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Abstract. In this paper, sufficiently smooth Hamiltonian systems with perturbations are
considered. By combining a smooth version of the Kolmogorov–Arnold–Moser theorem and
the theory of normally hyperbolic invariant manifolds, we show that under the conditions of
nonresonance and nondegeneracy, most hyperbolic invariant tori and their stable and unstable
manifolds survive smoothly under sufficiently smooth autonomous perturbation. This result can
be generalized directly to the case of time-dependent quasi-periodic perturbations. Finally, an
example from geometrical optics is used to illustrate our method.

AMS classification scheme numbers: 58F27, 34C27, 58F30, 70H05

1. Introduction

It is well known that the Kolmogorov–Arnold–Moser (KAM) theorem is one of the
mathematical breakthroughs of this century, and it has had a profound influence on physics
and mechanics. Since the KAM theorem on KAM tori was established, there have been many
generalizations similar to the KAM theorem, such as the generalizations to measure-preserving
mappings [2, 18] and to quasi-periodic perturbation [8]. In particular, the generalization to
lower-dimensional tori is still a subject of interest today. Firstly, Graff [6] considered the
conservation of hyperbolic invariant tori, then elliptic lower-dimensional tori were investigated
[4, 13] and, recently, further generalizations have emerged [9, 15].

We note the systems that these generalizations considered are all analytical Hamiltonian
systems, and that they all used the basic strategy of an iterative KAM-type proof. However, for
hyperbolic lower-dimensional tori, we want to weaken the analytical conditions to the finitely
smooth case and sufficiently use the geometry of dynamical systems (i.e. invariant manifolds)
to show similar results.

First, it is necessary to briefly recall Graff’s work [6]. Considern degrees of freedom of
a real-analytic Hamiltonian system near the origin

ż = JDH(z) (1.1)
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190 D Huang and Z Liu

wherez = (z1, z2, . . . , z2n) andJ is the real canonical symplectic matrix

j =
(

0 id

−id 0

)
with ‘id’ an identity matrix, and

H(z) =
∞∑
i=2

H(i)(z) (1.2)

whereH(i)(z) is homogeneous of degreei. If H(2)(z) = 1
2〈z,Az〉, 〈·, ·〉 denotes the usual

scalar product, then the linearized system near its fixed point, the origin, is

ż = JAz. (1.3)

Suppose the eigenvalues ofJA(±α1,±α2, . . . ,±αn) are of the following form:

Reαs = 0 16 s 6 k
Reαk+λ > 0 16 λ 6 l.

We introduce the notationαs = iδs, 1 6 s 6 k, and assumeδs (1 6 s 6 k) are distinct and
satisfy

k∑
s=1

jsδs 6= 0

for all nonzero integer-valued vectorsj = (j1, . . . , jk), with 1 6 |j | 6 4, where|j | =∑k
s=1 |js |.

By some transformations, the HamiltonianH becomes

k∑
s=1

δsys + 〈p,Qq〉 + 1
2

k∑
s,s ′=1

τss ′ysys ′ +K(u, v, p, q) (1.4)

whereQ is anl × l matrix satisfying the positivity condition

Re〈γ,Qγ 〉 > µ|γ |2

for all nonzero complex vectorsγ and someµ > 0, 2ys = u2
s + v2

s , τ = (τss ′) is a real
k × k matrix andK is a power series. In (1.4),K may be considered as a perturbation of the
Hamiltonian

k∑
s=1

δsys + 〈p,Qq〉 + 1
2

k∑
s,s ′=1

τss ′ysys ′ . (1.5)

Obviously, the Hamiltonian system afforded by (1.5) admits a family ofk-dimensional
invariant tori

ẋ5 = ωs ys = ỹs 16 s 6 k p = q = 0

ωs(ỹ) = δs +
k∑

s ′=1

τss ′ ỹs ′ ỹ = (ỹ1, . . . , ỹk) is a vector of constants
(1.6)

and these tori admit a(k + l)-dimensional real-analytic Lagrangian stable manifoldM− and
a Lagrangian unstable manifoldM+, consisting, respectively, of orbits approaching the torus
tangentially at an exponential rate ast → +∞ andt →−∞.

In [6], Graff showed the following result by a Newton iteration procedure.
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Theorem 1.1. If in (1.4), detτ 6= 0, then the invariant tori in (1.6) which satisfy the
nondegeneracy condition

|〈j, ω〉| > c|j |−N j = (j1, . . . , jk) ω = (ω1, . . . , ωk) c > 0 N > k

(1.7)

for all nonzero integer-valued vectorsj , and their stable and unstable manifolds persist real
analytically under perturbation, i.e. in (1.4).

Although the above result shows the analytic persistence of hyperbolic tori for analytic
Hamiltonian systems, in some applications the Hamiltonian is only smooth, not analytic. So
we think it is interesting to consider smooth Hamiltonian systems. In this paper, from the
geometric viewpoint of dynamical systems, we show the smooth persistence of hyperbolic tori
and their stable and unstable manifolds for sufficiently smooth Hamiltonian systems with the
above conditions of nonresonance and nondegeneracy. Our method is to combine a smooth
version of the KAM theorem with the theory of normally hyperbolic invariant manifolds [5]
(see also [17]), instead of the rapidly convergent Newton iteration technique. Although this
idea was referred to in [6], there it required the analytical perturbations due to not using the
normally hyperbolic theory. Also, this result can be generalized directly to the case of time-
dependent quasi-periodic perturbations and the method may be used to show the persistence of
lower-dimensional tori ina priori stable Hamiltonian systems [15] (the latter is very obvious,
and will not concern us here). Finally, we use a simple example from geometrical optics to
illustrate our method.

2. Some elementary reviews

First, we give a brief description of the invariant manifold in [5].
Consider aCr , r > 1 vector field onRn,

ẋ = f (x) x ∈ Rn (2.1)

with its flow denoted byφt(x). Suppose that (2.1) has an overflowing invariant manifold,
M̄ = M ∪ ∂M. By the term ‘overflowing invariant’ we mean that the vector field is tangential
toM and points strictly outward on∂M, therefore all trajectories starting on∂M leaveM̄.

Suppose we have the following continuous splitting of the tangent bundle ofRn restricted
to M̄:

T Rn|M̄ = T M̄ ⊕Ns ⊕Nu

with the associated projections

5T: T Rn|M̄ → T M̄

5u: T Rn|M̄ → Nu

5s : T Rn|M̄ → Ns.

We assume that the subbundlesT M̄⊕Nu andT M̄⊕Ns are each invariant under the linearized
flow Dφt for all t < 0. We also assume that for eachp ∈ M̄, Nu

p is u dimensional andNs
p is

s dimensional; thereforēM is n− (s + u) dimensional.
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Growth rates of vectors in these subbundles under the linearized dynamics are
characterized by generalized Lyapunov-type numbers defined as follows:

λu(p) = lim sup
t→−∞

∥∥5uDφt(p)|Nu
p

∥∥−1/t

νs(p) = lim sup
t→−∞

∥∥5sDφ−t (φt (p))|Ns
p

∥∥−1/t

σ s(p) = lim sup
t→−∞

log‖Dφt |M(p)‖
− log‖5sDφ−t (φt (p))|Ns

p
‖

for any p ∈ M̄ (2.2)

where‖·‖ is some matrix norm. The manifold̄M is called normally hyperbolic if for any point
p ∈ M̄, λu(p), νs(p) < 1 andσ s(p) < 1/r hold. (Note that this definition is also suitable
for any invariant manifold.) For normally hyperbolic invariant manifolds and their unstable
manifolds, we have the following persistence theorem in [5].

Theorem 2.1.SupposeM̄ = M ∪ ∂M is aCr normally hyperbolic manifold with boundary
overflowing invariant under the vector field (2.1), and withT M̄⊕Nu andT M̄⊕Ns negatively
invariant under the linearized flowDφt , then there exists aCr manifoldWu overflowing
invariant under (2.1) such thatWu containsM̄ and is tangential toT M̄ ⊕ Nu alongM̄ with
trajectories inWu approachingM̄ ast →−∞. Moreover,Wu is persistent under perturbation
in the sense that for anyCr vector fieldfε(x)O(ε) C1-close tof (x) with ε sufficiently small,
there is a manifoldWu

ε overflowing invariant underfε(x) which isCr diffeomorphic toWu

and has the same dimension asWu.

Further, we give the two additional type numbers:

σ cu(p) = lim sup
t→−∞

‖Dφ−t |M(φt (p))‖−1/t‖5uDφt(p)|Nu
p
‖−1/t

σ su(p) = lim sup
t→−∞

‖5uDφt(p)|Nu
p
‖−1/t‖5sDφ−t (φt (p))|Ns

p
‖−1/t .

Then we have the following unstable manifold foliation theorem, see [17].

Theorem 2.2.Let M̄ be as in theorem 2.1. Moreover, supposeσ cu(p) < 1 andσ su(p) < 1
for everyp ∈ M̄. Then there exists ann − (s + u)-parameter familyFu ≡ ∪p∈Mf u(p) of
u-dimensional surfacesf u(p), such that

(1) Fu is a negatively invariant family.
(2) f u(p) areCr .
(3) f u(p) are tangent atp to the embedding ofNu

p intoRn.
(4) There existC1, C2 > 0 such that ifq ∈ f u(p) then

‖φ−t (q)− φ−t (p)‖ < C1eC2t for any t > 0.

(5) Supposeq ∈ f u(p) andq ′ ∈ f u(p′), p 6= p′, then

‖φ−t (q)− φ−t (p)‖
‖φ−t (q ′)− φ−t (p)‖ → 0 as t →∞

andf u(p) andf u(p′) do not intersect.
(6) f u(p) areCr with respect to the basepointp.
(7) Fu = Wu

loc(M) which is a local unstable manifold ofM.
(8) These fibresf u(p) persist and remainCr underCr perturbations.
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Remark 2.1. Statement (4) of theorem 2.2 implies that we can identify the unstable manifolds
of objects inM from the unstable manifold ofM; and the above results can be applied
to inflowing invariant manifolds. In this case, the generalized Lyapunov-type numbers are
computed using the time-reversed flow with the limits taken ast → +∞ and the ‘overflowing
invariant’ is replaced by the ‘inflowing invariant’. AlsoNu andWu are replaced byNs and
Ws , withNs taken to be a positively invariant subbundle underDφt . Then the above theorem
can be recast as the stable manifold theorem.

At the end of this section, we give the spirit of the KAM theorem briefly.

Theorem 2.3 (Classical KAM theorem [1]).Consider a near-integrable Hamiltonian sys-
tem with the Hamiltonian

H(I, ϕ) = N0(I ) + P0(I, ϕ) (2.3)

whereI = (I1, I2, . . . , In) are the action variables,ϕ = (ϕ1, ϕ2, . . . , ϕn) are the angle
variables andP0 is sufficiently small and is referred to as a small perturbation. Suppose

(i) H(I, ϕ) is analytic,
(ii) N0(I ) satisfies the condition of nondegeneracy

det

(
∂2N0

∂I 2

)
6= 0

then the invariant tori of the unperturbed HamiltonianN0(I ), with∣∣∣∣〈∂N0

∂I
(I ), j

〉∣∣∣∣ > c|j |−N
for all nonzero integer-valued vectorsj , persist in (2.3).

Remark 2.2. The analogous theorem for vector fields with finitely many derivatives was first
given by Moser [14]. Moser’s result can be adapted toCr Hamiltonian vector fields generated
by the form of (2.3) withr > 2n− 1, see [12].

3. Main results and proof

On the basis of the introduction in section l, we consider directly the followingCr Hamiltonian
vector field:

ẋ = ∂H0

∂y
(x, y, I ) + ε

∂H1

∂y
(x, y, I, ϕ, ε)

ẏ = −∂H0

∂x
(x, y, I )− ε ∂H1

∂x
(x, y, I, ϕ, ε)

İ = −ε ∂H1

∂ϕ
(x, y, I, ϕ, ε)

ϕ̇ = ∂H0

∂I
(x, y, I ) + ε

∂H1

∂I
(x, y, I, ϕ, ε)

(3.1)

wherex = (x1, x2, . . . , xl) ∈ Rl , y = (y1, y2, . . . , yl) ∈ Rl , I = (I1, I2, . . . , Ik) ∈ U which
is an open set inRk, ϕ = (ϕ1, ϕ2, . . . , ϕk) ∈ T k andε is sufficiently small. Our assumptions
are

(A1)
∂H0

∂y
(0, 0, I ) = ∂H0

∂x
(0, 0, I ) = 0
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(A2) det

[
∂2H0

∂I 2
(0, 0, I )

]
6= 0

(A3) the eigenvalues of

J
∂2H0

∂X2
(0, 0, I ), X = (x, y)

have nonzero real parts.

Now consider the unperturbed system of (3.1)

ẋ = ∂H0

∂y
(x, y, I )

ẏ = −∂H0

∂x
(x, y, I )

İ = 0

ϕ̇ = ∂H0

∂I
(x, y, I ).

(3.2)

From (A1), in system (3.2) there exists a 2k-dimensional invariant manifold denoted by

M = {(x, y, I, ϕ) | x = y = 0, I ∈ U, ϕ ∈ T k}. (3.3)

The vector field (3.2) restricted toM is

İ = 0 ϕ̇ = ∂H0

∂I
(0, 0, I ) ≡ ω(I) (3.4)

whereω(I) = (ω1(I ), ω2(I ), . . . , ωk(I )). From (3.4),M actually consists of ak-parameter
family of k-dimensional tori; and according to (A3),M hasCr (2k+ l)-dimensional stable and
unstable manifolds denoted byWs(M) andWu(M), respectively. Moreover, by theorem 2.2
and the generalized-type numbers obtained below, the stable and unstable manifolds of some
k-dimensional tori in (3.4) may be identified fromWs(M) andWu(M), respectively.

Next, we show thatM is normally hyperbolic. The linearized vector field of (3.2) along
M is given by

 δẊ

δİ

δϕ̇

 =

J
∂2H0

∂X2
(0, 0, I ) 0 0

0 0 0

∂2H0

∂I∂X
(0, 0, I )

∂2H0

∂I 2
(0, 0, I ) 0


 δX

δI

δϕ

 (3.5)

whereX = (x, y) andδX, δI andδϕ represent variations about orbits onM. From (3.5) we
obtain the linearized flow aboutM,Dφt . This is given by

Dφt(0, 0, I, ϕ) =
exp

[
J
∂2H0

∂X2
(0, 0, I )t

]
0 0

0 idk 0

s
∂2H0

∂I∂X
(0, 0, I )

[
J
∂2H0

∂X2
(0, 0, I )

]−1

exp

[
J
∂2H0

∂X2
(0, 0, I )t

]
∂2H0

∂I 2
(0, 0, I )t idk


(3.6)

where idk denotes thek × k identity matrix.
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Note that vectors tangential toM have zeroX component, so the second and third columns
of (3.6) spanTpM for anyp ∈ M. Thus the projection ontoTpM is given by

Dφt(p)5
T =


0 0 0

0 idk 0

0
∂2H0

∂I 2
(0, 0, I )t idk

. (3.7)

Now, we want to decomposeT R2k+2l|M into three subbundles. First, consider the equation
of theX component in (3.5) regardingI as fixed

δẊ = J ∂
2H0

∂X2
(0, 0, I )δX I ∈ U. (3.8)

By (A3), for eachI ∈ U , R2l splits into two l-dimensional subspacesEs(I ) andEu(I),
corresponding to the stable and unstable subspaces of (3.8). Consider the following two
disjoint unions:

Ns =
⋃
I∈U
(Es(I ), 0)

Nu =
⋃
I∈U
(Eu(I ), 0)

(3.9)

where ‘0’ denotes a zero vector inR2k. Then we have

T R2l+2k|M = TM ⊕Ns ⊕Nu. (3.10)

ObviouslyTM ⊕Ns andTM ⊕Nu are two invariant subbundles underDφt , i.e. (3.6).
We now compute the generalized Lyapunov-type numbers associated in the context of

section 2. For anyp ∈ M, using (3.7) and (3.8), we obtain

λu(p) = e−λu(I ) νs(p) = eλs(I ) σ s(p) = 0

σ cu(p) = e−λu(I ) σ su(p) = e−λu(I )+λs(I )
(3.11)

whereλu(I ) is the smallest real part of any of thel eigenvalues ofJ∂2H0(0, 0, I )/∂X2

which have positive real parts, andλs(I ) is the largest real part of any of thel eigenvalues of
J∂2H0(0, 0, I )/∂X2 which have negative real parts. Recalling (A3), we have

−λu(I ), λs(I ) < 0 ∀ I ∈ U
and therefore

λ(p) < 1 ν(p) < 1 σ(p) = 0<
1

r

σ cu(p) < 1 σ su(p) < 1 ∀ p ∈ M̄.
The same conclusion holds forTM⊕Ns under the time-reversed vector field from remark 2.1.
So the normally hyperbolic properties ofM are proved, andM satisfies the conditions in
theorem 2.2.

Now we show the persistence ofM,Ws(M) andWu(M) by using theorem 2.1. However,
sinceM is neither overflowing nor inflowing invariant due to the fact that vector field (3.2) is
identically zero on∂M, there is a slight difficulty. By some technique, we obtain the following
result.
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Proposition 3.1. There existsε0 > 0, such that for0 < ε < ε0, system (3.1) possesses aCr

2k-dimensional invariant manifold

Mε = {(x, y, I, ϕ) | x = O(ε), y = O(ε), I ∈ Ũ ⊂ U, ϕ ∈ T k} (3.12)

which isCr smooth inI , ϕ, ε, whereŨ ⊂ U is a compactk-dimensional set including the
origin ‘0’. Moreover,Mε hasCr stable and unstable manifolds,Ws(Mε) andWu(Mε), which
areCr diffeomorphic toWs(M) andWu(M) locally, respectively.

Proof. Let Ũ ⊂ U be a compact set including the origin ‘0’. Choose open convex setsU0 and
U1 such thatŨ ⊂ U0 ⊂ U1 ⊂ U with closure(U0) ⊂ U1. Construct aC∞ ‘bump’ function
[16]

g: Rk → R

such that

g(I) =



= 0, I ∈ Ũ ,
= 1, I ∈ ∂U0

= −1, I ∈ ∂U1

= 0, I ∈ Rk \ U .

(3.13)

Now consider the modfied vector field of (3.2)

ẋ = ∂H0

∂y
(x, y, I )

ẏ = −∂H0

∂x
(x, y, I )

İ = ε̃g(I )I
ϕ̇ = ∂H0

∂I
(x, y, I )

(3.14)

for someε̃ > 0. Let M̃, M0 andM1 be subsets ofM for which I is restricted to lie inŨ ,
U0 andU1, respectively. ThenM̃ ⊂ M0 ⊂ M1 ⊂ M, and from the above discussions the
following statements are obvious:

(i) M0 is an overflowing manifold under (3.14) satisfying the conditions of theorem 2.1.
(ii) M1 is an inflowing manifold under (3.14) satisfying the conditions of theorem 2.1 under

the time-reversed vector field.

In addition, from (3.13), equations (3.14) and (3.12) are identical forI ∈ Ũ , so it follows
from theorem 2.1 that the perturbed system (3.1) possess aCr -invariant manifoldMε which is
O(ε) Cr close toM. Moreover, there exist invariant manifoldsWs(Mε) andWu(Mε) which
areCr close toWs(M) andWu(M) locally, respectively. The proposition is proved. �

Remark 3.1. Actually, from the above proof, the invariant property ofMε is slightly different
from the usual definition of the invariant, since points starting fromMε may leaveMε by
crossing its boundary. But this will cause us little concern because we consider only the
invariant tori inMε, not the wholeMε.

Next, we investigate the persistence of the invariant tori under the perturbation. In order
to explore the dynamics onMε, we first prove a technical lemma which will be stated in its full
generality. Throughout the lemma, d will refer to exterior differentiation andiF$ will denote
the interior product of the vector fieldF with the form$ .
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Lemma 3.1. Let(P,$)be a(2k+2l)-dimensional symplectic manifold with local coordinates
X = (x1, x2, . . . , xl, y1, y2, . . . , yl), Z = (z1, z2, . . . , zk, ϕ1, ϕ2, . . . , ϕk), with the symplectic
form $ = ∑l

i=1 dyi ∧ dxi +
∑k

j=1 dzj ∧ dϕj . Consider a one-parameter family of 2k-
dimensionalCs submanifoldsPε ⊂ P , with 16 s 6 r andε ∈ [0, ε0], of the form

Pε = {(X,Z) ∈ P | X = h(z) + εb(Z, ε)} (3.15)

wherez ≡ (z1, z2, . . . , zk), h = (h1, h2, . . . , h2l) and b ≡ (b1, b2, . . . , b2l) are (locally
defined)Cs+1 functions withhi : Rk → R, bi : R2k → R, i = 1, . . . ,2l. Further, assume that
H is aCr function onP , and for anyε ∈ [0, ε0],Pε is an integral manifold for the Hamiltonian
vector fieldFH : P → T P defined by

iFH$ = dH.

Then forε sufficiently small,

(i) (Pε,$ε) is a 2k-dimensional symplecticCs manifold with$ε = $ |Pε ,
(ii) Fε = FH |Pε is a Hamiltonian vector field onPε with HamiltonianHε = H |Pε , i.e.

iFε$ε = dHε.

Proof. We first show that$ε defines a symplectic structure onPε. OnPε, we have

dxi = εDϕbi dϕ +Dz(hi + εbi) dz ϕ = (ϕ1, ϕ2, . . . , ϕk) i = 1, . . . , l

dyj = εDϕbj+l dϕ +Dz(hj+l + εbj+l) dz j = 1, . . . , l.

By an easy calculation, we have

$ε = (1 + O(ε))
k∑
i=1

dzi ∧ dϕi (3.16)

which implies that, forε sufficiently small,$ε is a nondegenerate 2-form onPε. Let
eε = (h+εb, id2k): R2k → P be the embedding ofPε, where id2k denotes the 2k-dimensional
identity map. Then

d$ε = d(e∗ε$) = e∗ε d$ = 0 (3.17)

which shows that$ε is closed onPε (where e∗ε denotes the pullback ofeε, see [11]).
Equations (3.16) and (3.17) together imply (i) of the lemma.

To show (ii), consider anypε ∈ e−1
ε (Pε) andu ∈ TPεR2k. In the context of the differential

form we have

iFε$ε[pε](u) = e∗ε$ [pε](e
∗
εFH (pε), u)

= $ [eε(pε)] deε de−1
ε FH (eε(pε)), deε u)

= $ [eε(pε)](FH (eε(pε)), deε u) = dH [eε(pε)] deε u)

= d(e∗εH)[pε](u) = dHε[pε](u)

which concludes the proof. �

Remark 3.2. The above lemma is easy but not trivial because it is not obviously true for all
invariant manifolds of the Hamiltonian dynamics, e.g. for stable and unstable manifolds of
equilibrium. This is easily seen from the structure of the stable and unstable subspaces of the
equilibrium in the linearized problem [10].
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We now apply the above lemma toMε given in proposition 3.1 and obtain proposition 3.2.

Proposition 3.2. Consider system (3.1) restricted to its invariant manifoldMε. For ε
sufficiently small, the restricted dynamics toMε is Hamiltonian with the Hamiltonian

Hε = H0(0, 0, I ) + εH1(0, 0, I, ϕ,0) + O(ε2) (3.18)

and with the restricted symplectic form

$ε = (1 + O(ε))
k∑
i=1

dIi ∧ dϕi.

Proof. This follows directly from lemma 3.1, proposition 3.1 and (A1). �

Therefore, from proposition 3.2, system (3.1) restricted toMε is a 2k-dimensional
Hamiltonian system

İ = −ε ∂H̃1

∂ϕ
(I, ϕ) + O(ε2)

ϕ̇ = ω(I) + ε
∂H̃1

∂I
(I, ϕ) + O(ε2)

(3.19)

whereH̃1(I, ϕ) = H1(0, 0, I, ϕ,0),ω(I) is given in (3.4). Thus if the assumption (A2) holds,
we may consider the persistence of the invariant tori in (3.19) by applying the KAM theorem.
However, equation (3.19) is not analytic, so we must investigate the order of differentiability of
(3.19) in order to use the conclusion of remark 2.2. From proposition 3.1,Mε is aCr manifold,
but from lemma 3.1, the orders of differentiability of the functionsh andbmust be larger than
the order of manifoldMε, so (Mε,$ε) is aCr−1 symplectic manifold at most. Therefore,
to be able to use the smooth version of the KAM theorem for (3.19), we need the following
assumption:

(A4) r − 1> 2k − 1 i.e. r > 2k.

Finally, from the smooth version of the KAM theorem, proposition 3.1 and theorem 2.2,
we obtain the main result.

Theorem 3.1.For theCr Hamiltonian vector field (3.1), suppose (A1)–(A4) hold, then forε

small enough, thek-parameter family ofk-dimensional invariant tori in (3.2)

x = y = 0

I = I0
ϕ = ω(I0)t + ϕ0

(3.20)

with

|〈ω(I0), j〉| > c|j |−N (3.21)

for all nonzero integer-valuedk-vectorsj wherec is a positive constant andN > k − 1,
and their stable and unstable manifolds persist in (3.1). Moreover, the continuations of the
persistence are differentiable.

Proof. This follows directly from the preceding results. �
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4. Time-dependent quasi-periodic perturbation

In the past, most work was focused on the Hamiltonian systems with autonomous perturbation.
However, recently, the analytic Hamiltonian systems with time-dependent quasi-periodic
perturbations whose Hamiltonian is of the form

H(I, ϕ) = H0(I ) + εH1(I, ϕ, ϕ̃, ε) (4.1)

whereϕ̃ = (ϕ̃1, ϕ̃2, . . . , ϕ̃s) andϕ̃ is quasi-periodic with respect to the time with the frequency
ω̃ = (ω̃1, ω̃2, . . . , ω̃s), have been extensively studied because these kinds of Hamiltonian
appear in several problems of celestial mechanics. For instance, to study the dynamics
of a small particle near the equilateral libration point of the Earth–Moon system, one can
take the Earth–Moon system as a restricted three-body problem (which can be written as an
autonomous Hamiltonian) plus perturbations, that can be very well approximated by quasi-
periodic functions, see [3].

The problem of the persistence of maximal dimensional tori of the Hamiltonian in (4.1)
was first studied in [8]. Then Jorba and Villanueva [9] considered the persistence of lower-
dimensional elliptic tori under the same kind of perturbations, and showed that under some
hypothesis of nondegeneracy and nonresonance some of the lower-dimensional tori are not
destroyed but only deformed by the perturbation with addition of the perturbing frequencies
to those they had previously.

In this section, we illustrate briefly how one can directly generalize the method in
section 3 to investigate the persistence of lower-dimensional hyperbolic invariant tori under
time-dependent quasi-periodic perturbation.

Consider theCr Hamiltonian vector field with the Hamiltonian

H(x, y, I, ϕ, ϕ̃, ε) = H0(x, y, I ) + εH1(x, y, I, ϕ, ϕ̃, ε) (4.2)

with respect to the symplectic form dy ∧ dx + dI ∧ dϕ, whereϕ̃ is quasi-periodic in time with
frequencyω̃ = (ω̃1, ω̃2, . . . , ω̃s), x, y ∈ Rl , I ∈ U ⊂ Rk (U is an open set) andϕ ∈ T k.

For (4.2), we still suppose that (A1)–(A3) hold. In order to be able to use the method in
section 3, we rewrite (4.2) as

H(x, y, I, ϕ, Ĩ , ϕ̃, ε) = ω̃TĨ +H0(x, y, I ) + εH1(x, y, I, ϕ, ϕ̃, ε) (4.3)

with the symplectic form dy ∧ dx + dI ∧ dϕ + dĨ ∧ dϕ̃, whereϕ̃ are the angle variables that
denote the time,̃I are the corresponding momenta andω̃T denotes the transposition ofω̃. Then
the Hamiltonian vector field generated by (4.3) is a(2l + 2k + 2s)-dimensional autonomous
vector field, and by the method in section 3 and the results in [8] one may obtain a conclusion
similar to the one in [9].

5. An example

We now consider an example introduced in [7] which was used to describe an axisymmetric,
translation-invariant media problem in geometrical optics.

The optical Hamiltonian with two degrees of freedom is given by

H = −
√
n2(r)− p2

r − p2
ϕ/r

2 (5.1)
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and Hamiltonian equations for axisymmetric translation-invariant media are expressible as

ṙ = ∂H

∂pr
= − 1

H
pr

ṗr = −∂H
∂r
= − 1

2H

d

dr

(
n2(r)− p

2
ϕ

r2

)
ṗϕ = −∂H

∂ϕ
= 0

ϕ̇ = ∂H

∂pϕ
= − pϕ

Hr2

(5.2)

where the physical meanings ofr ∈ R1, pr ∈ R1, pϕ ∈ R1, ϕ ∈ T 1 andn2(r) refer to those
given in [7].

Choose a radial profile of the fibre’s refractive index in the following form:

n2(r) = λ2 + (µ− νr2)2 (5.3)

whereλ2, µ andν are positive constants. Now we consider the following perturbations of the
refractive index:

n2
ε(r) = n2(r) + εn2

0(r, pϕ, ϕ) (5.4)

where

n2
0(r, pϕ, ϕ) = [pϕ − 2νr4(µ− νr2)]9/2f (ϕ) (5.5)

f (ϕ) is a function ofϕ.
Expanding the Hamiltonian

Hε = −
√
n2
ε(r)− p2

r − p2
ϕ/r

2 (5.6)

in powers ofε, givesHε = H0 + εH1 at linear order, where

H0 = H = −
√
n2(r)− p2

r − p2
ϕ/r

2 H1 = 1

2H0
n2

0(r, pϕ, ϕ). (5.7)

This expansion is valid providedH0 � ε; physically, that is, away from grazing incidence to
the image screen.

To linear order inε, the refractive index perturbations appear in Hamiltonian equations as

ṙ = − 1

H
pr + ε

pr

2H 3
n2

0

ṗr = − 1

2H

d

dr

(
n2(r)− p

2
ϕ

r2

)
+ ε

[
1

4H 3
n2

0
d

dr

(
n2(r)− p

2
ϕ

r2

)
− 1

2H

∂n2
0

∂r

]
ṗϕ = − ε

2H

∂n2
0

∂ϕ

ϕ̇ = − pϕ

Hr2
+ ε

n2
0

2H 3

pϕ

r2
.

(5.8)

Now consider the unperturbed system of (5.8), i.e. the system (5.2). The Hamiltonian equations
for (r, pr) in (5.8) are given by

ṙ = − 1

H
pr

ṗr = − 1

H

[
−2νr(µ− νr2) +

p2
ϕ

r3

]
.

(5.9)
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The equilibria of these equations occur at those points where the right-hand sides vanish, i.e.
pr = 0, r = r̄(pϕ, µ, ν), wherer̄ satisfies the following cubic relation in̄r2:

−2νr̄2(µ− νr̄2) +
p2
ϕ

r̄2
= 0. (5.10)

It is easy to check that the level surfaces ofH 2 satisfy this equilibria condition when

λ2 + (µ− νr̄2)2 −H 2 = 2νr̄2(µ− νr̄2). (5.11)

Thus ifλ2 < 1
3(µ

2 + 3H 2), the equilibrium points occur in pairs, i.e.

r̄2
1 =

1

3ν
(2µ +

√
µ2 − 3λ2 + 3H 2) r̄2

2 =
1

3ν
(2µ−

√
µ2 − 3λ2 + 3H 2). (5.12)

By the fact that a fixed point of (5.9) is stable (respectively hyperbolic), if at the point

d2

dr2

(
n2(r)− p

2
ϕ

r2

)
< 0 (respectively> 0) (5.13)

one may find that those fixed points from pairs of roots inr̄2
1 are hyperbolic, while those from

r̄2
2 are stable.

Then, we obtain a normally hyperbolic invariant manifold for the system (5.2)

M = {(r, pr, pϕ, ϕ)|r2 = r̄2
1, pr = 0, pϕ ∈ R1, ϕ ∈ T 1} (5.14)

which consists of one-dimensional tori, i.e. periodic orbits. Our goal is to detect the persistence
of these tori and their stable and unstable manifolds in the perturbed system (5.8). Due to a
nonresonance condition such as (3.21), we only consider those tori withpϕ 6= 0.

Actually, system (5.8) is a special case of system (3.1) withl = k = 1, and one may
easily find that all the conditions required in section 3 are satisfied. Then using our method,
we can show the existence of the periodic orbits and their stable and unstable manifolds for
the system (5.8). However, from (5.5) and (5.10) we find that the system (5.8) is not analytical
near the fixed pointsr2 = r̄2

1, pr = 0, but isC3; namely, the previous methods are invalid for
the system (5.8).
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