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Abstract The capillary driven flow in cylindrical interior
corners satisfying the Concus-Finn condition was inves-
tigated under microgravity. The governing equation of
capillary driven flow in cylindrical interior corners was
established, and the approximate analytical solution was
obtained. The relationship between liquid’s front position
and time was derived, which was then compared with
the results of drop tower experiments and numerical sim-
ulation using the FLOW-3D software. The influence of
different parameters on the interior corner flow was stud-
ied. The results showed that the meniscus height decreased
as contact angle increased, and increased as the radius of
rounded wall increased. The influence of decreasing the
contact angle on a rounded wall was greater than that on
a straight wall. Our findings can be referred to designing
tanks or choosing the suitable solution in the space fluid
management.
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List of symbol

Dimensional quantities

x′, y′, z′ rectangular coordinate system
u′, v′, w velocities of x′, y′, z′-component
H constant height of meniscus at initial location
L characteristic length of the fluid column
R′
1 radius of meniscus at z-location

R′
2 radius of rounded wall

μ dynamic viscosity
ρ density
σ surface tension
θ1 contact angle of straight wall
θ2 contact angle of rounded wall
α angle between OO1 and y-axis
P ′ Pressure
t ′ Time
h′ the height of meniscus along OO1 (the mini-

mum distance from point O to meniscus)
k the slope of OA in the Oξη coordinate frame
� ε2σρH

/
μ2

CI,i , CII,i the coefficient
dk the coefficient of h(λ) by series expansion
aj the coefficient of A by series expansion
c a constant value which is stand by zf żf in

Eq. 25
χ the relative error of area A

δ the relative error δ of w0II(ξ, η) in the rounded
wall OB

Dimensionless quantities

x, y, z rectangular coordinate system, x = x′/H,

y = y′/H, z = z′/L
ε ratio of length scale, ε = H/L
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W velocity coefficient, W = εσ /μ
u, v, w velocities of x, y, z-component, u = u′/εW ,

v = v′/εW ,w = w′/W
P pressure, P =HP′/σ
t time, t =Wt′/L
x0 the value along the x-axis on the meniscus,

as shown in Fig. 4
S(x, h) the value along y-axis at a given x0, as

shown in Fig. 4
R1 radius of meniscus at z-location, R1 =

R′
1/H , as shown in Fig. 4

R2 radius of rounded wall, R2 = R′
2/H, as

shown in Fig. 4
A cross-sectional flow area
Q′ volumetric flow rate
x1, y1 center coordinates of meniscus, as shown

in Fig. 4
x2, y2 center coordinates of rounded wall, as

shown in Fig. 4
xA, yA coordinate of intersection between meniscus

and straight wall, as shown in Fig. 4
xB, yB the coordinate of intersection between me-

niscus and rounded all, as shown in Fig. 4
h h = h′/H
zf liquid’s front position at t
zf 0 liquid’s front position at initial time
λ λ = z/zf

ξ, local coordinates, the intersection point of
η−axis and

η meniscus is point C, OC= h, as shown in
Fig. 4

ξ0, η0 coordinate transform of (x0, S) on local
coordinate system

g0 gravitational acceleration in the locality

Introduction

Capillary driven flow is common and can be observed in
our surroundings from the draining of fluids via a sponge
or towel to the wicking of candle wax. Although capil-
lary phenomena are often ignored in large-scale systems
considering the great Earth’s gravity, they are significant
in non-gravity environments. There is the potential to dis-
place fluids using only surface tension and wetting prop-
erties, reducing the need of intricate systems with moving
parts or higher risk of failure such as centrifugal pumps.
Hence, capillary driven flow has the advantages of economy
and safety.

Spontaneous capillary driven flow can be used to trans-
port fluids in places with the less influence of gravity. The
amount and rate of the transported fluid strongly depends
on the system geometry. As a matter of fact, due to the

induced pressure gradient caused by the decrease of mean
radius of curvature as it approaches the corner, interior cor-
ners can also be exploited to pump fluid passively. Research
on capillary flow in interior corner can be traced back to the
1960s. Concus and Finn (1969) proposed the critical contact
angle of the wetting liquid, i.e. Concus-Finn condition under
non-gravity, and classified capillary flow in interior cor-
ners as steady and unsteady solutions. Weislogel (1996)
simplified the three dimensional Navier-Stokes equations
to one dimensional case, and got the solution by intro-
ducing the lubrication approximation. For special cases
of constant height boundary condition, the length of the
fluid column increases in the interior corner (L ∝ t1/2).
After that, Weislogel (2002) and Nardin (2005) published
series of papers to extend the theory to complex geome-
try calculation. Mason and Morrow (1984, 1991) derived an
expression for the displacement curvature of the main ter-
minal meniscus in a regular n-sided tube with any contact
angle, and later reported the general solutions for com-
pletely wetted triangular tubes of different shapes. Dong
and Chatzis (1995) took the wetting area as variable to
investigate the flow in square capillary tube, and obtained
the nonlinear solution by using the finite element method
(FEM) to solve the heat conduction equations. But the solu-
tion was only limited in the right angle and cannot be
used in complex geometry for the limitation of curvature
calculation. Wei and Chen (2011) extended Dong’s method
to different contact angles and dihedral angles by modifying
the curvature calculation algorithm and its relation with the
wetting area. They also found some mistakes using FEM to
solve the heat conduction equation. After the modifications,
the nonlinear solution can be obtained. The proposed theory
is validated by experiments of capillary tube and drop tower.
Wang (2010) and Xu (2007) studied the influence of initial
liquid volume on the capillary flow in interior corner sys-
tematically by microgravity experiments using drop tower,
including three different conditions: satisfying, close to and
dissatisfying the Concus-Finn condition. The experimental
results showed that the liquid’s front position of the menis-
cus in the corner increased with the increase of the initial
liquid volume.

In many practical applications, the interior corners are
rounded instead of ideally sharp due to the manufacturing
and processing. Ransohoff and Radke (1988) investigated
rounded corners where the rounded portion of the corner
was concentric with the free surface. The flow-resistance
function was determined numerically for a selection of
corner half-angles, contact angles, and degrees of rounded-
ness, which was measured using a ratio that employs the
depth of the fluid h. Concus and Finn (1990) found that
the critical contact angle predicted by Concus-Finn condi-
tion decreased with the increasing of corner radius. Namely,
the liquid can form stable interfacial structure easily.
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Chen et al. (2006, 2007) set up suitable non-dimensional
flow resistance equations with appropriate non-dimensional
methods, obtained the approximate analytical solution of
capillary driven flow in the rounded interior corner, and
verified the results with experiments in drop tower. The
results showed that the climbing velocity would be reduced
in rounded corner.

The study on the interior corner capillary flow mainly
explores the interior corner made up of two straight edges
with V-shape. The container is relatively complicated in
practical engineering, such as the structure of the actual
vane-type surface tension tank (2005) shown in Fig. 1. The
capsule is of hemispherical shape in its upper and lower
parts, and the intermediate portion is cylindrical. The inside
and outside of the vane are fixed on the fixed pole which is
in the middle of the tank. The outside of the vane is perpen-
dicular to the wall of the tank. The interior corner formed
by the adjacent inside of the vane is V-shaped. Due to the
wall of the tank is curved, the interior corner between the
wall and the outside of the vane is not V-shaped, which is
defined as an interior corner of rounded wall in this article.

In this paper, the capillary driven flow satisfying Concus-
Finn condition in interior corner of rounded wall under
microgravity environment has been investigated. Based
on Navier-Stokes equations established by Davis (1983)
and the capillary driven flow in interior corner of regu-
lar polygon researched by Weislogel, the governing equa-
tion for capillary driven flow is established and the
approximate analytical solution is derived. Moreover the
influence of different parameters in interior corner flow
is analyzed.

Navier-stokes Equations and Boundary Conditions
of Capillary Flow

The model of capillary flow in an isolated interior corner is
shown in Fig. 2. The length of container is L, with straight
wall along the radial direction of container and at 45◦ to
y axis. The lowest height of meniscus is H at z = 0. H

keeps the same as time goes by when the contact angle is
less than 30◦. Dotted line represents the liquid location at

Fig. 1 Schematic model of heavily vaned VTRE tank showing fluid
location in low-gravity environment. Tank is partially liquid filled
as shown at left with fluid occupying shaded region. Nardin and
Weislogel (2005)

,z z
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Fig. 2 A fluid column in an isolated interior corner of rounded wall.
The coordinate system is aligned such that the z-axis is along the cor-
ner. The characteristic height and length of the fluid column are Hand
L, respectively.

the initial time t = 0, zf and zf 0 is liquid’s front position
at any time and initial time, respectively. The cross section
of fluid is marked by shaded area at any z-location. x, y,
z is non-dimensional rectangular coordinate system, where
x = x′/H, y = y′/H, z = z′/L.

Initial meniscus height is an important parameter for the
capillary flow in an interior corner of rounded wall under
microgravity. Weislogel (1996) found that the capillary flow
in V-type interior corner has a constant meniscus height
by drop tower experiments, namely initial meniscus height.
The capillary flow in an interior corner of rounded wall is
numerically simulated using FLOW-3D; the results show
that like capillary flow in an interior corner of V-type, the
rounded wall also has the initial meniscus height, which is

Fig. 3 Capillary rise at different time, which are results from the
FLOW-3D simulations. xis the radial direction of the vessel and z is
the axial direction. (a θ1 = θ2 =0◦ b θ1 =0◦, θ2 =10◦)
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the H as shown in Fig. 3. Figure 3 displays the capillary
rise curves at t = 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s, 3.5s,
4.0s, 4.5s, 5.0s; and curves have a intersection point A at
different time, which corresponds to the initial meniscus
height H .

The cross-flow section is sketched in Fig. 4, where θ1, θ2
are the contact angles, A and B are intersections between
the meniscus and straight, rounded wall, respectively. O1,
O2 are the corresponding centers for circular curve of A
and B, respectively. S is the meniscus height as measured
from the x-z plane at a given x0; point C is the intersection
point of meniscus AB and the line OO1. The minimum dis-
tance from point O to meniscus AB is h′, namely OC= h′,
which is called meniscus height, where the dimensionless
is h = h′/H . Figure 4 shows that the line OO1 and y-axis
are not coincide, the angle between them is α. If rounded
wall OB transforms to straight wall, the interior corner of
rounded wall transforms to perfectly sharp interior corner,
and the angle α = 0◦, the line OO1 and y-axis coincide,
namely x = 0, Sx=0 = h. But for rounded wall, Sx=0 �= h

on x = 0 because of angle α. To be convenient, this
paper constructed local coordinate system Oξη, and set η-
axis along the line OO1. η-axis divides cross-section into
two areas, area I where ξ> 0 and area II where ξ<0. The
transformation relations between Oxy and Oξη:
{

x = ξ cosα + η sinα

y = −ξ sinα + η cosα
(1)

where α=arctan(x1/y1). The linear equation of OA can be
expressed as η = k.ξ , in which k =tan(α+45◦). (x0, S) can
be transformed into (ξ0, η0).

1 1 1( , )O x y 2 2 2( , )O x y

( , )B BB x y

y

x
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2

1

( , )A AA x y

1 1,R R 2 2,R R

S

I
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2

C 0( , )x S

Fig. 4 Schematic diagram of arbitrary cross section. θ1, θ2 are the con-
tact angles of straight wall and rounded wall respectively. O1, O2 are
the corresponding centers of meniscus and rounded wall, R1, R2 are
the radius respectively. The coordinates of the meniscus are described
by x0 along the x-axis and by S along the y-axis. h is the height of
meniscus along OO1

The non-dimensional Navier-Stokes equations and the
continuity equation of capillary flow in interior corner are:
⎧
⎪⎪⎨

⎪⎪⎩

ε2�Du
Dt

= −P,x + ε2∇2u

ε2�Dv
Dt

= −P,y + ε2∇2v

�Dw
Dt

= −P,z + ∇2w

∇ · v = 0

(2)

where D/Dt= ∂/ ∂t + u∂/ ∂x + y∂/∂y + w∂/∂z, ∇2 =
∂2/∂x2 + ∂2/∂y2 + ε2∂2/∂z2, v= (u, v, w). u, v, w is
dimensionless velocities of x, y, z-component, P is fluid’s
pressure. u = u′/εW , v = v′/εW , w = w′/W , P =HP′/σ ,
W = εσ /μ, t =Wt′/L,� = ε2σρH /μ2, ε = H /L. μ is the
dynamic viscosity, ρ is the density, σ is the surface tension,
P,ζ = ∂P /∂ζ , ζ = x, y, z.

According to Weislogel (1996), the boundary condition
of capillary flow in interior corner can be described as
follows:

(1) No-slip condition along straight wall and rounded
wall:

u = v = w = 0 on y = x (3-a)

u = v = w = 0 on x2 + y2 = √
2R2 (x + y) (3-b)

(2) Meniscus AB is free surface, the stresses are zero:
(
1 + ε2S2

,z

)−1/2 (
1 + |∇S|2

)−1

{(
1 − S2

,x + ε2S2
,z

) [
u,y + v,x − S,z

(
ε2u,z + w,x

)]

+2S,x

[
v,y − u,x − S,z

(
ε2v,z + w,y

)

− ε2S2
,z

(
u,x − w,z

)]} = 0 (3-c)

(
1 + ε2S2

,z

)−1/2 (
1 + |∇S|2

)−1/2

[(
1 − ε2S2

,z

) (
ε2v,z + w,y

)
−S,x(ε2u,z + w,x)

+2ε2S,z

(
v,y − w,z

)−ε2S,xS,z

(
u,y + v,x

)]=0 (3-d)

where |∇S|2 = S2
,x + ε2S2

,z, (),ζ = ∂()/∂ζ , (),ζχ =
∂2()/∂ζ∂χ , ζ, χ = x, y, z.

(3) The normal stress condition on meniscus AB:

−P + 2ε2
[
1 + |∇S|2

]−1

[
v,y − S,x

(
u,y + v,x

) − S,z

(
ε2v,z + w,y

)

+S,xS,z

(
ε2u,z + w,x

)
+ S2

,yu,x + ε2S2
,zw,z

]

=
[
1 + |∇S|2

]−3/2 [
S,xx

(
1+ε2S2

,z

)
+ ε2S,zz

(
1 + S2

,x

)

−2ε2S,xS,zS,xz

]
(3-e)
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(4) The angle with rounded wall and the outward unit
normal to meniscus is equal to contact angle:

At point A, the contact line boundary condition is:

(1 + |∇S|2)−1/2(1 + S,x) = √
2 cos θ1 (3-f)

At point B, the contact line boundary condition is:

1

R2

(
1 + |∇S|2

)−1/2
[√

2

2
R2 + S,x

(

xB −
√
2

2
R2

)

− yB

]

= cos θ2 (3-g)

In the process of capillary flow, we can obtain as follows
by the z-direction

∂A

∂t
= −∂Q′

∂z
(4)

where A is the cross-sectional area in the x-y plane and Q′
is the volumetric flow rate in the z-direction.

Q′ can be calculated by the integral of w over the cross-
section:

Q′ =
∫

A

wdxdy (5)

According to Fig. 4, cross-sectional area A can be calcu-
lated by

A =
∫ 0

xB

{
S −

[
y2 −

√
R2
2 − (x − x2)

2
]}

dx +
∫ xA

0
(S − x) dx (6)

And the variables S, xA, xB in Eq. 6 can be expressed as
the function of the meniscus height h, namely

S = y1 −
√

R2
1 − (x − x1)

2 (7-a)

xA = √
2
[
h2 + 2R1h + 2R1R2 (cos θ2 − sin θ1)

] /
(4R2) (7-b)

xB =
(

−b2 −
√

b22 − 4b1b3

)/
(2b1) (7-c)

where: b1 = 4
[
(x2 − x1)

2 + (y2 − y1)
2] , b2 =

4 [(x2 − x1) h(h + 2R1) + 2y2 (y2 − y1) (x1 − y1)],

b3 = h2 (h + 2R1)
2 + 4y2h (y2 − y1) (h + 2R1) ,

x2 = y2 = √
2R2/2,

x1 = √
2
[
h2 + 2R1h − 2R1R2 (cos θ1 − cos θ2)

]
/ (4R2) ,

y1 = √
2
[
h2 + 2R1h + 2R1R2 (cos θ1 + cos θ2)

]
/ (4R2) ,

R1 =
−h
[
h2 + hR2 cos θ2 − 2R2

2

]+ R2h

√
4R2

2

(
cos2 θ1 + cos2 θ2

)+ h
(
h sin2 θ1 + 4R2 cos θ2

)

2
[
(h + R2 cos θ2)

2 − R2
2 sin

2 θ1
]

Substituting (7-a)–(7-c) into Eq. 6, cross-sectional areaA

can be expressed by the meniscus height h, namely

A = FA(h) (8)

Fig. 5 The analytical relationship between curves of A and meniscus
height h with different R2 when θ1 = θ2 = 0◦. his the height of
meniscus along with OO1, and R2 is the radius of the rounded wall.
The interior corner becomes sharp as R2 tends to infinity

When θ1 = θ2 = 0◦, the relationship between curves of
cross-sectional area A and meniscus height h with different
R2 as shown in Fig. 5.

When the radius of rounded wall R2 → ∞, the rounded
wall transforms to the straight wall, the interior corner
transforms to the sharp interior corner, where A is pos-
itive and proportional to h2 (Weislogel 1996). Figure 5

χ,
%

Fig. 6 The relation curves that the relative error χ varies with h, where
JM denotes the highest order in the polynomial



198 Microgravity Sci. Technol. (2015) 27:193–205

Fig. 7 δ ∼ ξ/ξB curves with different structure parameters from analytical results, where ξB is the maximum value of ξ . ( a R2 = 3.0, θ1 = θ2 =
0◦ b h = 1.0, θ1 = θ2 = 0◦ c R2 = 3.0, h =1.0)

shows the nonlinear relationship between A and h. And with
the increasing of R2, it approaches to the relationship in
sharp interior corner, namely when R2 reaches to a certain
value, the interior corner of rounded wall can be regarded
as sharp interior corner. The error in cross-sectional area
between interior corner of rounded wall and sharp inte-
rior corner increases with the increasing of h and can be

negligible when h<0.4. It shows that the rounded wall can
be simplified as straight wall when h<0.4.

Considering the complication of Eq. 8, cross-sectional
area A, for convenience, can be expanded as a function of h

A =
∞∑

j=1

ajh
j (9)

Fig. 8 The analytical solutions of FI(ξ ,η) and FII(ξ ,η) with different structure parameters, where vertical axis and horizontal axis represent ξ and
η, respectively. In each graph, right is distribution map of FI(ξ , η), left is distribution map of FII(ξ , η)
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Fig. 9 The surface represents the analytical values of c with the
changing contact angles θ and the radius of container R2

where the coefficients of A by series expansion aj (j =
1,2,. . . ,∞) are constants related to R2, θ1, θ2. For example,
when the R2 = 3.0, θ1 = 0◦, θ2 = 0◦, the aj can be obtain
that aj (j=1,2,3,4) equal to 0.0043, 1.2171, 0.0692, -0.0248,
respectively, and aj approach to zero with j >4. The fit-
ting accuracy of area A can be expressed by χ which is the
relative error of Eqs. 8 and 9, that

χ =

∣∣∣∣∣∣∣∣∣∣

JM∑

j=1
ajh

j − FA (h)

FA (h)

∣∣∣∣∣∣∣∣∣∣

× 100 %

where, JM is the maximum of j . When R2 = 4, θ1 = θ2 =
0°, the relation curves that the relative error χ varies with h

are obtained in Fig. 6.

The conclusion can be drawn when the highest order
of expansion in series equals to 4, the error between the
approximate result and original A has become small from
Fig. 6. So the non-dimensional area A can be expanded as
the four order polynomial about h.

Dynamic Equation and Approximate Analytical
Solution of Capillary Flow

The perturbation method is used to solve the Navier-Stokes
equations of capillary flow
⎧
⎪⎪⎨

⎪⎪⎩

u = u0 + ε2u1 + ...

v = v0 + ε2v1 + ...

w = w0 + ε2w1 + ...

P = P0 + ε2P1 + ...

, (10)

In this research, the length of container L>>H , we can
assume that ε2<<1. Substituting (10) into Eq. 2, (3), where
terms of O(ε) are absorbed into the leading order terms for
convenience. The Navier-Stokes equations can be simplified
as:

P0,z = w0,xx + w0,yy (11)

The boundary conditions (3-a)-(3-g) may be simplified as
follows; and Eqs. 12-d and 12-e represent the boundary
conditions on the interface.

w0 = 0 on y = x (12-a)

w0 = 0 on x2 + y2 = √
2R2 (x + y) (12-b)

(
1 − S2

,x

) (
u0,y + v0,x − S,zw0,x

)

+ 2S,x

(
v0,y − u0,x − S,zw0,y

) = 0 (12-c)

w0,y − S,xw0,x = 0 (12-d)

−P0 = S2
,xx

(
1 + S2

,x

)−3/2
(12-e)

Fig. 10 The experimental
device, experimental container
and the initial position of the
liquid (a the experimental device
b the experimental container)

)(b)(a
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Table 1 Properties of the
liquids Fluid υ/(cs) σ /(N/m×10−3) ρ /(kg· m−3 ×103) μ/(pa·s 10−3) θ(◦)

Silicone oil 5 18.5 0.915 4.575 0

10 19.32 0.935 9.350 0

1 + S,x = √
2 cos θ1

(
1 + S2

,x

)1/2
(12-f)

1

R2

(
1 + |∇S|2

)−1/2
[

yB −
√
2

2
R2−S,x

(

xB −
√
2

2
R2

)]

= cos θ2 (12-g)

Substituting (7-a) into Eq. 12-d:

w0,y = x − x1

y1 − S
w0,x (13)

Substituting (7-a) into Eq. 12-e:

P0 = −R−1
1 (14)

Due to the radius of meniscus R1 is a function of z, t , so
is P0. Then the w0,xx + w0,yy should not contain x, y from
Eq. 11. Considering the transformation relations in Eq. 1,
flow velocity w0 can be set as a quadratic function of x and
y. The area I in the Fig. 4 can be set as follows:

w0 = w0I (ξ, η) = FI (ξ, η)
∂P0

∂z
(15)

where FI (ξ, η) = CI,1ξ
2+CI,2η

2+CI,3ξη+CI,4ξ+CI,5η+
CI,6.

Equation 15 must satisfy (11) and boundary conditions
(12-a) and Eq. 13, so

CI,1 = k2

2
(
1 + k2

) , CI,2 = 1

2
(
1 + k2

) ,

CI,3 = − k

1 + k2
, CI,4 = (η0 − ξ0k) k

1 + k2
,

CI,5 = ξ0k − η0

1 + k2
, CI,6 = 0 (16)

The area II can be set as

w0 = w0II (ξ, η) = FII (ξ, η)
∂P0

∂z
. (17)

Equation 17 to satisfy the Eq. 11 and boundary condition
(13) under the premise, w0II(ξ , η) can be set as a quadratic
function of ξ and η, so

FII(ξ, η)=CII,1ξ
2+CII,2η

2+CII,3ξη+CII,4ξ+CII,5η+CII,6

Because of the continuity of flow, w0I(ξ , η) equals to
w0II(ξ , η) along OC. For ξ =0, w0I(0, η) = w0II(0, η).
Equation 17 must satisfy (11) and Eq. 13, so

CII,1 = k2

2
(
1 + k2

) , CII,2 = 1

2
(
1 + k2

) ,

CII,3 = η1 − η0

ξ0 (η1 − 2η0)

(

2CII,1
ξ20

η1 − η0
− 2CII,2η0 − CII,5

)

+ CII,4

η1 − 2η0
, CII,5 = ξ0k − η0

1 + k2
, CII,6 = 0 (18)

Because the boundary condition of the interface between the
two areas of the corner has a higher priority than the bound-
ary condition along the rounded wall; and Eq. 17 can only
be ξ and η of the bivariate quadratic function, leads to the
fact that it is impossible to find solutions for w0II = 0 along
the rounded wall. To minimize overall residual, the specific
value of CII,4 can be obtained by least square method which
is described as

G =
∫

OB

(
CII,1ξ

2 + CII,2η
2 + CII,3ξη + CII,4ξ + CII,5η-0

)2
dη

(19)

Fig. 11 The liquid level scatter
gram of 5cs fluid at different
moments

0.5s                 1.0s                 1.5s                2.0s
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Fig. 12 The liquid level scatter
gram of 10cs fluid at different
moments

0.5s                 1.0s                 1.5s                2.0s

The CII,4 can be derived by dG/dCII,4 = 0. The relative
error δ ofw0II(ξ ,η) in the rounded wallOB can be expressed
as

δ =
∣∣∣∣
w0II (ξ, η)|OB − 0

w0II (ξ, η)max

∣∣∣∣× 100 %,

where, w0II(xξ , η)|OB is values of w0II(ξ , η) along the
rounded wall OB, w0II(ξ , η)|max is the maximum value of
w0II(ξ , η) in the region II. The point B will change with
different h, R2,θ1, consequently, the relative error δ will
change. To be convenient, when we explore the relationship
between δ and h, R2 and θ1 will be fixed. In following, δ

with different parameters h, R2,θ1 are shown in Fig. 7.
Figure 7 shows that, the value of the relative error δ is

relatively little with different structural parameters, and the
maximum value is near 0.06 %. The relative error δ of w0II

(ξ , η) increases with the increasing of h when R2, θ1 and θ2
are fixed, decrease with increasing of R2 when h, θ1, θ2 are
fixed and increasing of θ1(θ2) when R2, h are fixed.

Diagram of analytical solution of FI(ξ , η) and FII(ξ , η)

with different structure parameters as shown in Fig. 8.
Figure 8 shows that, the wetting length along rounded

wall is longer than that along the straight wall when the con-
tact angles are equal on both walls, and the distribution area
of FII(ξ , η) is larger than that of FI(ξ , η). The distribution
areas of FI(ξ , η) and FII(ξ , η) decrease with the decreasing
of h when R2, θ1 and θ2 are fixed. When h → 0, the
distribution areas of FI(ξ , η) and FII(ξ , η) approach zero,
which lead to the liquid’s tip. The wetting length along
rounded wall and distribution area of FII(ξ , η) decrease with

the increasing ofR2 when h, θ1 and θ2 are fixed. The wetting
length along rounded wall closes to the wetting length along
the straight wall, and FI(ξ , η), FII(ξ , η) tend to be symmet-
rical figure gradually. When R2, h are fixed and θ1 = θ2, the
wetting length along walls and distribution areas of FI(ξ , η)

and FII(ξ , η) decrease with increases of θ1, and the decrease
rate of FII(ξ , η) is greater that of FII(ξ, η).

Substituting (14), (15) and Eq. 17 into Eq. 5, the volu-
metric flow rate Q′ can be expressed as

Q′ = 1

R2
1

∂R1

∂z

(∫

AI

FIdξdη +
∫

AII

FIIdξdη

)
(20)

When R2 and θ1, θ2 are fixed, Q′ can be fitted as a
function of h, namely

Q′ =
∞∑

i=1

bih
i ∂h

∂z
(21)

where bi(i = 1, 2,. . . ,∞) are constants. Substituting (9),
(21) into Eq. 4, the dynamic equation of capillary flow in
interior corners of rounded wall can be obtained:
∞∑

j=1

aj jhj−1 ∂h

∂t
+

∞∑

i=1

biih
i−1
(

∂h

∂z

)2

+
∞∑

i=1

bih
i ∂

2h

∂z2
= 0

(22)

Considering (22) is the nonlinear partial differen-
tial equation, we transform it to the nonlinear ordinary
differential equations through introducing an auxiliary vari-
able. The h can be set as a function of λ:

h = h (λ) (23)

Fig. 13 The partial enlarged
view in Fig. 11 of the liquid’s
front position

0.5s                 1.0s                 1.5s                2.0s
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Fig. 14 The partial enlarged
view in Fig. 12 of the liquid’s
front position

0.5s                 1.0s                 1.5s                2.0s

where λ = z/zf , λ. ∈ [0,1]. Then Eq. 22 can be transformed
as

−
∞∑

j=1

aj jhj−1(λ)λzf żf

dh(λ)

dλ
+

∞∑

i=1

biih
i−1(λ)

[
dh(λ)

dλ

]2

+
∞∑

i=1

bih
i(λ)

d2h(λ)

dλ2
= 0 (24)

where żf = dzf /dt . Equation 24 is a function of λ except
for term zf żf , so zf żf must be a constant:

zf żf = c (25)

where c is a constant. zf (t) can be obtained from Eq. 25

zf =
√
2ct + z2f 0 (26)

where zf 0 is the liquid’s front position at initial time as
shown in Fig. 2. h(λ) can be solved by series solution and
can be set as:

h(λ) =
∞∑

k=0

dkλ
k (27)

Since h = 1 when λ = 0 and h = 0 when λ = 1, then
⎧
⎨

⎩

d0 = 1
∞∑

k=0
dk = 0 (28)

Noting that zf żf = c, and substituting (27) into Eq. 24

−c

∞∑

j=1

aj jλ

( ∞∑

k=0

dkλ
k

)j−1 ( ∞∑

k=1

dkkλk−1

)

+
∞∑

i=1

bii

( ∞∑

k=0

dkλ
k

)i−1 ( ∞∑

k=1

dkkλk−1

)2

+
∞∑

i=1

bi

( ∞∑

k=0

dkλ
k

)i [ ∞∑

k=2

dkk (k − 1) λk−2

]

= 0 (29)

Equation 29 is an algebraic equation about λ, which can
be obtained by setting the coefficients in front of λk (k =
1, 2, . . . , ∞) to zero, namely

fk (d1, d2, · · ·) = 0, k = 1, 2, (30)

Equation 29 contains an unknown constant c that can be
solved iteratively by making the volume of liquid capillary
flow at any time t is equal to the integral of the volumetric
flow rate Q′ at the z = 0 on [0, t], that is
∫ zf

0
Adz −

∫ zf 0

0
A|t=0dz =

∫ t

0
Q′|z=0dt (31)

Substituting (9), (21) and Eq. 27 into Eq. 31

∫ zf

0

⎧
⎨

⎩

∞∑

j=1

aj

[ ∞∑

k=0

dk

(
z
/
zf

)k
]j
⎫
⎬

⎭
dz

−
∫ zf 0

0

⎧
⎨

⎩

∞∑

j=1

aj

[ ∞∑

k=0

dk

(
z/zf

)k
]j
⎫
⎬

⎭
dz

=
( ∞∑

i=1

bi

)

d1
(
zf − zf 0

) /
c (32)

Make
∞∑

j=1

aj

[ ∞∑

k=0

dk

(
z
/
zf

)k
]j

=
∞∑

m=0

gm

(
z/zf

)m (33)

vane

Fig. 15 The cross sections of tank and 1/8 tank. Dash lines represent
liquid-liquid contact, and the contact angle is 90The cross sections of
tank and 1/8 tank. Dash lines represent liquid-liquid contact, and the
contact angle is 90◦
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Fig. 16 The comparisons of the
liquid’s front position

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

t /s
z f(
t) 

/m
m

Drop tower

 Flow-3D

Theory

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60
Drop tower

 Flow-3D

Theory

t /s

z f(
t) 

/m
m

(a) 5cs                                     (b) 10cs

then Eq. 32 can be simplified as

∞∑

m=0

gm

m + 1
=
( ∞∑

i=1

bi

)

d1
/
c (34)

The values of c and dk (k = 1, 2, . . .) can be obtained
by solving (30) and Eq. 34 iteratively, and then h can be
obtained. As is shown in Fig. 9, the relationship between c

and variables R2 and θ(θ1 = θ2 = θ) can be obtained by
changing the value of R2 and θ with the boundary condition
in Eqs. 12-a–12-e. In Fig. 9, c increases with increasing R2

when θ is fixed, and decreases with increasing θ when R2

is fixed. Combining with Eq. 26, zf would decrease with
increasing θ when other parameters are fixed.

The Microgravity Drop Tower Verification

Microgravity experiments were conducted to verify the
correctness of the proposed method. The experiments inves-
tigated the time evolution of the liquid’s front. The exper-
imenal device and experimental container are shown in
Fig. 10.

The experimental container was cylindrical with the
radius of 60 mm and made of PMMA; it contains four vanes

which were perpendicular to the wall of the tank. Due to
radius of the chosen rounded container in experiment being
much longer than that of meniscus, the effect of the other
interior corner can be neglected. The experimental mediums
are silicone oil fluids. Physical properties of the medium
are shown in Table 1. The liquid’s front position can be
observed through gauges that fixed beside the experimen-
tal container. Short-term microgravity experiments can be
produced using microgravity drop-tower of key laboratory
in the Chinese academy of sciences, the gravity level was
10−3g. The distributions of liquid level in a different time
are shown in Figs. 11, 12, 13 and 14. And the pixels of the
observed pictures from Figs. 11 to 14 are 1920*1080.

The FLOW-3D software was used to explore the numer-
ical analysis of this study. With FAVOR and improved
finite difference methods, the FLOW-3D software is appro-
priate for the models of steady/unsteady flow, Newtonian
fluid/non-Newtonian fluid, free surface, porous media, et
al. Different from other computational fluid dynamics soft-
ware, the FLOW-3D increases the accuracy of the tracking
of free surface and can be used to accurately simulate the
capillary driven flow in an interior corner.

The cross section of the tank is as shown in Fig. 15.
To simplify the model and shorten the calculation time in
the CFD simulations, 1/8 tank has been modeled, where

Fig. 17 Meniscus height
h’(h’= h*H) in different
cross-section with coordinate z’
at t =1.5s

0 10 20 30 40 50
0

2

4

6

8

10

12

h'
/m

m

z' /mm

 Flow-3D

 Theory

0 10 20 30 40
0

5

10

15

 Flow-3D

 Theory

z' /mm

h'
/m

m

(a) 5cs                                   (b) 10cs

14



204 Microgravity Sci. Technol. (2015) 27:193–205

the dash lines represent liquid-liquid contact, and the con-
tact angle is 90◦. After computing many grids, the results
have a better convergence and stability when the grids are
100×100×300.

As shown in Fig. 16, theoretical calculation results of
the liquid’s front position zf are compared with those from
drop-tower experiments and numerical simulation using
FLOW-3D software.

Figure 16 shows that the liquid’s front positions of the-
oretical calculation results are consistent with experiments
and numerical results from the FLOW-3D. We can know
from Eq. 26 that the liquid’s front position of capillary flow
in cylindrical interior corners is proportional to t1/2, which
corresponds with the rule of capillary flow in prismatic
interior corners.

When the liquid’s front position zf is determined, we
can calculate the meniscus height according to Eq. 27. The

comparisons of theoretical calculation of h′(h′ = h*H) and
numerical results are shown in Fig. 17 when t = 1.5s.

As shown in Fig. 17, the meniscus height of theoretical
calculation is consistent with numerical simulation results
using the FLOW-3D, verifying the correctness of theoretical
calculation.

The Influence of Different Structure Parameters
on the Capillary Flow

Figure 18 shows the relationship curves between non-
dimensionalized meniscus height h and λ when the radius
of rounded wall R2 and contact angles θ1, θ2 are selected in
different values. The liquid is 5cs fluid.

As shown in Fig. 18a, when θ1 = θ2 = 0◦, the menis-
cus height h increases with the radius of rounded wall

Fig. 18 The curves of h − λwith different structure parameters which are the results from approximate analytical solution
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R2 increasing. When R2 → ∞, the rounded wall can be
regarded as straight wall, namely the meniscus height of
rounded interior corner is smaller than that of perfectly
sharp interior corner; Fig. 18b shows that the smaller con-
tact angle, the higher meniscus height would be with fixed
R2. Figure 18c shows the effect of θ2 on h with fixed R2

and θ1; Fig. 18d shows the effect of θ1 on h with fixed
R2 and θ2. It shows that, the meniscus height hdecreases
with the increase of contact angle, but the influence of
decrease of the contact angle on rounded wall is greater
than that on the straight wall (see Figs. 18c and 18d). The
results can be applied in the space fluid management. For
example, if you want to keep liquid surface smooth in the
container, the climbing height of capillary flow in cylindri-
cal interior corners should be reduced, which means that
you should choose a liquid or material with a large contact
angle along rounded wall. The influence of θ2 on h when
θ2 changes solely is greater than that when θ1, θ2 change
together, which means the influence of θ1 on h reduces the
effect of θ2 when θ1, θ2 change together (see Figs. 18b and
18c). The influence of θ1 on h when θ1 changes solely is
almost the same as θ1, θ2 change together (see Figs. 18b and
18d).

Conclusions

In this paper, the capillary flow in cylindrical interior cor-
ners in a microgravity environment has been investigated
under the Concus-Finn condition. The governing equation
of capillary driven flow in cylindrical interior corners has
been established, and the approximate analytical solution
has been obtained. The function that liquid’s front position
is proportional to t1/2 is derived. The influence of differ-
ent parameters on the interior corner flow is explored by
using a set of typical parameters. The results show that the
non-dimensional meniscus height h decreases with increas-
ing contact angle, while increases with increasing radius of
rounded wall. And the influence of decrease of the con-
tact angle on rounded wall is greater than that on straight
wall. When contact angles of the two walls change together,
the influence of the contact angle on straight wall inhibits
that on rounded wall. Our work can be applied to design
containers and choose the suitable solution in the space
fluid management. For example, if you want to keep liquid

surface smooth in the container, the climbing height of cap-
illary flow in cylindrical interior corners should be reduced,
which means that you can choose liquids or materials with
a large contact angle along rounded wall.
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