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ABSTRACT : In this paper. a nonlocal theory of fracture for brittle materials has been systematically devel-
oped . which is composed of the nonlocal elastic stress fields of Griffith cracks of mode-1, II and II, the
asymptotic forms of the stress fields at the neighborhood of the crack tips. and the maximum tensile stress
criterion for brittle fracture . As an application of the theory . the fracture criteria of cracks of mode-1, I,
I and mixed mode I-II, I-III are given in detail and compared with some experimental data and the
theoretical results of minimum strain energy density factor.
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1. INTRODUCTION

Due to the prominent contributions of Griffith . Orowan and Sih , the theory of brittle
fracture has been crowned with a great success in predicting macro fracture of brittle materials.
Due to the development of advanced materials such as ceramics composites and especially the
investigation of their toughening mechanism , the phenomenal theory of fracture has been studied
from the view of the micro mechanism of crack extension. This trend defies the current theory
in two aspects . The classical continuum mechanics needs to be extended to incorporate the
effect of micro structure of materials , and the environmental parameters around a crack tip
such as stress intensity factor and J-integral need to be connected with the local state of
stress or strain on a micro scale . The nonlocal continuum theory!!'2! developed in 1970 s can
meet to some extent the first need , since this generalized continuum theory bridges the gap
between the classical continuum theory and the lattice dynamics . The present paper is devoted
to the second need, i.e., to develop a new theory of fracture for brittle materials within the
framework of nonlocal elasticity .

The analysis of a crack problem with nonlocal elasticity is originated by Eringen'!3~ 3!, one
of the founders of the nonlocal continuum theory . He and his coworkers have obtained two
significant results on the nonlocal stress distribution of Griffith cracks of mode-I, II and IIT.
No singularity appears in the nonlocal stresses at a crack tip, and if the maximum stress near a
crack tip is adopted as the critical parameter of crack extension , the known experiments on
brittle fracture can be explained from the cleavage mechanism of breaking the coherence of
atoms . Yu and Zheng!®! extended the nonlocal elastic analysis of a crack to nonlocal elasto-
plastic analysis . Though these results may be used for a new approach to the problems of
brittle fracture, the numerical solutions of stress fields are unsatisfactory in practical applications
and insufficient to treat a crack of mixed-mode . Recently , the author 7! has worked out an
explicit form of nonlocal stress field of a mode-1 crack . Following section 2 in which the
nonlocal elasticity is briefly introduced , we focus on the explicit solution of Griffith cracks of
mode-II and III in section 3. For the sake of integrity , the solution of mode-I Griffith crack is
included . Based on the results , the asymptotic nonlocal stress fields near the crack tips are
derived in section 4. In section 5 the maximum tensile stress criterion for brittle fracture is
proposed and used to deal with some important crack problems .

51

. NONLOCAL THEORY OF ELASTICITY
Nonlocal theory of elasticity!'*2) is an extension of classical (local) theory of elasticity by
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taking into account the effect of long range force in deformed materials . For an infinitesimal
deformation of isotropic and homogeneous materials , the equilibrium equations of nonlocal
elasticity are identical to the one of classical elasticity .

’ij,j+fi=piii (1)

where i, is displacement components , ¢, ; nonlocal stress , f; body force and p mass density .
Here we employ as usual the superposed dot and a comma to indicate partial derivatives with re-
spect to time and the rectangular coordinate x; respectively and repeated indices mean a
summation .

Nonlocal theory of elasticity is characterized by its constitutive relation as follows

t,-j(x)=J allx’ —xl, &) [Aep (x )6, ,42pe;; )] av (x") )

where J and yu are the Lame constants. §,; is the Kronecker ¢, v the material domain,

e,-j=%(u,-fj+u,-',-) (3)
the strain, « (|x "—x| ), ¢ ) the constitutive function called the nonlocal elastic kernel, ¢ a
parameter and |x’ —x| the distance from x’'to x.

Relation (2) indicates that the stress at a point x depends on strains at all points in the
material domain . This feature reflects the physical fact in lattice dynamics that an atom is
interacted by another atom at a long distance . Naturally , it is expected that the interaction
diminishes with the distance of atoms so that the nonlocal elastic kernel is an attenuation
function .

On the other hand , if we denote the Cauchy stress in classical elasticity by a;; »
constitutive relation (2) can be rewritten as

t,-j=J‘a_(|x’—x|,s)a,-j(x’)dv(x/) )

where

a,-j=lekk6,-j+2ue,-j (5)
is the classical Hooke's law . Hence the nonlocal elasticity takes the classical elasticity as a
limit when

a (x" x|, e)lg=0o=08 (Ix" —xI) (6)

where 6(lx’ —x| ) is the Dirac function.

Though the nonlocal elastic kernel can be related to the interaction potential of atoms in
lattice dynamics (21 | the practical way of determining its form reasonably and reliably is not
available up to now . In the published literature, such as in Eringen’s paper["‘l » the kernel is
selected as a trial attenuation function under condition (6) and then to determine the constant
¢ by comparing the wave dispersion relation of nonlocal elasticity resulted from the kernel with
the one of lattice dynamics . In this way, several forms of the kernel have been proposed .
In a previous paper[” in which the nonlocal stress field of a mode-1 Griffith crack was
investigated , the author proposed

2 4
allx’ —x].g)= ¢ (7)
n(lx" —x|*+e? )

where ¢=aq /2, a is the atom distance in a perfect lattice. Since the kernel has been successfully
used in treating a crack problem, we will still use the kernel in what follows .

III . NONLOCAL STRESS FIELDS OF GRIFFITH CRACKS
By a Griffith crack is meant a crack in an infinite plane which is subect
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to a uniform force at the crack faces or at the infinite distance from the crack . Here we
investigate three modes of a Griffith crack: mode-I which corresponds to a tension force ,
mode-II to a shear force and mode-III to an anti-plane shear force. For a Griffith crack , Eringen!*)
showed that the field equations of nonlocal elasticity are the same as those of classical elasticity.
Therefore ., making use of Fourier transformation technique and the symmetry of the problems,
we can find formal solutions of the nonlocal elastic stress fields :
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where b=p /(1+v ), v is the Poisson’s ratio, 21 the length of a crack , vectors x=xi+yj+zk
and x'=x"i+y’j +z" k are originated at the centre of a crack , x-axis lies on the crack line and
y-axis is perpendicular to the crack line, u(¢) is the displacement of the crack surface. namely,
u(t)= uy(x, 0) for mode-I crack, u(¢)=u,(x, 0) for mode-II and u (¢t)=u,(x,0) for
mode-III in which |x|<1. With the nonlocal elastic kernel (7), (8)— (10) can be further

integrated .
t”=—% _ll (1+ya—ay)-—(x_—:)—2:75u'(t)dt
tyy=—_nb— J‘_ll (1—y*%)ﬁ;+—})”—u/(t) dt /
z=%f1 (2+ya—y>mu’(z)dz 1
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1
b 3 =t ,
Lay== — |40 ) x—t
oo jl( ¢ 5y> o)y VW
for mode-I1 12)
1
__b 3 y* /
tyy T j—l(y ay*> (X_t)2+y*2 u (t)ar
u 1
= — _—y— ,
txZ T J‘_ (x_t)2+ *2 U (t)dt
for mode-1II (13)

———J (x—t)2 u(t)dt

in which y*=\/y2+£2

Generally speaking , displacement % (¢) in (11)— (13) are to be determined by stress condi-
tions on crack surfaces. But up to now, the relevant nonlocal stress boundary condition is under
investigation . The concept “ uniform force loaded on a crack surface " is based on the classical
Cauchy stress , rather than the nonlocal stress . Eringen'*) used the classical concept to solve
u(¢) in (11) — (13) numerically . But Atkinson!®! pointed out that the Eringen's results are
not convergent . In fact , the classical stress boundary condition is in general not compatible with
the nonlocal continuum theory . In the auther’s opinion, it is neccessary for the time being to
keep the classical description of the boundary condition :

g, (xy)l,o=—p for mode-I
0y (x2y),ne=—p for mode-1I 14)
0,.(x:p) ,m0=—p for mode-111

where p is the uniform force . Without any ambiguity , tension force and shear force are denoted

by p.
From (4) and (5), the relation between o; and ¢,; is

a'ij=tij|s-'0 (15)
Hence , displacement y (¢) must satisfy , by combining (11)—(15)
1 ’
—ij. u—(t)—dt= -p for mode- 1,11
T |, x—t
(16)
U Yowe)
- J- —=dt=—p for mode- 111
n . Xt
They are obviously identical to the classical results, that is,
u(x)=?p,/lz_xz for mode-1, II )
a7
ulx)= % V12 for mode-1Iil
Now by substituting (17) into (11)}—(13), we find
(14,9, (,_2 ), (1-,*=2_); for mode'1 (18)
y PR te,=ly ay* ty,= y y or mode
y y _ 4 - d
tex= (2+y7y)(? J) t,y—<1+y a_y)I ty),—<y 6y*>" for mode-11 (19)
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= _f(1-& 0\ ~(1- &9 f -1 (20
s (1 2 68)( J) y; <1 5 68)1 or mode-11I (20)

T+SJR J7 Py 2
e\ V) = Sy
R(T+SJYR) @1)

T= (x*+y*2 )2+ 2 (p*2=x?)  R=(x2+y*?)P +22(y2-x)+[*
Those are the nomlocal stress fields of Griffith cracks in an explicit form , in which (18) has
been reported in a previous paper[” .
In (18)—(20), y**=y*+¢*>0, §>0, R>0 and T+S,/ g >0. Hence, no singularity
exists in the nonlocal stress fields .

in which

IV. ASYMPTOTIC NONLOCAL STRESS FIELDS OF CRACKS
The explicit solution of nonlocal stress fields of Griffith cracks makes it possible to find out
the asymptotic distribution of nonlocal stresses near the tip of a crack . To this end , we take
such a pseudo-polar coordinate system at a crack tip (x,y )=1(1,0) as

=1+r cos
y=r sinf sing (22)
© ¢=r sinfl cos @
in which 0g0<n, — 3 \(p< 2 and only two of the three parameters (r, 0, ¢) are indepen-

dent since ¢ is a material constant .

From (22), r=y/(x—1)?+y? +¢?. Hence r« 1 at the neighborhood of the tip of a
macro crack where | x—1|« 1, lyl«1 and e=a/2«1.

Upon substituting (22) into (18)—(20) and neglecting the high order of r, we obtain

0( NS 30)
t ————cos — | l—sin“p sin-sin -
o v2nr 2 2
KI 0 0 36
ty,= ———sing cos —- sin — Cos—— for mode-1 (23)
Y J2nr 2 2 2 .
K
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2ar 2 2
K f < 2 . 0 39)
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- _Ku 9( c2 o B 39) for mode-II (24)
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1= — sin @ cos - smT c0s =5~
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for mode-III (25)
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where K;=p./ 7 (i =1, II, III) is the stress intensity factor .
Now , we make the following significant observations :
(1) Since r>0, stresses at a crack tip are finite but concentrated with the order of /7 /; .
(2) The maximum stress occurs at a point near the crack tip. For example,

K
f =1y, (%) s-10020=0.873 !

This is due to the physical fact that the stress fields are continuously distributed .

(3) Asymptotic stress fields (23 }— (25) take the classical ones as their limits as ¢— 0 when
@=n/2 and (r,0) becomes the polar coordinates .

(4) (23)— (25) are a slight modification of the classical stress fields on a scale of atom
distaznce from the crack tip, because the effect of ¢ can be almost neglected when (x—1)2+y?
»el.

(5) Basing on (iv), we find that (23)—(25) can be directly derived by substituting the
classical asymptotic stress fields into constitutive relation (4 ). This fact results from the
attenuation behavior of interaction force of atoms . In this view, we believe that (23 )— (25),
except K; , are valid for all cracks though they are obtained from the stress fields of Griffith
cracks , -

V. MAXIMUM TENSILE STRESS CRITERION FOR BRITTLE RUPTURE

In classical theory of fracture , the rupture criterion , such as the minimum potential by
Griffith , the stress intensity factor by Irwin, or the minimum strain energy factor by Sih, is
not related with the theoretical strength of a brittle material , since the stresses at a crack tip is
infinite in the classical elasticity . Nonlocal elasticity provides finite values of stresses at a crack
tip . Therefore, it is natural for us to put forward the following rupture criterion for a crack in
brittle materials :

When the maximum tensile stress of a crack reaches the theoretical strength, the crack will
extend along the direction normal to the maximum stress .

Since the maximum stress must be the first principal stress , the above criterion can be
formulated as

max (t (x))=t, (26)

where Q denotes the neighborhood domain near a crack tip, f, the theoretical strength. ¢; (x)
the first principal stress at point x, i.e., | 2#,213, t; (i=1,2,3) is the principal stress .
Noting that the principal stress, t , and its direction, n , of the stress ¢;; can be deter-
mined from
(t;;=16;;)n;=0 (27).

where
nin=1 (28)

we can give the rupture criterion for a crack by substitutihg asymptotic stress fields (23 )— (25)
into (27), (28) and then into (26). In the following . we take some examples to evaluate the
criterion .

1. Three Fundamental Cracks

For a mode-1 crack,

K
max (t, (x))=tyy(x,y)|x=1+o,2a=0.873 .

y=0 vna/2

Hence , the rupture condition is
K
0.873 ———x =1, - 29)

Vra/2 ¢
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and extending direction is on the x-axis.
Since theoretical strength ¢, can be estimated by surface energy density y,

- 2wy
‘e (+v)a (30)

we find that condition (29) is less 1.5% than Griffith criterion ¢,=0.886 K, /\/ 75 /2 -
For a mode-1I crack , the maximum stress is 0.885 Ky /\/, /2 and makes angle 23.6°
to the crack line. Therefore, the rupture condition becomes

Ky
0.885 ———— =1¢ 31
Vra/2 ¢ GL)
and the extending direction is 90°— 23.6° =66.4° to the crack line .

From (29) and (31), we find K,/ K,=0.980 . This ratio is in good agreement with 0.957
by Sih’s theory for v=0.3. But Sih’s theory gives 82.3° for the extending angle which is larger
than our result.

For a mode-III crack,

max (r; (x))=1,,(x:9) | xo14024=0.719 —
s I t, y |y 01+02 \/na/2

so that the rupture condition is
- K
07 Trar2 =t. (32)
and the extending direction is along the crack line .

By comparing (29) with (32), K, /K,=1.214. It is larger than K,; /K;=(1-2v }*3<1
by Sl[h] s theory , but almost the same as the experimental result K;;; /K;=1 .22 given by
Shah'®!.

Maximum tensile stress criterion (29) (31) (32 ) can also be written in the form of
Irwin’s , i.e.,

K=K, Ku=Ky, K=Ky, (33)
where

Ki.=1.441./, Ku=1421., Kume=1.741./4 (34)
2. A Mixed I-1I crack

Ky /Ky,

0 ' L ! 0 g
0.2 04 06 08 1.0 15° 30" 45° €0 75° 90°
K\ /K,, B
Fig.1 Critical curve for mode I-II crack Fig.2 Extending directions for mode I-II crack
—— Nonlocal theory — — — Sih’s theory —— Nonlocal theory — — —Sih’s theory

+ Experiment 9 A Experiment[ lo] A Experiment[ 10]
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When a crack is loaded simultaneously by a tension force and a shear force, the asymptotic
stress field of the crack consists of the superposition of (23) and (24) because of the linearity of
elasticity . In this case, the maximum stress is related linearly with both X; and K. Hence,
the rupture condition of a mixed I-II crack can be expressed . by noting (33), in the form of

K, Ku)
F s —— =1 35
( Ky Ky, (35)

where F is a linear function of its variables .

Eq. (35) is plotted in Fig.l in which the results of Sih’s theory and experimental data by
Shah!®! and Zhao!™! are also given . We find that the maximum stress criterion gives
its results in the middle of the two sets of experimental data and under the curve of Sih’s
theory .

While determining the function F , the maximum stress direction is found for a given
Ku /K, or B=tg"' (K /Ky ). Let a denote the angle of the direction to the x-axis. Then, the
extending angle , defined by §=90° —¢« , is related
with the load parameter B. Fig.2 shows the result of
0 ~p and its comparison with the counterparts by
Sih’s theory and Zhao's experimental data!'®! . They
are in general in agreement .

3. A Mixed I III Crack

Analogous to the above discussion , the rupture
condition of a mixed I-III crack can be represented by

K K\ _
H( Ky ' Kuu) : 36)
0 Its detail is illustrated by Fig.3. Like Sih’s results ,
0.2 04 06 08 1.0 the maximum stréss condition gives its curve under the
K1 /Ky experimental data by Shah and Zhao . As to the
Fig.3 Critical curve for mode I-IT crack extending direction, the maximum stress criterion pre-
— Nonlocal theory — — —Sih’s theory  dict the well-known fact that a mixed I-III crack

. . (91 A Experi 1 :
Experiment” " A Experiment extends along the crack line .
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