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ABSTRACT: Seeking highly-efficient, rapid, universal and low-cost demulsification 

materials to break up the crude/heavy oil-in-water emulsion and emulsified oily 

wastewater at ambient condition has been the goal of petroleum industry. In this work, 

an amphiphilic material, graphene oxide nanosheets (GO), was introduced as a 

versatile demulsifier to break up the oil-in-water emulsion at room temperature. It was 

encouraging to find that the small oil droplets in the emulsion quickly coalesced to 

form the oil phase and separated with the water within a few minutes. The 

demulsification tests indicated that the residual oil in separated water samples were as 

low as ∼30 mg/L corresponding to a demulsification efficiency over 99.9% at an 

optimum GO dosage. More importantly, GO is not only useful for ordinary crude oil 

emulsion, but also can be used to break up the extra heavy oil emulsion. Effect of the 
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emulsion pH on the demulsification was also investigated. It was interesting to find 

that the distribution of GO either in oil or in water phase after demulsification was 

dependent on the pH value of the solution, which was attributed to the pH-dependent 

amphiphilicity of GO. The prominent demulsification ability of GO was attributed to 

the strong adsorption between the GO nanosheets and molecules of asphaltenes/resins 

driven by π-π interaction and/or n-π interaction. The findings in this work indicate that 

the GO nanosheets is a simple, high-efficient and universal demulsifier to separate the 

oil from the crude/heavy oil-in-water emulsions at ambient condition, which shows a 

good application prospect in oil industry. 

1. Introduction 

Demulsification of crude/heavy oil-water emulsion (including oil/water and 

water/oil emulsions) is a major issue that received sustained attention for decades in 

the petroleum industry.1, 2 At the early stage, researchers mainly focused on the 

demulsification of water-in-oil emulsions due to the exploitation of primarily 

developed oilfield in which less water was contained. As an economical and effective 

method, chemical additives are widely used to break up the water-in-oil (W/O) 

emulsion. In practice, amphiphilic surfactants such as ethylene glycol,3 ethylene 

oxide/propylene oxide copolymer,4-7 silicone surfactant,8 ethyl cellulose,9, 10 ion 

liquid11, 12 and P(MMA-AA-DVB)/Fe3O4 Janus particles13 etc. have been developed 

to separate water from W/O emulsion. However, with the excessive exploitation of 

traditional fossil fuel, study on oil-in-water (O/W) emulsion has aroused great 

attention. With the gradual ageing of oil field, innovative techniques and approaches 
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such as tertiary oil recovery technique were widely used to increase the output in 

China and other countries. The introductions of steam, water and 

the extraction auxiliary agents to oil reservoir produce large amount of stable crude 

O/W emulsion. In recent years, much attention was focused on the exploitation of 

non-conventional heavy oil and extraction of bitumen from oil sands.14-18 However, 

the high viscosities of heavy crude oil make it difficult to explore and transport due to 

its low mobility at ambient conditions. The technology of emulsified heavy crude oil 

was thereby developed, which has proved to be a reliable approach to increase its 

mobility and reduce the heavy crude oil’s viscosity to facilitate the transportation.19 To 

extract bitumen from the oil sands, large amount of water are necessarily used during 

the water-based extraction processes,20, 21 which produce a large amount of emulsified 

oily wastewater. Moreover, mass of the oily wastewater was also produced from the 

conventional oilfield exploitation and industrial refinery.22 All the oily wastewater 

brought up serious environmental issues, which need to be efficiently treated before 

discharge. Therefore, treatment of various O/W emulsions has become one of the 

most serious challenges in petroleum industries. It is necessary to develop a fast and 

high efficiency method to separate the oil from O/W emulsions. 

Many strategies including the gravity separation, coalescence technology,23 

filtration/membrane separation,24-26 absorption,27 air flotation,28 coagulation 

sedimentation,29 electrolysis process,30 ultrasonic treatment,31, 32 and biological 

treatment33, 34 etc. have been widely adopted to separate the oil from the O/W 

emulsions. However, most of the separation technologies are high costly, 
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energy-intensive, complex, and time-consuming. Graphene oxide sheets, normally 

referred as graphene oxide (GO), are the liquid phase oxidation-exfoliation product of 

graphite. In form of graphene sponge and mesh,35-39 graphene is often used to absorb 

or filter oil based on its low surface energy, low density and high surface area.40 In 

fact, introduction of the functional groups of carbonyl, hydroxyl and ethyoxyl on the 

edges of GO enables it a good amphipathic surfactant with hydrophilic edges and 

hydrophobic basal plane.41-44 Therefore, the functionalized GO might find it important 

application in demulsification of the O/W emulsion. In this work, GO was reported as 

an excellent demulsifier to quickly separate the oil from O/W emulsion within a few 

minutes. Bottle test and optical observation were employed to evaluate the 

demulsification performance of GO. Operating condition was investigated and 

optimized by studying effect of the GO dosage and solution pH on the demulsification. 

The possible mechanism on demulsification process was proposed. As an 

environmental friendly and high efficient demulsifier, GO might find its application in 

separating oil from the O/W emulsion in the petroleum industry. 

2. Experimental Section 

2.1 Materials. All chemical reagents were analytical grade purity and directly 

used without further treatment. The medium/heavy crude oil samples were provided 

by Tahe oilfield (Xingjiang province, China) and Shengli oilfield (Shangdong 

province, China), respectively. The physicochemical properties of two crude oil 

samples were characterized and listed in Table 1. The SARA fraction (saturates, 

aromatics, resins and asphaltenes) of these two crude oil were analyzed by a classical 
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chromatography separation method.18 The total percentage of SARA in crude oil were 

less than 100% in these analyses, indicated that some fraction was left in the 

chromatographic column. The kerosene was obtained from local gas station of 

Sinopec (Lanzhou, China). De-ionized water (18.25 MΩ⋅ cm) was used throughout all 

experiment process. 

2.2 Preparation of Graphene Oxide Nanosheets. Graphite powder (~20 µm, 

Sigma-Aldrich) was used to prepare the graphene oxide by a modified Hummers’ 

method (The detail of preparation of GO are provided in supporting information 

(S1)).45, 46 Exfoliation was carried out by ultrasonic of 2 mg/mL GO dispersion for 

more than 90 min under ambient condition.  

Fourier transform infrared spectroscopy (FTIR, Nexus 870) and Raman 

spectroscopy (Renishaw in Via-Reflex) were used to characterize the surface chemical 

state of the as-prepared GO nanosheets. The thickness and size of the GO material 

was determined by using atomic force microscopy (AFM, Bruker Multimode-8) with 

tapping mode operating at a scan rate of 2 Hz. The surface morphology was 

characterized with a high resolution transmission electron microscope (HRTEM, FEI 

Tecnai G2 TF20). The HRTEM samples were prepared by dipping the GO suspension 

onto a porous polymer coated copper grid. 

2.3 Preparation of Crude Oil-in-Water Emulsion. The crude oil obtained from 

Tahe oil field was directly used without further treatment. The heavy crude oil 

obtained from Shengli oil field was kept at 60 °C for 1 h to make the oil much more 

mobile and readily dispersed. Crude oil samples (dispersed phase) were mixed with 
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50 mM NaCl solution (continuous phase) using a homogenizer (Fluko, FA25) running 

at 28000 rpm for 5 min to simulate the real condition of oil field. A stable oil-in-water 

emulsion was thereby obtained with different oil content. In this work, crude 

oil-in-water emulsion or emulsified oily wastewater with the oil content of 100 g/L, 

50 g/L, 5 g/L and 1 g/L were employed.  

2.4 Demulsification Test. To evaluate the demulsification capability, the GO 

suspension (2 mg/mL) was added to 40 mL of crude oil-in-water emulsion contained 

in a capped cylinder (The dosage of GO in the demulsification can be calculated 

based on the mass concentration of GO in emulsion. For example, if 0.4 mL GO was 

added, the dosage of GO in the emulsion was 20 mg/L.), and then the cylinders were 

shaken for 2 min to make the GO and the emulsion to be well mixed. The mixture was 

then placed under ambient condition to observe the oil/water separation. The cylinders 

containing oil-in-water emulsion with same volume of water or HCl solution (0.05 M) 

were employed as references (blank).  

The prepared emulsion and the GO-driven demulsification processes were 

observed and photographed using a microscope (Leica, DM2500P) equipped with a 

video camera. The emulsion samples were placed on a cleaned glass slide (25×75×0.2 

mm) and covered with another slide. 

The residual oil content in the separated water samples were determined based 

on absorbance in UV-visible spectrophotometer (Unico, UV-2000) at 1cm path length. 

Take kerosene as reference, the relationship of absorbance and kerosene-diluted-oil 

concentration is linear at the wavelength of 350 nm. Specifically, the crude 
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oil-in-water emulsion was treated by GO suspension in different concentration and 

then gravity settle for 30 min, and the separated water samples were collected from 

each separation bottle carefully. Successively, the oil in the separated water samples 

were extracted and diluted by kerosene. The concentration of oil can be obtained from 

the standard curve. The oil concentration in separated water samples were calculated 

by following equation: 

310o o wc m V= ×  (1) 

Where the oc  (mg/L) is the oil concentration, om  (mg) is the corresponding mass of 

oil in the standard curve and wV  (mL) is the water volume. The demulsification 

efficiency was calculated from the difference between the initial and final oil content 

in the mixture by following equation: 

0 0( ) 100%iE c c c= − ×  (2) 

Where E is the demulsification efficiency (%), 0c  is the initial oil content (mg/L) of 

emulsion and ic  is the residual oil content in the separated water. 

The UV-Vis absorption spectrophotometer (Pgeneral, T6) was used to study the 

GO distribution after demulsification at various conditions.  

Zeta potential of the GO nanosheets and crude oil (Tahe) were measured with a 

zeta potential analyzer (Brookhaven, ZetaPALS). The GO and crude oil were 

dispersed in 1 mM KCl solution by ultrasonic for at least 90 min, respectively. The 

as-prepared suspension was adjusted to desired pH by adding diluted HCl or NaOH. 

The measurement was repeated ten times at room temperature (25 ±1 ºC). The 

average value and standard deviation are reported. 

Page 7 of 39

ACS Paragon Plus Environment

Energy & Fuels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

 

3. Results and Discussion 

3.1 Characterizations of the GO Nanosheets. Figure 1a shows the FTIR 

spectrum of the GO sample. It was found that several characteristic peaks appeared in 

the range of 800-4000 cm-1. Specifically, a characteristic broad peaks centered at 3424 

cm-1 was assigned to hydroxyl groups (-OH) and peaks located at 2962 cm-1 and 2923 

cm-1 were the stretching vibration of C-H (-CH2). The carbonyl (-C=O) peak assigned 

to carboxyl groups (-COOH) appears at 1720 cm-1. Stretching vibration peaks located 

at 1266 cm-1 and 1050 cm-1 were assigned to the alkoxy groups (O-C-O). These 

findings suggested that functional groups of alkoxyl, carbonyl and hydroxyl were 

successfully introduced on the graphene surface after being oxidized by the strong 

oxidants.47 Considering the advantages of Raman spectroscopy in determining surface 

chemical state and crystallinity of carbon materials, it was also employed to 

characterize the as-prepared GO sample. As shown in Figure 1b, Raman spectrum of 

pristine graphite powder displayed as a visible D band at 1350 cm-1, a pronounced G 

band at 1580 cm-1 and a evident 2D band (second-order feature of D band) at 2700 

cm-1. Comparing with Raman spectrum of graphite powder, it was observed that both 

D and G bands of the GO sample were clearly broadening. Meanwhile, the intensity 

of the D band increases substantially, indicating the decrease in size of the in-plane 

sp2 domains and the increase of the sp3-carbon on GO surface due to the extensive 

oxidation and ultrasonic exfoliation. The typical feature of 2D band of graphite at 

2720 cm-1, which contains the detailed information of the stacking number of the 

graphene sheets, is not seen in GO sample, and only a faint smeared 2D band can be 
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seen along with the D+G combination band induced by disorder at 2900 cm-1. 

Combined with Raman spectrum and FTIR spectrum, it can conclude that the graphite 

was fully functionalized and GO material was obtained. The morphology of the GO 

was characterized by using AFM and TEM. Figure 1c shows the typical AFM image 

of the exfoliated GO sample on silicon substrate. It can be observed that the GO 

nanosheets with size of 40-500 nm and thickness of ∼1.4 nm are uniformly distributed 

on silicon surface, implying that the as-prepared GO samples consist of mono/bilayers 

nanosheets. The TEM image of GO nanosheets was shown in Figure 1d. Wrinkles and 

defects were observed on surfaces of the GO nanosheets.  

3.2 Demulsification Performance of GO Nanosheets. Bottle test is the simple 

and intuitive method to evaluate the demulsification effectiveness of a demulsifier for 

crude oil-water emulsion. Figure 2 shows the demulsification process driven by the 

GO nanosheets. To clear display the demulsification performance, two control 

oil-in-water emulsion samples (Tahe, 50 g/L) were used as references. As shown in 

Figure 2a1 and 2a2, after adding water or HCl solution to the crude oil-in-water 

emulsion, there was no obvious phase separation can be observed even after one day. 

Encouragingly, after introducing small amount of the GO nanosheets suspension, the 

stability of emulsion was destroyed instantaneously and oil/water separation process 

was greatly speeded up (Figure 2a3). Figure 2b and video S2 show the details of the 

oil/water separation process. As noted in Figure 2b, once the GO naonsheets 

suspension was introduced, the color of emulsion changed immediately from dark 

brown to black, implying the coalescence of fine oil droplets occurred at that moment.  
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After only 8 seconds, macroscopic oil droplets began to form and distinct oil/water 

interface can be easily observed, suggesting the occurrence of oil/water separation. 

With following tens of seconds, the oil droplets or floccules were continuously 

coalesced with each other and floated up to form the oil phase. As the time was 

prolonged to 115 seconds, the oil was completely separated from emulsion. 

Accordingly, the condensed oil phase and colorless water phase were clearly observed, 

indicating a simple, fast and high efficient demulsification process. 

To have a deep understanding on the demulsificaition process of the crude 

oil-in-water emulsion driven by the GO nanosheets, the morphologies of the oil-water 

mixture at different stage were observed with a polarizing microscope. Figure 3a 

shows the optical morphology of the as-prepared crude oil-in-water emulsion (Tahe, 

50 g/L) dripped on a glass slide surface. As observed, the oil droplets (diameter < 10 

µm) homogeneously dispersed in the water phase, which was in good agreement with 

that the previous study.48 As the GO nanosheets suspension was introduced into the 

emulsion, many irregular oil floccules with much bigger size than that in the original 

emulsion were observed in the water phase (Figure 3b). Such finding indicates that 

the GO nanosheets could well interact with the fine oil droplets in the emulsion once 

they contacted each other, leading to the obvious color changes of the emulsion at the 

instant addition of the GO suspension. Obviously, the GO nanosheets promoted the 

coalescence of the fine oil droplets in the emulsion to form the big oil droplets. After 

thoroughly shaking, the oil floccules aggregated rapidly to form the suspended oil 

phase floating on the water surface. Figure 3c shows the optical image of the newly 
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produced oil phase. It can be seen that some water droplets were wrapped in the oil 

phase (Figure 3c) due to the rapid coalescence of the oil droplets driven by the GO 

nanosheets. Fortunately, the water droplets trapped in oil phase could spontaneously 

coalesced and precipitated at the bottom of vial after being settled by gravity at 60 oC 

for 2 h. As shown in Figure 3d, only a few small water droplets still stay in the oil 

(Figure 3d). Quantitative measurement by Karl Fischer titrator demonstrated that the 

water content in oil phase after settling was ~0.86 wt%, which approximately 

approaches the industrial demand for oil refining. 

3.3 Effect of GO Dosage on Demulsification. To explore the application field 

and dosage of GO nanosheets as demulsifier, two kinds of crude oil (Tahe medium oil 

and Shenli heavy oil) emulsion with different oil content were used to validate its 

demulsification performance. The demulsification efficiency of the GO nanosheets 

was evaluated by using a UV-Spectrophotometer to determine the oil content in the 

separated water. It was found that the GO nanosheets could well demulsify both the 

emulsions (Figures 4-5). The results indicated that the optimum dosage of the GO 

noansheets and the demulsification efficiency are closely related to the emulsion type 

and the oil content of emulsion. As shown in Figure 4, the oil content in the Tahe oil 

emulsion greatly reduced with addition of the GO nanosheets suspension. A lowest oil 

content corresponding to a maximum demulsification efficiency was attained at an 

optimal GO dosage. When the dosage of the GO nanosheets exceeds a threshold, the 

oil content in the separated water was rather slightly increased. Such an abnormal 

phenomenon is possibly attributed to the distribution of GO nanosheets after 
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demulsification. As the excess GO distributed in water phase, the adsorbed oil on the 

GO surfaces led to the slight increase of oil content in the separated water samples. 

Taking the oil emulsion with an initial oil content of 50 g/L as an example, the oil 

content in the separated water greatly reduced to ∼315 mg/L and the demulsification 

efficiency reached up to ∼99.37% as the GO nanosheets suspension with dosage of 10 

mg/L was added into the emulsion. Further increasing the GO dosage to about 30 

mg/L, the oil content in the separated water was notably reduced to ~30 mg/L. 

Correspondingly, the demulsification efficiency reached as high as 99.94%, 

suggesting that the GO nanosheets, as a demulsifier, possessed high demulsification 

efficiency and only need a low dosage. While the dosage of GO increased to 80 mg/L, 

the corresponding demulsification efficiency slightly decreased to 99.89%. For 

emulsion with oil content of 100 g/L, similar oil/water separation result was achieved. 

The optimum dosage of GO nanosheets was ~60 mg/L, slightly higher than that of 50 

g/L. Importantly, the optimum dosage of GO naonsheets for emulsion with oil content 

of 5 g/L and 1 g/L is as low as ~13 mg/L and ~7 mg/L, respectively. Moreover, the 

demulsification process could be finished within 2 minutes.  

As a high performance demulsifier, GO nanosheets are also suitable to demulsify 

the heavy oil/water emulsions. As shown in Figure 5, the optimum dosage of GO 

nanosheets was 30 mg/L and 60 mg/L for Shengli heavy oil/water emulsion with oil 

content of 50 g/L and 100 g/L, respectively. The corresponding demulsification 

efficiency reached as high as 99.95% and 99.94%, respectively. All these results 

suggest that the GO nanosheets can be used as a fast and high performance 
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demulsifier to separate the medium crude oil-in-water emulsion and heavy 

oil-in-water emulsion, presenting the nature of universality.  

3.4 Effect of pH on Demulsification. With the hydrophilic edges and 

hydrophobic basal plane, GO could be regarded as an amphiphile or a surfactant. It is 

well known that most of ionic surfactants were apt to be affected by the pH of 

solution. We are interested in the applicable conditions of the GO nanosheets as a 

demulsifier. Therefore, the effect of pH value of emulsion on demulsification driven 

by GO was investigated. It was observed that the GO was effective in acid or neutral 

condition. To have a quantitative analysis, the residual oil content in the separated 

water at different pH value as a function of GO nanosheets dosage were measured and 

depicted in Figure 6a. It was found that the lowest oil content in separated water 

samples were  about 30 mg/L and varied very little in the pH range of 2-5.7, 

implying that as a demulsifier, the GO possessed high stability and excellent 

demulsification capability in a wide range pH condition. However, it was noted that 

there was a slight increase of the GO dosage for a best demulsification efficiency with 

decreasing the solution pH. For the Tahe emulsion with the oil content of 50 g/L, the 

optimum dosage of GO nanosheets concentration was about 20 mg/mL when the pH 

of emulsion was about 5.7. As it decreased to ∼3.5, the optimum dosage was 

increased to ∼40 mg/mL. These findings indicated that the GO nanosheets are also 

effective of demulsifying the acid oil-in-water emulsion during the well washing 

process.  
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Effect of pH on the demulsification efficiency in the alkaline solution was also 

studied. However, it was found that the oil-water separation efficiency was not good 

especially for a strong alkaline condition such as 10 (The experimental results are not 

presented). To clarify the pH effect, the zeta potential of the Tahe crude oil and the 

GO nanosheets was characterized and the results are shown in Figure 6b. It was 

shown that the zeta potential for both the oil and GO become more negative with the 

decrease of pH value. As a result, the electrostatic repulsion between GO nanosheets 

and oil droplets would be dramatically increased when they were in a strong alkaline 

condition, leading to the demulsification efficiency significantly reduced. The results 

indicate that the pH value of emulsion should be well considered in the practice of 

demulsification.  

During the demulsification test, it was noticed that the color of the separated 

water was different even if the residual oil content in the water was same. As shown 

in Figure 7a, the separated water derived from the demulsification at pH=2 was nearly 

colorless, while they were yellow for the separated water at pH=5.7 and the control 

sample (The control water sample was obtained by adding same dosage of GO 

suspension in brine water). It is believed that the yellow color of the water was 

originated from either the residual oil or the GO nanosheets. Since the residual oil 

content in the separated water was nearly the same for the two situations of pH 2 and 

5.7, it was concluded that the color of separated water should be affected by the GO 

nanosheets rather than the residual crude oil. To validate the hypothesis, the control 

water sample containing GO nanosheets and the two separated water samples were 
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extracted by toluene three times to eliminate the oil from the water. The resultant 

water samples were shown in Figure 7b. It was observed that the color of the control 

sample and the separated water at pH 5.7 did not change obviously, while the water 

samples at pH 2 became clearer and colourless. Such finding suggests that the yellow 

color of the separated water arises from the GO nanosheets dispersed in the water. In 

order to obtain a direct evidence, the water samples after toluene extraction were 

characterized by an UV-Vis absorption spectrophotometer. It is well known that the 

UV-Vis absorption spectrum of GO has two characteristic features which are used as 

means of identification, i.e. a maximum at 231 nm corresponding to π→π* transitions 

of aromatic C=C bonds, and a shoulder at ∼300 nm attributing to n→π* transitions of 

C=O bonds.49 As shown in Figure 7c, both the water sample obtained at pH=5.7 

(black) and the control (light green) have the absorption peaks at ∼230 nm and 

shoulder at ∼300 nm. While there was no obvious characteristic absorption for water 

sample obtained at pH=2 (blue). Such finding confirmed that the yellow color comes 

from the GO nanosheets. In other words, the GO nanosheets preferred to stay in the 

separated water phase after demulsification at the neutral condition, while they would 

rather enter in the oil phase under acid condition. It is further interesting to find that 

the yellow separated water obtained at pH=5.7 (Figure 7d1) become nearly colorless 

(Figure 7d2) when the mixture was added with hydrochloric acid (video S3). With the 

decreasing of demulsification pH value, the GO transferred from the water to the oil 

phase, which can be well explained by the adjustable amphiphilicity of the GO 

nanosheets.42, 43 The ionization of carboxyl group on the edge of GO can be tuned by 
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changing the pH value.50 Therefore, GO can be reversibly shuttled between water and 

oil phase, which make it useful for recycling.  

3.5 The Possible Demulsification Mechanism. The stability of the crude 

oil-water emulsion is attributed to repulsive force of the electrical double layer 

between oil droplets and the protective film consisting of molecules such as 

asphaltenes, resins and naphthenic acids at oil-water interface (Figure 8a1 and 

8b1).51-54 Decreasing the repulsive force and/or destroying the viscoelastic film at 

oil/water interface are the keys to demulsify the stable emulsion. As an amphiphile, 

the GO nanosheets with hydrophilic edges and hydrophobic basal plane could well 

disperse in water phase. Once it was added into the crude oil-in-water emulsion 

followed with vigorous shaking (Figure 8a2 and 8b2), the GO naonsheets will 

uniformly disperse in the water phase and reaches the oil/water interface to contact 

the molecules of asphaltenes and/or resins. Because of the strong interaction between 

GO and asphaltenes (Figure 8b3), the cortical protective film was partially destroyed 

in the help of collision between oil and water, producing a non-continuous protective 

film at the oil/water interface (Figure 8b4). The partially destroy of the protective film 

provides a site for the coalescence of the small oil droplets to form big ones (Figure 

8b5). With the increase of coalescence and aggregation of the oil droplets (Figure 

8b6), the oil phase was formed and floated up (Figure 8a3). As a result, the oil was 

successfully separated from water. 

It is known that the GO and asphaltenes/resins have the similar chemical 

structure of conjugated aromatic rings, which have a huge delocalized π systems. 
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Non-covalent interactions such as the π-π interaction is usually used to explain the 

strong adsorptions55, 56 or self-assembling57, 58 of molecules with 

delocalized π systems. Namely, one of molecules acts as π-donor and the other act as 

π-acceptor in stacking interactions.59 To have a better understanding on GO acting as 

π-donor or π-acceptor in the demulsification process, the intrinsic electronic 

characteristics of the graphene, GO and asphaltenes/resins are analyzed. As shown in 

Figure 9, the Fermi energy of graphene is 4.26-4.42 eV.60-62 After introducing the 

functional groups such as hydroxyl, carboxyl and alkoxyl groups, the π-conjugate 

systems of graphene would be polarized and the energy band would be changed as 

well. According to previous reports, the HOMO (the highest occupied molecular 

orbital) and LUMO (the lowest unoccupied molecular orbital) level of GO are -5.2 eV 

and -1.6 eV, respectively, which were splitted comparing with that of graphene.63 As 

for asphaltenes, the HOMO levels range from -4.92 to -5.41 eV and LUMO levels 

range from-1.86 to -2.45 eV. Similarly, the HOMO levels of resins range from -4.99 to 

-5.57 eV and LUMO levels range from -1.78 to -2.29 eV.64 Taking the petroleum 

asphaltene inspired by UG8 Kuwait crude oil65 as an example, the electronic 

properties of the petroleum asphaltene and GO model with 40 aromatic rings were 

calculated using density functional theory (DFT) in B3LYP/6-31G level with 

Gaussian 09 program package (Figure 10). The HOMO and LUMO of petroleum 

asphaltenes are about -4.94 eV and -2.46 eV, respectively, which are in good 

agreement with above reported results. Obviously, the HOMO level of GO is close to 

that of asphaltenes (or resins), while the LUMO level of GO is slightly higher. As we 
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know, the LUMO level of molecules is closely related to their adiabatic electron 

affinity.66 The electron affinity of molecules are more negative, the more difficult for 

these molecules to lose their electrons. I.e., molecules with more negative electron 

affinity are easier to obtain electrons from other molecules. The electron affinity of 

asphltenes and resins are more negative than GO, indicating that asphaltenes and 

resins are easier to obtain electrons from GO. In other words, asphaltenes and resins 

mostly act as π-acceptors, while the GO probably acts as π-donors. Based on above 

discussion, the polarized π orbitals of GO (the red circle in Figure 9b) interact with 

the π-conjugated system of asphaltenes (or resins) (the picture in the bottom of Figure 

10a) to form strong π-π interactions (Figure 10c). 

Moreover, n→ π* interaction between electron-rich functional groups (blue circle in 

Figure 10b) in GO and the antibonding LUMO orbital of asphaltenes (the top of 

Figure 10a) or resins further enhanced the strength of adsorption.67, 68 Summarily, the 

demulsification of oil-in water emulsion driven by GO is highly related to the strong 

adsroption of asphatenes (resins) on GO via the π-π/n-π interactions. 

4. Conclusions 

GO nanosheets were used as a high efficient demulsifier to break up the crude/heavy 

oil-in-water emulsion and/or emulsified oily wastewater. It was found that the 

addition of GO to crude oil-in-water emulsion could quickly destroyed the stability of 

the emulsion and more than 99.9% oil was separated from the emulsion within several 

minutes at an optimal dosage. The demulsification efficiency was affected by the 

properties of crude oil, the oil content of emulsion, GO dosage and the solution pH 
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value. It was interesting to find that the distribution of GO either in oil or in water 

phase after demulsification was dependent on the pH value of the solution, which was 

attributed to the pH-dependent amphiphilicity of GO. The prominent demulsification 

ability of GO was attributed to the strong interactions between the GO nanosheets and 

molecules of asphaltenes/resins which consisted a protective film at the oil-water 

interface. It is believed that non-covalent interactions of π-π interaction and n-π 

interaction account for the strong adsorption of asphaltenes/resins with the GO 

nanosheets. The findings in this work indicate that the GO nanosheets is a simple, 

high-efficient and universal demulsifier to separate the oil from the crude/heavy 

oil-in-water emulsions at ambient condition, which shows a good application prospect 

in oil industry. 
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Table 1. Composition and physical properties of the Shengli heavy crude oil and Tahe 

crude oil. 
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Figure 1. Various characterizations of the GO nanosheets: (a) Infrared spectrum; (b) Raman spectrum; (c) 
AFM images of GO on silicon substrate; and (d) TEM morphology.  
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Figure 2. Visual observation on the demulsifcation : (a) bottle test of demulsification driven by GO (a3) and 
water (a1) or HCl solution (a2) as the references; (b) variation of the separation process with the increase 

of time.  

150x69mm (300 x 300 DPI)  
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Figure 3. Micrographs of the oil-water mixture before and after demulsification: (a) The oil in water emulsion 
(Tahe, 50 g/L); (b) Coagulation of the oil droplets after addition of the GO (50 mg/L) without shaking; (c) 
The obtained fresh oil phase after demulsification; (d) The oil phase after settle by gravity for 2 h at 60 °C.  

119x90mm (300 x 300 DPI)  
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Figure 4. The residual oil content in the separated water and the corresponding demulsification efficiency as 
a function of GO dosages for various crude oil-in-water emulsions (Tahe).  

140x93mm (300 x 300 DPI)  
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Figure 5. The residual oil content in the separated water and the corresponding demulsification efficiency as 
a function of GO dosages for heavy oil-in-water emulsions (Shengli).  

140x46mm (300 x 300 DPI)  
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Figure 6. (a) Effect of the solution pH on the demulsification: the optimal GO dosage was significantly 
influenced by the emulsion pH values. (b) Zeta potential of Tahe oil droplets and graphene oxide nanosheets 

as a function of pH in 1mM KCl.  
140x53mm (300 x 300 DPI)  
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Figure 7. Effect of the GO nanosheets on the color of the separated water after demulsification: (a) the 
diluted GO suspension (control) and the separated water samples obtained under different pH values; (b) 
the corresponding water samples after extraction by toluene; (c) The UV-Vis absorption spectra of the 

toluene-extracted water samples; (d) variation of the water color after adjusting the solution pH value from 
5.7 to 2 by adding hydrochloric acid.  
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Figure 8. Schematic illustration on the demulsification processes (a) and the possible mechanism for the 
coagulation of the oil droplets driven by the GO nanosheets (b).  
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Figure 9. The relative level of the HOMO and HOMO for graphene oxide, asphaltenes , resins and the Fermi 
level of graphene.  
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Figure 10. (a) The HOMO and LUMO for asphaltene molecules; (b) Part of the occupied orbitals of GO; and 
(c) The possible π-π  interaction between GO and asphaltene.  

150x53mm (300 x 300 DPI)  

 

 

Page 39 of 39

ACS Paragon Plus Environment

Energy & Fuels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


