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Abstract. In this paper, sufficiently smooth Hamiltonian systems with perturbations are
considered. By combining a smooth version of the Kolmogorov—Arnold—Moser theorem and
the theory of normally hyperbolic invariant manifolds, we show that under the conditions of
nonresonance and nondegeneracy, most hyperbolic invariant tori and their stable and unstable
manifolds survive smoothly under sufficiently smooth autonomous perturbation. This result can
be generalized directly to the case of time-dependent quasi-periodic perturbations. Finally, an
example from geometrical optics is used to illustrate our method.

AMS classification scheme numbers: 58F27, 34C27, 58F30, 70H05

1. Introduction

It is well known that the Kolmogorov—Arnold—-Moser (KAM) theorem is one of the
mathematical breakthroughs of this century, and it has had a profound influence on physics
and mechanics. Since the KAM theorem on KAM tori was established, there have been many
generalizations similar to the KAM theorem, such as the generalizations to measure-preserving
mappings [2, 18] and to quasi-periodic perturbation [8]. In particular, the generalization to
lower-dimensional tori is still a subject of interest today. Firstly, Graff [6] considered the
conservation of hyperbolic invariant tori, then elliptic lower-dimensional tori were investigated
[4, 13] and, recently, further generalizations have emerged [9, 15].

We note the systems that these generalizations considered are all analytical Hamiltonian
systems, and that they all used the basic strategy of an iterative KAM-type proof. However, for
hyperbolic lower-dimensional tori, we want to weaken the analytical conditions to the finitely
smooth case and sufficiently use the geometry of dynamical systems (i.e. invariant manifolds)
to show similar results.

First, it is necessary to briefly recall Graff’s work [6]. Considetlegrees of freedom of
a real-analytic Hamiltonian system near the origin

z=JDH(2) (1.1)
T Address for correspondence.
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wherez = (z1, 72, . . ., 22,) andJ is the real canonical symplectic matrix
, 0 id
7=\ Zid o
with ‘id’ an identity matrix, and
Hz) =Y H"() (1.2)
i=2

where H"(z) is homogeneous of degrée If H?(z) = $(z, Az), (-, -) denotes the usual
scalar product, then the linearized system near its fixed point, the origin, is

z=JAz (1.3)
Suppose the eigenvalues.bfA (a1, +ay, ..., *a,) are of the following form:

Rea; =0 1<s<k

Reay+, > 0 1<A<L

We introduce the notatios;, = i8,, 1 < s < k, and assumé, (1 < s < k) are distinct and
satisfy

k
D 8 #0
s=1

for all nonzero integer-valued vectojs= (ji,..., jr), with 1 < |j| < 4, where|j| =

PONREIAE

By some transformations, the Hamiltonighbecomes

k k
D 8yt (P Q)+ 3 Y Tawyeyy + K, v, p.q) (1.4)
s=1 s,8'=1

where is an/ x [ matrix satisfying the positivity condition

Re(y. Qy) > uly|?
for all nonzero complex vectorg and somex > 0, 2y, = uf +02, 1 = (15) is a real

5

k x k matrix andkK is a power series. In (1.4K may be considered as a perturbation of the
Hamiltonian

k k
235% + (P, Qq) + % Z Tss' Vs Vs - (15)
s=1 s,8'=1

Obviously, the Hamiltonian system afforded by (1.5) admits a familg-dfmensional
invariant tori

X5 = wy Vs = Vs 1<s<k p=q=0

s Lo L L (1.6)
ws(y) = & + Z Tos' Vs y = (J1, ..., yx) is a vector of constants
s'=1

and these tori admit & + /)-dimensional real-analytic Lagrangian stable maniftdd and
a Lagrangian unstable manifold., consisting, respectively, of orbits approaching the torus
tangentially at an exponential ratesas> +oo andt — —oo.

In [6], Graff showed the following result by a Newton iteration procedure.
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Theorem 1.1.1f in (1.4), detr # 0, then the invariant tori in (1.6) which satisfy the
nondegeneracy condition

1(j, @) = cljI™" J=G o) 0= (o1,...,w) c>0 N>k
(1.7)

for all nonzero integer-valued vectojs and their stable and unstable manifolds persist real
analytically under perturbation, i.e. in (1.4).

Although the above result shows the analytic persistence of hyperbolic tori for analytic
Hamiltonian systems, in some applications the Hamiltonian is only smooth, not analytic. So
we think it is interesting to consider smooth Hamiltonian systems. In this paper, from the
geometric viewpoint of dynamical systems, we show the smooth persistence of hyperbolic tori
and their stable and unstable manifolds for sufficiently smooth Hamiltonian systems with the
above conditions of nonresonance and nondegeneracy. Our method is to combine a smooth
version of the KAM theorem with the theory of normally hyperbolic invariant manifolds [5]
(see also [17]), instead of the rapidly convergent Newton iteration technique. Although this
idea was referred to in [6], there it required the analytical perturbations due to not using the
normally hyperbolic theory. Also, this result can be generalized directly to the case of time-
dependent quasi-periodic perturbations and the method may be used to show the persistence of
lower-dimensional tori ira priori stable Hamiltonian systems [15] (the latter is very obvious,
and will not concern us here). Finally, we use a simple example from geometrical optics to
illustrate our method.

2. Some elementary reviews

First, we give a brief description of the invariant manifold in [5].
Consider &C”, r > 1 vector field onR",

x = f(x) x€eR" (2.1)

with its flow denoted by, (x). Suppose that (2.1) has an overflowing invariant manifold,

M = M U3M. By the term ‘overflowing invariant’ we mean that the vector field is tangential

to M and points strictly outward o&M, therefore all trajectories starting o/ leaveM.
Suppose we have the following continuous splitting of the tangent bundé wdstricted

to M:

TRy =TM & N* @& N"
with the associated projections

n":TR"; - TM

M“: TR"|;; — N"

I1°: TR"|; — N°.

We assume that the subbunde¥ & N* andT M & N* are_each invariant under the linearized
flow D¢, for all# < 0. We also assume that for eaghe M, N, is u dimensional andv,, is

s dimensional; therefor@f isn — (s + u) dimensional.
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Growth rates of vectors in these subbundles under the linearized dynamics are
characterized by generalized Lyapunov-type numbers defined as follows:

A4(p) = lim sup |11 Dg () IN* | "
t——00

v*(p) = lim sup||T1° Do @ (PN} |~ forany p e il 22)
1—>—00

I 1091 DL ()]
o) = S G T Dy (6 (P

where| - || is some matrix norm. The manifold is called normally hyperbolic if for any point

p e M, (p),v'(p) < 1ando*(p) < 1/r hold. (Note that this definition is also suitable
for any invariant manifold.) For normally hyperbolic invariant manifolds and their unstable
manifolds, we have the following persistence theorem in [5].

Theorem 2.1.Suppose¥ = M U dM is aC” normally hyperbolic manifold with boundary
overflowing invariant under the vector field (2.1), and Withf & N* andT M & N* negatively
invariant under the linearized flowb¢,, then there exists & manifold W* overflowing
invariant under (2.1) such tha¥* containsM and is tangential t&’' M @ N* along M with
trajectories inW* approaching¥ asr — —oo. Moreover,W* is persistent under perturbation
in the sense that for ang” vector fieldf. (x) O(¢) C*-close tof (x) with ¢ sufficiently small,
there is a manifold¥ overflowing invariant undey, (x) which isC” diffeomorphic tow*
and has the same dimension&s.

Further, we give the two additional type numbers:

o (p) = limsup| D | (¢ (p)) | [T1“Dpy (p) |y || /"

t——00
o (p) = lim sup||T1“ D, (p) s I~/ IIT1° Dp_ (¢ (p)) |y 117"
—>—00

Then we have the following unstable manifold foliation theorem, see [17].

Theorem 2.2. L_etM be as in theorem 2.1. Moreover, suppesé(p) < 1ando*“(p) < 1
for everyp € M. Then there exists am — (s + u)-parameter familyF" = U ¢y f“(p) of
u-dimensional surfaceg”(p), such that

(1) F*is a negatively invariant family.

(2) f*(p)areC’.

(3) f"(p) are tangent ap to the embedding a¥} into R".
(4) There exisC1, C2 > Osuch thatifg € f“(p) then

lp—i(q) — d—i(P)Il < C1% forany ¢ > 0.
(5) Supposg € f“(p) andq’ € f“(p), p # p’, then

lé—:i(q) — (Pl
lp—:(q") — d—: (Pl

and f“(p) and f“(p’) do not intersect.
(6) f*(p) are C" with respect to the basepoipt
(7) F* = W;3.(M) which is a local unstable manifold of .
(8) These fibreg™(p) persist and remai€” underC” perturbations.

— 0 as t— o
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Remark 2.1. Statement (4) of theorem 2.2 implies that we can identify the unstable manifolds
of objects inM from the unstable manifold oM; and the above results can be applied
to inflowing invariant manifolds. In this case, the generalized Lyapunov-type numbers are
computed using the time-reversed flow with the limits taken-as +oo and the ‘overflowing
invariant’ is replaced by the ‘inflowing invariant’. Als&* and W* are replaced byv* and

W+, with N* taken to be a positively invariant subbundle unf¥gr,. Then the above theorem
can be recast as the stable manifold theorem.

At the end of this section, we give the spirit of the KAM theorem briefly.

Theorem 2.3 (Classical KAM theorem [1]). Consider a near-integrable Hamiltonian sys-
tem with the Hamiltonian

H(I, ¢) = No(I) + Po(1, ¢) (2.3)

wherel = (I3, I, ..., I,) are the action variablesp = (¢1, 2, ..., ¢,) are the angle
variables andpP; is sufficiently small and is referred to as a small perturbation. Suppose

(i) H(, ¢) is analytic,
(i) No(I) satisfies the condition of nondegeneracy

2
det(8 NO) #0

912

then the invariant tori of the unperturbed Hamiltoniaf (1), with
aZVO . =N
(I >
K T ( ),1>‘ cljl
for all nonzero integer-valued vectoys persist in (2.3).

Remark 2.2. The analogous theorem for vector fields with finitely many derivatives was first
given by Moser [14]. Moser’s result can be adaptedtdiamiltonian vector fields generated
by the form of (2.3) withr > 2n — 1, see [12].

3. Main results and proof

On the basis of the introduction in section |, we consider directly the followingamiltonian
vector field:

. dHp J0Hq
xX=—,y,D+e—(x,y,1,9,¢)
dy ay

) 9H, 0H
y = —8_O(x,y’ I) —88—1(X,y, I,(ﬂ,S)
. T (3.1)

. 0H,
I =—e——x,y,1,0,¢)
de

. 8H0( I+ 8H1( 7 )
=W, E— WX, ¥, 1,0, &
4 Y y Y y. I, ¢

wherex = (x1,Xx2,...,Xx1) € R], y = (yl, V2, ., y[) € Rl, I =1, ..., 1) eU which
is an open setiR*, ¢ = (@1, @2, ..., ¢r) € T* ande is sufficiently small. Our assumptions
are

0 H, J H,
(A1) =2(0,0,7)= =2(0,0,1)=0
ay ax
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3%H
(A2) det[ 3120 (0,0, 1)] £0
(A3) the eigenvalues of
82 Hy
JW(O’O’ I, X=(X,y)

have nonzero real parts.
Now consider the unperturbed system of (3.1)

x = %(x,y,l)
dy
. 9 Hp
V=g @D (3.2)
I1=0
. 9H,
(p: B_I(-xv yv I)

From (A1), in system (3.2) there exists &@imensional invariant manifold denoted by

M={x,y,1,9) | x=y=0T€eU,¢eTk. (3.3)
The vector field (3.2) restricted t is

. 0 H,

I =0 ¢ = a_lo(o, 0,1) = w(l) (3.4)
wherew (1) = (wi1(1), wa(1), ..., wr(I)). From (3.4),M actually consists of &-parameter

family of k-dimensional tori; and according to (A3} hasC" (2k +1)-dimensional stable and
unstable manifolds denoted By* (M) and W* (M), respectively. Moreover, by theorem 2.2
and the generalized-type numbers obtained below, the stable and unstable manifolds of some
k-dimensional tori in (3.4) may be identified frowi* (M) andW*(M), respectively.

Next, we show thad is normally hyperbolic. The linearized vector field of (3.2) along
M is given by

) 32 Ho
X J 3z 0.0.1) 0 0 5X
s | = 0 0 0 sI (3.5)
8¢ 92H, 92H, F)
¢ 200,01 =220,01) 0 v
319X 312

whereX = (x, y) ands X, 81 andsy represent variations about orbits #h From (3.5) we
obtain the linearized flow abowt, D¢,. This is given by

D¢T(Os 07 19 ¢) =
8% Hy
exp[] 3%2 (0,0, I)t:| 0 0
0 idy 0
92Hy 92Hy -1 92Hy 2H, ,
s——(0,0,1)| J—(0,0, 1 J——(0,0,1 ——(0,0,1 d
s )[ 2 )} exp[ Tz ¢ )t} o2 (0,01 id

(3.6)
where id denotes thé x k identity matrix.
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Note that vectors tangential 3 have zeraX component, so the second and third columns
of (3.6) sparil’, M for any p € M. Thus the projection ont@, M is given by

0 0 0
Doy = | © ide 0 (3.7)
821‘]0 .
0 W(O, 0, Nt idy

Now, we want to decompogeR?*2|,, into three subbundles. First, consider the equation
of the X component in (3.5) regardingas fixed

§X = JBZH0 (0,0, 16X leU (3.8)
T ax2 T ' '
By (A3), for eachl € U, R? splits into twol-dimensional subspacds’(I) and E*(I),
corresponding to the stable and unstable subspaces of (3.8). Consider the following two
disjoint unions:

N* = U(ES(I), 0)

leU

(3.9)
N = JE“1),0)
leU
where ‘0’ denotes a zero vector R¥. Then we have
TR, =TM @& N* & N". (3.10)

ObviouslyTM & N* andT M & N* are two invariant subbundles undey;, i.e. (3.6).
We now compute the generalized Lyapunov-type numbers associated in the context of
section 2. For any € M, using (3.7) and (3.8), we obtain

M(p) =e D vipp=e o'(p)=0

e (p) = e*)»u(l) gy (p) = e—)\,,(l)ﬂx([) (3_11)

where 1, (1) is the smallest real part of any of theeigenvalues of/92Hy(0, 0, I)/3X?
which have positive real parts, angl(/) is the largest real part of any of theigenvalues of
J82Hy(0, 0, I)/3X? which have negative real parts. Recalling (A3), we have

—Au (D), 2,(I) <0 VIeU
and therefore

AMp) <1 v(p) <1 0(p)=0<}
;

c“(p) <1 o™(p) <1 Vpe]l_l.

The same conclusion holds f6iM & N* under the time-reversed vector field from remark 2.1.
So the normally hyperbolic properties &f are proved, and/ satisfies the conditions in
theorem 2.2.

Now we show the persistence &, W* (M) andW" (M) by using theorem 2.1. However,
sinceM is neither overflowing nor inflowing invariant due to the fact that vector field (3.2) is
identically zero ord M, there is a slight difficulty. By some technique, we obtain the following
result.
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Proposition 3.1. There existgg > 0, such that fol0 < ¢ < &g, system (3.1) possesse§’a
2k-dimensional invariant manifold

M, ={(x,y.1,¢) | x=0(),y=0(), [ e U Cc U, ¢ T (3.12)

which isC” smooth inl, ¢, ¢, whereU c U is a compack-dimensional set including the
origin ‘0’. Moreover, M, hasC" stable and unstable manifold®,* (M,) and W*(M,), which
are C" diffeomorphic tow* (M) and W* (M) locally, respectively.

Proof. LetU C U be a compact set including the origin ‘0’. Choose open convex4gisid
U, such thaty ¢ Uy € U; C U with closure(Up) C U;. Construct aC* ‘bump’ function
[16]

g:R¥—> R
such that
=0, 1eU,
=1, 1 € dUyp
gl) = (3.13)
= -1, I €U,
=0, I e R\ U.
Now consider the modfied vector field of (3.2)
dHp

c= 200 o
x ay()cy)

o
YE T Y (3.14)

[ =3g()I
._BHO( 5
(p_ a[ X,y,

for someé > 0. LetM, My ang M, be subsets oM for which I is restricted to lie inU,
Up and U,, respectively. Thed ¢ My C M; Cc M, and from the above discussions the
following statements are obvious:

(i) My is an overflowing manifold under (3.14) satisfying the conditions of theorem 2.1.
(i) M, is an inflowing manifold under (3.14) satisfying the conditions of theorem 2.1 under
the time-reversed vector field.

In addition, from (3.13), equations (3.14) and (3.12) are identical ferU, so it follows
from theorem 2.1 that the perturbed system (3.1) poss€Ssravariant manifoldd, which is
O(g) C" close toM. Moreover, there exist invariant manifold&® (M,) and W*(M,) which
areC” close toW* (M) andW*(M) locally, respectively. The proposition is proved. O

Remark 3.1. Actually, from the above proof, the invariant propertyMf is slightly different

from the usual definition of the invariant, since points starting fresinmay leaveM, by
crossing its boundary. But this will cause us little concern because we consider only the
invariant tori inM,, not the wholel,.

Next, we investigate the persistence of the invariant tori under the perturbation. In order
to explore the dynamics oW, we first prove a technical lemma which will be stated in its full
generality. Throughout the lemma, d will refer to exterior differentiationiaaa will denote
the interior product of the vector fieltl with the forme .
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Lemma 3.1. Let(P, @) be a(2k+2)-dimensional symplectic manifold with local coordinates

X =(X1,X2, .o, X1, Y1, Y25 oo s Y1)y Z = (22, 225 - -+ » Th» 1, ©2, « - ., ¥x), With the symplectic
foomw = Y'_ dy Adx + Z’j‘.zl dz; A dp;. Consider a one-parameter family ok-2
dimensionalC* submanifoldsP?, ¢ P, with1l < s < r ande € [0, g¢], of the form

P ={(X,2) € P| X =h(z) +eb(Z,¢)} (3.15)

wherez = (z1,22,...,2k), h = (h1, ha, ..., hy) andb = (b1, by, ..., by) are (locally
defined)C**! functions withi;: R* — R, b;: R* — R,i =1, ..., 2. Further, assume that
H isaC" function onP, and for any € [0, go], P. is an integral manifold for the Hamiltonian
vector fieldFy: P — T P defined by

ipH w = dH.
Then fore sufficiently small,

(i) (Ps, w.) is a Z-dimensional symplecti€* manifold withw, = @ |p,,
(i) F. = Fylp, is a Hamiltonian vector field o®, with HamiltonianH, = H|p_, i.e.

ipgwg = dHE

Proof. We first show thato, defines a symplectic structure éh. On P,, we have
dx; = eDyb; dp + D, (h; + eb;) dz o=(p1,02,....,00) i=1...,1
dy; = eDybjvdp + D (hjy +ebjvy) dz j=1...,1

By an easy calculation, we have

k
@, = (1+0() Y _dz Adg; (3.16)
i=1

which implies that, fore sufficiently small, w. is a nondegenerate 2-form ab. Let
e, = (h+eb,idy): R* — P bethe embedding a?., where ig; denotes the/dimensional
identity map. Then

dw, =d(efw) =eldw =0 (3.17)

which shows thatw, is closed onP, (wheree? denotes the pullback of,, see [11]).
Equations (3.16) and (3.17) together imply (i) of the lemma.

To show (ji), consider any, € e;1(P.) andu € Tp, R%. Inthe context of the differential
form we have

iF, ZHSI:pa] (u) = e:w[Ps] (eZ Fr(pe), u)
= wle.(pe)]de, de; *Fry (e (pe)). de; u)
= w_[es(ps)](FH (ec (ps))v des u) = dH[es (ps)] des u)
= d(e:H)[Pg] (1) = dH,[p:](u)
which concludes the proof. O
Remark 3.2. The above lemma is easy but not trivial because it is not obviously true for all
invariant manifolds of the Hamiltonian dynamics, e.g. for stable and unstable manifolds of

equilibrium. This is easily seen from the structure of the stable and unstable subspaces of the
equilibrium in the linearized problem [10].
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We now apply the above lemmaad, given in proposition 3.1 and obtain proposition 3.2.

Proposition 3.2. Consider system (3.1) restricted to its invariant manifdiff. For ¢
sufficiently small, the restricted dynamicsif is Hamiltonian with the Hamiltonian

H, = Hy(0,0, 1) +eH1(0,0, I, ¢, 0) + O(e?) (3.18)

and with the restricted symplectic form

k
@, = (1+0()) y_dl; Adpi.
i=1

Proof. This follows directly from lemma 3.1, proposition 3.1 and (Al). O

Therefore, from proposition 3.2, system (3.1) restrictedMp is a Z-dimensional
Hamiltonian system

: dH
I=—e=(1.¢)+O?)

v (3.19)

oH
o =o(l)+e=(1.9)+ O

whereH; (I, @) = H1(0,0, I, ¢, 0), (1) is given in (3.4). Thus if the assumption (A2) holds,
we may consider the persistence of the invariant tori in (3.19) by applying the KAM theorem.
However, equation (3.19) is not analytic, so we must investigate the order of differentiability of
(3.19) in order to use the conclusion of remark 2.2. From propositioA.15 aC" manifold,
but from lemma 3.1, the orders of differentiability of the functi@grendb must be larger than
the order of manifoldM,, so (M,, w,) is aC"~! symplectic manifold at most. Therefore,

to be able to use the smooth version of the KAM theorem for (3.19), we need the following
assumption:

(A%) r—1>2—1 e r> 2.

Finally, from the smooth version of the KAM theorem, proposition 3.1 and theorem 2.2,
we obtain the main result.

Theorem 3.1. For the C" Hamiltonian vector field (3.1), suppose (Al)—(A4) hold, therefor
small enough, thé-parameter family ok-dimensional invariant tori in (3.2)

x=y=0
I=1 (3.20)
¢ = (o)t +¢o
with
(o), j)| = cljI™" (3.21)

for all nonzero integer-valued-vectorsj wherec is a positive constant andy > k — 1,
and their stable and unstable manifolds persist in (3.1). Moreover, the continuations of the
persistence are differentiable.

Proof. This follows directly from the preceding results. O
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4. Time-dependent quasi-periodic perturbation
In the past, most work was focused on the Hamiltonian systems with autonomous perturbation.

However, recently, the analytic Hamiltonian systems with time-dependent quasi-periodic
perturbations whose Hamiltonian is of the form

H(Ia (p) = HO(I)+8H1(17 (0, @78) (41)
whereg = (¢1, @2, . . ., ¢5) andg is quasi-periodic with respect to the time with the frequency
o = (1,0, ...,d), have been extensively studied because these kinds of Hamiltonian

appear in several problems of celestial mechanics. For instance, to study the dynamics
of a small particle near the equilateral libration point of the Earth—Moon system, one can

take the Earth—Moon system as a restricted three-body problem (which can be written as an
autonomous Hamiltonian) plus perturbations, that can be very well approximated by quasi-
periodic functions, see [3].

The problem of the persistence of maximal dimensional tori of the Hamiltonian in (4.1)
was first studied in [8]. Then Jorba and Villanueva [9] considered the persistence of lower-
dimensional elliptic tori under the same kind of perturbations, and showed that under some
hypothesis of nondegeneracy and nonresonance some of the lower-dimensional tori are not
destroyed but only deformed by the perturbation with addition of the perturbing frequencies
to those they had previously.

In this section, we illustrate briefly how one can directly generalize the method in
section 3 to investigate the persistence of lower-dimensional hyperbolic invariant tori under
time-dependent quasi-periodic perturbation.

Consider theC” Hamiltonian vector field with the Hamiltonian

H(x,y,1,0,9,¢) = Ho(x,y, ) +eHi(x,y,1,9,0,¢) 4.2)

with respect to the symplectic formych dx + dI A dg, whereg is quasi-periodic in time with
frequency® = (&1, @, ..., @5), x,y € R', 1 € U C R* (U is an open set) and e T*.

For (4.2), we still suppose that (A1)—(A3) hold. In order to be able to use the method in
section 3, we rewrite (4.2) as

Hx,y, 1,0, 1,3,8) =& 1 +Ho(x,y, I) +eHy(x,y, 1,0, @, ¢) (4.3)

with the symplectic form ¢ A dx + dI A dg +dI A d@, whereg are the angle variables that
denote the time] are the corresponding momenta aifddenotes the transposition&f Then

the Hamiltonian vector field generated by (4.3) i€a+ 2k + 2s)-dimensional autonomous
vector field, and by the method in section 3 and the results in [8] one may obtain a conclusion
similar to the one in [9].

5. An example

We now consider an example introduced in [7] which was used to describe an axisymmetric,
translation-invariant media problem in geometrical optics.
The optical Hamiltonian with two degrees of freedom is given by

H= —\/nz(r) — p?—pz/r? (5.1)
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and Hamiltonian equations for axisymmetric translation-invariant media are expressible as

. 0H 1
r = = —_—— r

apr Hp
. IH 1 d 2
b= = (f0 - %)

r r r
3H (5.2)

. oH Do

Dy Hr

where the physical meanings o RY, p, € RY, p, € RY, ¢ € T* andn?(r) refer to those
givenin [7].
Choose a radial profile of the fibre’s refractive index in the following form:
n?(r) = 22+ (u — vr?)? (5.3)
wherex?, u andv are positive constants. Now we consider the following perturbations of the
refractive index:

nf(r) = nz(r) + ang(r, Pos @) (5.4)
where
n3(r, po. ) = [py — 20 (1 — vrA]%2 £ () (5.5)

f () is a function ofep.
Expanding the Hamiltonian

H, = —[n2(r) — p? — p2/r? (5.6)
in powers ofe, givesH, = Hy + ¢ Hy at linear order, where
1
Hy=H = —\/nz(r) — pZ—p3/r? H, = ﬁng(r, Pos @). (5.7)
0

This expansion is valid provideHp > ¢; physically, that is, away from grazing incidence to
the image screen.
To linear order ire, the refractive index perturbations appear in Hamiltonian equations as

. 1 Pr
T e
: 1d/, Pl 1 ,d/(, Pl 1 9n3

= — L) el —=n2— — )0
Pr 2H dr <n @) 2 ) "¢ agsog " @) r2 2H or
. ) Bn% ©8)
Po = —55 4.

2H d¢

2
n
Py 0 Py

Now consider the unperturbed system of (5.8), i.e. the system (5.2). The Hamiltonian equations
for (r, p,) in (5.8) are given by
. 1
r=——Dr
H
(5.9)

. 1 2
pr = —E[—Zvr(u —vr?) + %:|
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The equilibria of these equations occur at those points where the right-hand sides vanish, i.e.
pr =0,r = F(p,, i, v), wherer satisfies the following cubic relation it:

2
—20r2(u — vty + 22 =0, (5.10)
r

It is easy to check that the level surfacedf satisfy this equilibria condition when
A2+ (u —vi%)? — H? = 2v7%(u — vid). (5.11)

Thus ifA2 < $(u? + 3H?), the equilibrium points occur in pairs, i.e.

1 1
2= 5(@ +/u2 — 322+ 3H?) 2= 5(zu — 12 —3)2+3H?2). (5.12)

By the fact that a fixed point of (5.9) is stable (respectively hyperbolic), if at the point

@/, P2 .
— | n“(r) — — ) <0 (respectively> 0) (5.13)
dr? r2
one may find that those fixed points from pairs of root&Zare hyperbolic, while those from
72 are stable.

Then, we obtain a normally hyperbolic invariant manifold for the system (5.2)

M = {(r, pr, po» P)Ir> =72, p, =0, p, € R*, 9 € T} (5.14)

which consists of one-dimensional tori, i.e. periodic orbits. Our goal is to detect the persistence
of these tori and their stable and unstable manifolds in the perturbed system (5.8). Due to a
nonresonance condition such as (3.21), we only consider those torpyvighO.

Actually, system (5.8) is a special case of system (3.1) with k = 1, and one may
easily find that all the conditions required in section 3 are satisfied. Then using our method,
we can show the existence of the periodic orbits and their stable and unstable manifolds for
the system (5.8). However, from (5.5) and (5.10) we find that the system (5.8) is not analytical
near the fixed points? = 72, p, = 0, but isC3; namely, the previous methods are invalid for
the system (5.8).
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