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ABSTRACT: Experimental measurements of colloidal crystalliza-
tion in a wide range of volume fractions of charged particles were
performed to investigate the liquid−metastable−stable transition
process. To fit the obtained experimental data, we developed a
theoretical model to formulate the kinetics of the concurrent liquid−
metastable and metastable−stable transitions. This model is well-
supported by our observations. We found that when the ratio of the
metastable−stable transition rate to the liquid−metastable rate is
very large, the metastable state can become undetectable, although it
still exists, offering a possible explanation for very few exceptions to
Ostwald’s step rule.

■ INTRODUCTION

Colloidal crystallization has attracted a great deal of attention as
a model system for mimicking the atomic or molecular
counterparts, and also for assessing the validity of classical
crystal growth theories.1−5 Understanding the nature of the
structural evolution during nucleation and growth is still a
fundamental and challenging issue in condensed-matter
science.6,7 One of the major relevant topics is Ostwald’s step
rule,8 first proposed in 1897 as an empirical rule, stating that in
general it is not the most stable, but the least stable, polymorph
that crystallizes first.
However, Ostwald’s step rule is not yet a universal law for

two reasons. First, there are exceptions (although very few) to
the rule. Second, an undisputed theoretical basis for the rule has
not been formulated successfully. Over the past 100 years,
various attempts were made to reach the goal, but none of them
were successful. In 1978, on the basis of the mean-field
treatment, Alexander and McTague9 published their striking
result predicting that a body-centered cubic (bcc) structure
should be formed first regardless of whether a more
thermodynamically stable one exists, as long as the first-order
nature of the transition from the liquid is not too distinct. Since
then, a great deal of research attention has been devoted to
finding the existence of the metastable bcc phase in various
systems.10,11 Among these efforts, our previous studies focused
more on the issues of the structural evolution in colloidal
crystallization.12,13 We quantitatively demonstrated bcc’s
formation and face-centered cubic (fcc)’s growth at the expense
of metastable bcc, confirming the existence of the metastable
bcc phase. However, determining how to explain the exceptions
to the step rule is still an interesting issue. To explore this more

deeply, we conducted a series of experiments in an extended
range of volume fractions, Φ, covering the phase behavior
involved in entire liquid−metastable−stable (L−M−S) tran-
sitions. To fit the obtained experimental data, we also proposed
a new theoretical model and found that the model fits the data
very well.
Analyzing our experimental data with an appropriate

theoretical model is critical for a better understanding of the
phase transition kinetics. Dating back to 1940s, the
Kolmogorov, Mehl, Johnson, and Avrami (KMJA) phenom-
enological model14−16 or the Avrami Model began to be
developed for analyzing the transition kinetics of two phases.
This model was broadly used in various systems, such as
metallic alloys,17 a quasicrystal,18 and an ionic liquid,19 and
continuous efforts have been made to improve the Avrami
Model to better explain relevant phase transitions involved in
some specified system.20 For instance, an extension of the
KMJA model was used by Wette et al.21 to describe the
competition between the wall crystallization and bulk
crystallization for a colloid system. However, all these
improvements still cannot make the models properly treat
two consecutive phase transformation processes. For many
systems, including colloidal crystals and others, such as ice,22

amino acids,23,24 peptides,25 and some polymers,26 the
metastable state is the necessary path for the transformation
from the initial state to the thermodynamically stable state. In
this case, the L−M transition and the M−S transition take place
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concurrently. Namely, the formation and transformation of the
metastable phase occur simultaneously, which is already beyond
the validity of the Avrami Model. As we know, there is no
preexisting theoretical model capable of dealing with the
dynamics involved in the concurrent L−M and M−S transition.
Until now, in colloidal crystallization, only the M−S

transition kinetics has been investigated by means of the
Avrami Model.13 However, this is just a special case in which
the L−M transition is so fast that the M−S transition at a later
stage can ignore the existence of the initial liquid state, as
discussed for other systems.26 Even in such special cases, the
initial stage of the L−M transition can hardly be analyzed
theoretically. In this study, we aim to construct a new
theoretical model using the extended volume concept that
was widely accepted and used in the deduction of the Avrami
Model,16,27 based on the experimental data collected during the
colloidal crystallization process covering entire L−M−S phase
transitions. As a result of our experimental and theoretical
work, we provide evidence that metastable bcc forms first in the
crystallization and immediately transforms to the fcc stable
phase before it reaches a detectable level, offering a possible
explanation for the few exceptions to Ostwald’s step rule. These
findings actually coincide with Ostwald’s argument against

occasional exceptions to the rule: “...there will be cases where
for a given phase transformation, a metastable phase exists, but
is not observed. In those cases, one may always assume that this
intermediate phase does form, but transforms immediately
(into the stable phase).”8

■ EXPERIMENT AND THEORETICAL MODEL
Experiment. The used negatively charged polystyrene particles

were synthesized by emulsion polymerization, and the mean diameter,
polydispersity, and analytical charge density of the particles are 102
nm, 5.6%, and 11 μC cm−2, respectively. The experimental setup is the
same as that in our previous papers.12,13 Reflection spectra recorded
during the crystallization process were used to identify the crystal
structure, and the peak intensities I corresponding to bcc (metastable)
and fcc (stable) were used to analyze the transition kinetics.

Theoretical Model. As mentioned above, there is no preexisting
theoretical model capable of dealing with the dynamics involved in the
concurrent L−M and M−S transition. To solve this problem, we
proposed a theoretical model based on the so-called extended volume
concept17,27−29 for describing the transformation, which was similar to
the works of KMJA.14−16 Specifically, the initial state volume, V0, the
actual transformed volume, Vt, and the extended volume, Vex_t, are
related through

= − _V V V Vd (1 / ) dt t 0 ex t (1)

Figure 1. I−t curves of bcc and fcc with different Φ values. (A) Φ = 0.67%. The curves are fitted by the Avrami Model, as well as the model proposed
in this paper. The vertical short dash line indicates the boundary of bcc growth and bcc decay. (B) Φ = 0.98%. (C) Φ = 1.03%. (D) Φ = 1.08%. The
fitting results of bcc and fcc in panels B−D were obtained by using the new model proposed in this paper. Clearly, the maximal fractions of bcc
decrease with an increasing Φ. No metastable bcc can be observed in panel D because it transforms into stable fcc immediately and its maximal
fraction is too low to be detected.
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This formula actually assumes that initially the full volume V0 is of
state I, and it transforms to state II for which the volume is Vt.
Therefore, we can rewrite the formula to be

= − =_ _V V V V V V V Vd ( ) d / d /t 0 t ex t 0 1 ex t 0 (2)

where V1 equals the volume of state I that still remains and is not yet
transfored to state II. It means that the transformed volume from state
I to state II is proportional to state I’s residual volume V1 and the
change in extended volume dVex_t.
As a result, now the one-step transformation (eq 2) can be extended

to the two-step transformations, including liquid−metastable and
metastable−stable transitions as

= _V V V Vd d /stable meta ex stable 0 (3)

= −_ _V V V V V Vd ( d d )/meta liquid ex meta meta ex stable 0 (4)

where the subscripts stable, meta, and liquid mean the stable state,
metastable state, and liquid, respectively. As in ref 28, these two
formulas can be changed to

α α α= _d dstable meta ex stable (5)

α α α α α= −_ _d d dmeta liquid ex meta meta ex stable (6)

where α = V/V0 is the fraction of each state. According to ref 28, αex =
(kt)n, where k is the transformation rate and n is an index related to the
transformation mode. For a certain system, we can assume that the
transformation modes between different states are similar, so we can
get αex_meta = (kmetat)

n and αex_stable = (kstablet)
n, where kmeta and kstable

represent the rates for liquid−metastable and metastable−stable
transformations, respectively. In eq 6, αliquid = 1 − αmeta − αstable.
Then we have

α α=t kd /d n n
stable stable meta (7)

α α α α= − − −t k kd /d (1 )n n n
meta meta meta stable stable meta (8)

With boundary conditions αmeta (t = 0) = 0, αstable (t = 0) = 0, αmeta
(t = ∞) = 0, and αstable (t = ∞) = 1, the solution for eqs 7 and 8 is

α = − − −

−

k k t k t

k k

[exp( ) exp( )]

/( )

n n n n n

n n
meta meta stable meta

meta stable (9)

α = − − − +

− −

k k t k k k

k t k k

1 exp( )/( )

exp( )/( )

n n n n n n

n n n n
stable meta stable meta stable stable

meta meta stable (10)

It is noticed that when kmeta = kstable = k, the solution should be

α = −k t k texp( )n n n n
meta (11)

α = − − − −k t k t k t1 exp( ) exp( )n n n n n n
stable (12)

but the results of eqs 9 and 10 converge to this equation when kmeta is
close to kstable, so that we can still use eqs 9 and 10 in this study.

■ RESULTS AND DISCUSSION
Panels A−D of Figure 1 are plots of I−t curves of bcc and fcc
with increasing Φ values of 0.67, 0.98, 1.03, and 1.08%,
respectively. An obvious tendency is that the peak intensity of
metastable bcc decreases with an increasing Φ until bcc totally
disappears.
The curve for a low Φ (0.67%) is similar to that from a

previous study.13 The peak intensity of metastable bcc increases
rapidly to its maximum and then decreases slowly, accompanied
by an increase in that of fcc. In general, the I−t curve of bcc can
be approximately divided into two stages: bcc growth and bcc
decay. For the second stage, the I−t curve could be fitted by the
Avrami Model. However, because the Avrami Model can be
applied to only two-phase transformations, it cannot be used to

analyze the liquid−bcc transition at the same time. Therefore,
the kinetics of metastable bcc growth stage cannot be
concurrently investigated in the frame of the Avrami Model.
The results for Φ values of 0.98 and 1.03% in panels B and C

of Figure 1, respectively, show that with the increase in Φ, the
crystallization process can no longer be distinctly divided into
bcc growth and bcc decay periods. fcc may grow even faster
than bcc from the beginning of the crystallization, and the
maximal intensity of the metastable bcc state becomes much
smaller than that of the fcc state, which are quite different from
Figure 1A. These experimental results indicate liquid−bcc and
bcc−fcc transitions take place concurrently, and the two
transition processes can strongly influence each other. All of
these situations cannot be treated by the Avrami Model.
The result with Φ increased to 1.08% is shown in Figure 1D.

In this case, we simply have no way to find metastable bcc
structure so that there is only the I−t curve of fcc. This result
looks like another exception to Ostwald’s step rule. However,
from the tendency that the peak intensity of metastable bcc
decreases with an increasing Φ, it is reasonable to conclude that
there still exists a metastable bcc state, but its peak intensity is
too low to be detected.
The experimental I−t curves can be fitted by our theoretical

model (eqs 9 and 10). Considering the measured I is
proportional to crystal size, a normalized parameter C was
used to connect I with the fraction of state α so that Ibcc = Cαbcc
and Ifcc = Cαfcc in the fitting.
For a Φ value of 0.67%, the fitted curves using our model are

shown in Figure 1A. Obviously, in the bcc decay period, the
fitted curves using our model are very close to those of the
Avrami Model. Moreover, our model can also fit the curve in
the metastable bcc growth period, which is already beyond the
capability of the Avrami Model. The fitting parameters, n and
kn, obtained from the Avrami Model and the present model are
1.52 and 1.54, respectively, and 1.5 × 10−5 and 1.1 × 10−5,
respectively, as listed in Table 1. Our results show that kstable

n/

kmeta
n = 0.02, which is much smaller than 1. For this condition

(kstable
n/kmeta

n ≪ 1), the term exp(−kmetantn) in eqs 9 and 10 can
be neglected, so that the two equations can be reduced to the
Avrami Model. This theoretical analysis could give an explicit
explanation why the Avrami Model can be used for the bcc−fcc
transition in previous studies13,26 in which the liquid−
metastable transition is very fast and the relevant metastable−
stable transition is slow.
For Φ values of 0.98 and 1.03%, our model can still fit the

Ibcc−t and Ifcc−t curves quite well (see Figure 1B,C), although
the Avrami Model was no longer applicable. The obtained
kstable

n/kmeta
n is 0.50 for 0.98% and 2.64 for 1.03%, which means

the metastable−stable transition rate becomes comparable to or
even larger than the liquid−metastable transition rate, and that
is the key factor resulting in the difference between panels B
and C of Figure 1 and panel A of Figure 1.

Table 1. Parameters Obtained from Curve Fitting of bcc and
fcc

Φ n kmeta
n kstable

n kstable
n/kmeta

n

0.67% Avrami 1.52 − 1.5 × 10−5 −
0.67% 1.54 5.9 × 10−4 1.1 × 10−5 0.02
0.98% 1.55 0.024 0.012 0.50
1.03% 1.24 0.042 0.111 2.64
1.08% 1.31 0.023 ∞ ∞
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For a Φ value of 1.08%, metastable bcc is no longer
observable, and the theoretical model can also be used to
analyze the crystallization process (see Figure 1D). The
discussion given above has shown kstable

n/kmeta
n increased

rapidly with volume fraction Φ. From this tendency, we can
conclude that kstable

n/kmeta
n reaches a quite large value for 1.08%.

Therefore, kmeta
n/(kmeta

n − kstable
n) becomes close to 0; eq 9

becomes αmeta ≈ 0, and eq 10 becomes αstable ≈ αstable + αmeta =
1 − exp(−kmeta

ntn). For this condition, the I−t curve of the
stable fcc state fitted by eq 10 was also consistent with the
experimental result. The obtained fitting parameters, n and
kmeta

n, are 1.31 and 0.023, respectively. It should be noted that
the value of kstable

n is too large to be determined with accuracy
in this case.
Obviously, results of the experiments indicate that kstable

n/
kmeta

n has great influence on the liquid−metastable−stable
transition, especially on αmeta_max/αstable_max (the ratio of the
maximal fraction α of metastable and stable state). To better
understand the influence of kstable

n/kmeta
n on αmeta_max/αstable_max,

we deduced the expression of αmeta_max/αstable_max from eqs 9
and 10, which is

α
α

=_

_

−RR Rmeta max

stable max

/1

(13)

where R = kstable
n/kmeta

n. When R → 0, the limit of eq 13 is 1,
which is the case when the Avrami Model is applicable as in
Figure 1A. When R → ∞, the limit of eq 13 is 0, so that
αmeta_max could be too small to be observed. This is the reason
why there are circumstances in which no metastable state can
be detected (Figure 1D). It should be noticed that the limit
value for R = 1 is 1/e, which is also the value of αmeta_max/
αstable_max for eqs 11 and 12. This is further proof that our
theoretical model in eqs 9 and 10 converges to the solution
when kmeta

n is close to kstable
n, as mentioned above. In Figure 2,

we can see that αmeta_max/αstable_max decreases with an increasing
kstable

n/kmeta
n, so the peak of the metastable phase drops to zero

quickly.
Most methods for determining the crystal structure rely on

the Bragg peak resulting from constructive interference of light
scattering from the crystalline sample and need a minimal
crystallite size; namely, there is a detection limit for sample size.
From Table 1, we can see that the liquid−metastable

transformation rates for Φ values of 0.98, 1.03, and 1.08% are
0.024, 0.042, and 0.023, respectively. That is, the magnitude of
the rates of transformation (kmeta

n) from liquid to bcc is
basically unchanged (except for Φ = 0.67%), implying the
metastable bcc should form with approximately the same rate,
even though it is not detectable. On the other hand, the rates of
transformation from bcc to fcc increase rapidly with an
increasing Φ. Therefore, the real reason for bcc being
undetectable when Φ = 1.08% is that the rate of transformation
(kstable

n) from bcc to fcc becomes too large. In this case, the
metastable bcc phase (or local structures) has already
transformed to fcc before it reaches the detection limit, and
therefore, one will not be able to detect it.
This situation is rather analogous to a rabbit eating grass:

grass grows from soil, and a rabbit grows by eating grass. If the
eating rate is much higher than the grass growth rate, the grass
will be too little to be seen, but it does not mean that grass
never grows. Therefore, our findings provide a possible
explanation for the exceptions to Ostwald’s step rule. Here, it
would be interesting to recall Ostwald’s statement: “it is easy to
formulate such a hypothesis, yet not always possible to prove it
with existing techniques. However, in many of these cases it will
be possible to find the appropriate means to slow down the
reaction (i.e. the phase transformation) to enable the
observation of the intermediate phase.” So Ostwald thought
the reason for some exceptions is that the existing technique
may not be fast enough to detect the metastable phase.
However, our findings show that the key problem is not the
liquid−metastable transformation rate itself, as assumed by
Ostwald; instead, the determinative factor is the ratio of the
metastable−stable transition rate to the liquid−metastable rate
(kstable

n/kmeta
n). In fact, currently our highest sampling rate of

identifying the crystal structure has been improved greatly from
the previous value of 4 times/s12,13 to 100 times/s. Namely,
now we need only 0.01 ms to finish one measurement of the
crystal type. Even with a technique that is so fast, we still could
not find metastable bcc in the case of Φ = 1.08%,
demonstrating that slowing the reaction (or increasing the
measuring rate) cannot solve the problem of making the
invisible metastable phase visible. The key problem should be
how rapidly the bcc−fcc transition (“reaction”) proceeds
compared to the liquid−bcc one.
Alternatively, what we discussed above can be easily

understood by considering the free energy variations associated
with the formation of the nucleus. According to the Arrhenius
equation, Ω = A exp(−ΔG/kBT), where Ω is the nucleation
rate, ΔG is the kinetic barrier from the initial state to the final
state, A is a pre-exponential factor, and kBT is the thermal
energy. Considering the crystallization transition from the
parent liquid (or melt) state to the globally stable daughter
solid phase, we use ΔGl−s to denote the relevant kinetic barrier.
In our case, the parent phase is the liquid phase and the
daughter and metastable phases are fcc and bcc, respectively. A
phase transition requires passage over a free energy barrier.
Panels A−C of Figure 1 doubtlessly demonstrate the evidence
of the presence of the metastable bcc phase. Now we can divide
the liquid−fcc nucleation process into two steps: liquid−bcc
and bcc−fcc. The reason for the presence of the metastable
phase is that its presence can provide an alternative, lower-
energy nucleation−growth pathway. That is, the barrier of
ΔGl−bcc + ΔGbcc−fcc should be lower than those associated with
all other possible pathways. The bcc metastable phases in
Figure 1A−C are observable because the rates of transition

Figure 2. Calculated relationship between αmeta_max/αstable_max and
kstable

n/kmeta
n.
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from bcc to fcc are either less than or comparable to the
corresponding rates from liquid to bcc. From Figure 1A−D, the
heights of the barriers (ΔGbcc−fcc) or the so-called critical
nucleus sizes (CNZ) are getting smaller so that bcc phase
becomes more and more difficult to observe. For Figure 1D, we
even cannot say whether bcc still exists as a phase. If CNZ are
so small that the sizes of formed bcc clusters are below the
detection limit, we will not be able to observe them. Actually,
when CNZ are reduced to less than one growth unit, whenever
bcc structure forms, it is transformed into fcc structure
immediately. In this case, we suppose the barrier for the
bcc−fcc transition (ΔGbcc−fcc) vanishes and the formed bcc
phase becomes unstable. In other words, the intermediate bcc
structure still forms first because of its lower barrier (ΔGl−bcc)
but is unstable and decays to fcc structure immediately, which is
spinodal decomposition. ΔGbcc−fcc ≈ 0 leads to a very large
bcc−fcc transition rate, and the total liquid−fcc transition rate
is actually controlled by the liquid−bcc transition. The
precursors of nucleation in colloidal crystallization were
confirmed in a microscopic observation by means of laser
scanning confocal microscopy.6 Very recent simulations of the
homogeneous liquid−fcc nucleation of charged colloids by K.
Kratzer et al. also show that the liquid−fcc transition involves
two stages of the liquid−bcc and bcc−hcp/fcc transitions.30 As
they specially addressed, “according to Ostwald, the phase
which is closest to the initial state in free energy is nucleated
first, which doesn’t have to be the truly stable phase. In
addition, Stranski and Totomanow found that the phase with
the lowest free energy barrier is nucleated first...”30

The argument described above is also nicely supported by
the recent study of M. Santra et al. based on the density
functional theory.31 Their study shows “nucleation of the solid
phase from the melt may be facilitated by the metastable phase
because the latter can “wet” the interface between the parent
and the daughter phases, even though there may be no
signature of the existence of metastable phase in the
thermodynamic properties of the parent liquid and the stable
solid phase.”31 They find that “the nucleation free energy
barrier can decrease significantly in the presence of wetting.”31

Apparently, the existence of metastable phase lowers the
interface tension between the parent and the daughter phases
and therefore reduces the nucleation barrier or the critical
nucleus size.

■ CONCLUSIONS

In summary, Φ-dependent colloidal crystallization experiments
were conducted to investigate the uncut concurrent liquid−
metastable−stable transition kinetics. We found liquid−
metastable and metastable−stable transitions may have
important mutual influences on their kinetics, which cannot
be effectively treated by a preexisting theoretical model, and a
theoretical model was developed to understand the concurrent
liquid−metastable and metastable−stable transition kinetics.
The model not only can quantitatively explain the experimental
results but also covers the Avrami Model that can be applied
only to the transformation of two phases. This new model
unifies phase transition kinetics regardless of whether Ostwald’s
step rule is obeyed. Therefore, it would supposedly be
applicable to the crystallization of a variety of systems with a
metastable state, and in principle, it can be extended to treat the
concurrent phase transition kinetics with multiple metastable
states.

In addition, our results show that the liquid−metastable−
stable transition may be greatly influenced by the ratio of two
rates, kstable

n/kmeta
n, which means the absolute value of kstable

n

and kmeta
n is not the key factor but their ratio is. When kstable

n/
kmeta

n is very large, the metastable state becomes too little to be
detected because its maximal fraction during crystallization is
too low.
The case in which Φ = 1.08% does show that there is no

metastable bcc observable while the fcc is the stable phase. Can
we conclude that it is another exception to the step rule? It is
probably not, because, as discussed above, whenever bcc forms,
it is transformed to fcc immediately, making the amount of bcc
left below the detection limit or it is simply unstable and decays
to the stable state immediately. In any cases, on the basis of our
experiment and analysis, this study raises suspicions about
whether the reported exceptions to Ostwald’s step rule are all
real exceptions.
As a separate note, our observation confirms the presence of

the metastable phase, which is bcc. In practice, however, the
number of the metastable phase involved in crystallization may
be more than one and may not necessarily be bcc.
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