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Multi-scale Equations for Compressible Turbulent Flows
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Abstract The short-range property of interactions between scales in the compressible turbulent flow was examined An estimation of

the short-range scae scope and some fornulae for the short-range eddy stress and heat transfer etc. were given A concept of reso-

nant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress and
heat transfer etc. were also given Multi scale equations for the compressible turbulent flows were presented. The multi-scale equa-

tions are approximately closed and do not contain any empirical constants. The compressibility effects on turbulence are determined by
the Farve averaged variables and the nonlinear relationships between the Farve- and physical-averaged variables.
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T he multi-scale approach to computing the incom-
pressible turbulent flows proposed by the paper| 1. 2]
is extended into the case of compressible turbulent
flows.

1 Short-Range Interactions between Scales
in Compressible Turbulent Flows

Starting from the space-average Navier-Stokes
(NS) equations for the compressible flows, we exam-
ine the short-range property of interactions between
scales and derive formulae of the short-range stress
and then introduce a concept of resonant-range inter-
actions between extremely contiguous scales and de-
duce formulae of the resonant-range eddy stress. The
space averaged NS equations for the compressible
flows can be written as
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Uct/ a5 ts s ujs O ps Ty €15 G, and * are made di-
mensionless with reference to L/ Uc, L, Ucs PO
0 U, Teoy U% R and Mo, respectively; the sub-
script ©© denotes the free stream conditions; The total

energy e; = C,T + uai. The fluctuations of both

the thermal conduct1v1ty k and the coeffidient of vis-
cosity # are neglected in the space averaged equations
(1.2) and (1.3). By similar considerations and oper-
ations made in the multi-scale analysis for incompress-
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ible turbulent flows' ", we can verify the short-range
properties of interactions between scales in the com-
pressible turbulent flow and give a reasonable estima-
tion of the short-range scale scope and obtain integral
and differential formulae of the short-range eddy
stress Fi, the short-range eddy heat transfer F,
the short-range eddy pressure-power P, the short-
range eddy dissipation Il and the short-range densi-
ty-temperature correlation € as
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We may introduce an idea of resonant-range interac-
tion between extremely contiguous scales in turbu-
lence as proposed in the multi-scale equations for the
incompressible turbulent flows' *? and deduce the dif-
ferential formulae of the resonant-range eddy stress
Flz, the resonant-range eddy heat transfer Ef;, the

resonant-range eddy pressure power ijif’
nant-range eddy . dissipation Hdﬁ and_the resonant-

the reso-

range density-temperature correlation ‘D}lf as
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and Vy = DxrAyrDzr. The Fei indicates the eddy
stress of the short-range scales ranging from Axy to
Nx, acting on the large scales A > Ax.. An estima-
tion of the short-range scale scope shauld be Axf: 0.2
—0.5) Az, . Themeanings of Ecr, Py, Iy and ©.f are
similar to that of F¢;. The F%% indicates the eddy
stress of the resonant-range scales being smaller than
but near extremely Axy acting on the small scales in
the range Aw<< Ax<< Ax,.. The meanings of Ef, P
I, and ¥ are similar to that of Ffy;. The short-
range property of interactions between scales imply
that for the space-average analysis of compressible
flows it would be best to adopt a multi-scale model,
at least a two-scales model. We consider two-scales
model.

2  Multi-scale Equations for Compress-

ible Turbulent Flows

Dividing in prior the resolved scale-range (Axr, 1)
into small scale-one (Axy, Ax.) and large scale-one

(Axe, 1). The large-scale equations governing the
motion of the large scale-range are
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The small-scale equations governing the fluctuation
motions of the small-scale (or say fine-grid) averaged
variables relating to the large scale (coarse-grid) av-
eraged ones are as follows:;
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Qs and L, are the short-range velocity-density
and energy-density correlations, respectively. Then
we can obtain differential-formulae of “Dﬁff and q)gff by
using &xr, Ayp and Azp instead of A, Aye and Az,
respectively in the formulae(22.2) and (23.2). 4

and ¥ can be called the resonant-range velocity-den-
sity and energy-density correlations, respectively.
The large-small scale (LSS) equations (20) and (21),
in which the eight equations are actually the relation-
ships between the eight Farve space-averged variables
Wecis Uvsis €100» ewor) and the common space-aver-
aged variables (Ug. Ups ec» ey ), can be used to de-
termine twenty unknown quantities (€, Ug, Ugis Pes
To,enc) and (O, Us, Ugis prs Ty esor ). Therefore,
the LSS equations are approximately closed and do not
contain any empirical constants or relations. Com-
pared with the large-small scale (LSS) equations for
the incompressible turbulent flows , the LSS equa-
tions (20) and (21) increase eight Farve averaged
variables and the eight nonlinear relationships be-
tween the Farve- and space-averaged variables. The
compressibility effects on turbulence are determined
by the above-stated eight nonlinear relationships and
the eight Farve averaged variables, which are reduced
to the eight space averaged variables in common used
when the density € equals to constant. From the LSS
equations (20) and (21) we know that the nonlinear
dynamics of the resolved large scales &> Ay, are
governed mainly by their interactions with the re-
solved small scales in the range Ax.> A= Axy (A
=0.5—0.242,) and much smaller unresolved scales
Ap<Agy have negligible effet on the resolved large
scales Ax=> Ay, which are neglected; and that the
dynamics of the resolved small scales in the range e
= Ax=> Axy are largely governed by their interactions
with the large scales Ax™> Ax, and much smaller unre-
solved scales Ax<< Axy have secondary effects on the
resolved small scales in the range v, > x> Axy,
which are approximated by the resonant-range eddy
stress etc.; and that the fluctuation motions of the
resolved small scales in the range Ax.> Ax™> Axy re-
lating to the resolved large scales Ax> Ay, are caused
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mainly by the large scales &:> O¢.. The above con-
clusions are agreement with those given by the multi-
scale equations the direct numerical simulation (DNS)
for the incompressible turbulent flowd ™. The nu-
merical inference acquired through the analysis of
DNS databases for the channel incompressible turbu-
lent flows by Domaradzki et al'¥ confirmed that the
nonlinear dynamics of the resolved modes with wave
number k<k 1 are governed by their interactions with
a limited range of modes with wave number not ex-
ceeding 2k 1 and much smaller scales have a negligible
effect on the resolved ones and that the nonlinear dy-
namics of the modes with wave number ranging from
k1 to 2k are largely determined by their interactions

with the resolved scales with wave number k< k. In
addition, the unresolved small scales Ax<< Ay contain
still a wide range of time- and space-scales, hence
any formulae expressing their interactions with the
resolved small scales in the range Axc> Ax> Axy are
certainly imperfect. Perhaps it is other choice to use
empirical sub-grid scale (SGS) model instead of those
formulae of the resonant-range interactions.

In addition, by similar deductions made in the
above-stated large-small-scales, 7 .e. two scales equa-

tions we can obtained three-scales equations for the
compressible turbulent flow. The three-scales equa-
tions are also approximately dosed and do not contain
any empirical constants or relations. It should be
mentioned that in the vidnity of shock wave the law
of interaction between scales in the compressible tur-
bulent flow is not clear and so the multiscale model is
not suitable to shock waves.
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