately dosed and do
not contain any empirical constants or relations. And
the following conclusions can be reached: 1) the non-
linear dynamics of the resolved large scales &y ™> Axe
are governed mainly by their interactions with the re-
solved small scales in the range A&ve> Ar™> Axy and
much smaller unresolved scales &< Az have negli-
gible effects on the resolved large scales v Axe,

which are neglected; 2) The dynamics of the resolved
small scales in the range Axe > Ax™> Ay are largely
governed by their interactions with the resolved large
scales &r™> Ax. and much smaller unresolved scales
A< Axy have secondary effects on the resolved small
scales, which are approximated by the resonant-range
eddy stress etc. It should be noted that the above con-
clusions agree with those obtained through the numer-
ical analysis of dire¢ numerical simulation (DNS)
databases for the incompressible channel flow by J.

Domaradzki et al'®. The other conclusion given by
the LSS equations (3. 1) and (3.2) is that the fluctua-

tion motions of the resolved short-range small scales
ranging from &xy to Ax, relating to the large scales
Ay> Ay are caused mainly by the resolved large
scales Axr> Ay .

A brief comparison of the multi-scale equations
(3.1 ) and (3.2 ) with the traditional LES equations
is as follows. In the former the unresolved small
scales &< Axr act only on the resolved small scales
in the range Aue>>Ax™> Ayr; and in the latter the un-
resolved small scales &< Axr act on the whole re-
solved scales &> Axyr. Therefore, as to detecting
the nonlinear interactions between contiguous scales
and their effects, the former gains dominance over
the latter. In addition, the unresolved small scales Ax
<Ay, contain still a wide range of time- and space-
scales, therefore, any formulae expressing their in-
teractions with the resolved small scales are certainly
imperfect. Perhaps it is another choice to use empiri-
cal sub-grid scale (SGS) model instead of the formulae
of the resonant range interactions.

References

[ 1] FrishV, Orszga S A Turbulence: Challenges for theory
and experiment| J| . Physics Today, Jan. 1990, 1. 23—
32.

[2 Hinze J O. Turbulence| M]. McGrawHill Book Co.,
1975.

[3 Domaradzki J A, Saiki E M. A subgridscale model based
on the estimation of unresolved scaes of turbulence J .
Phys. Fluids, 1997 9(7). 2148— 2164.

[4 GaoZ Zhuang F G Time space scale effects in numeri-
cdly computing flowfields and a new approach to flow nu-
merical simulation J . Lecture Notes in Physics, 1995
453, 256-:262.

(Executive editor SHEN Meifang)



