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THE ANALYTICAL STUDY ON THE LASER INDUCED REVERSE-PLUGGING
EFFECT BY USING THE CLASSICAL ELASTIC PLATE
THEORY (II) —REVERSE-BULGE MOTION
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Abstract

The reverse-bulge motion (RBMY in the metallic foils, which is induced by
spatially cvlindrical long pulse laser, is examined in order to analyse the newly-
discovered reverse-plugging effect (RPE). An uncoupled, thin plate theory is used to
determine the induced [lexural vibrations. The solution is obtained as the superposition
of two displacement fields, representing the puasi-static and the dynamic behaviors.
Meanwhile, the equivalent thermal loading and the dimensionless analysis of thin plate
motion are presented. Numerical results presenied may partially explain the RBM of
thin plate at the early stage of laser irradiation.

Key words long-pulsed laser becam, the RPE, the RBM, thermal-elastic thin-
platc theory

I. Introduction

A new type of damage, i. e. the RPE in studying the interaction of a single-mode long-
pulsed Nd: Glass laser beam with copper and aluminum foils has been reported! ~%. The RPE
is different from the well-known damage types which are melting, vaporization and shock
waves in materials. The process of the RPE in metallic foils induced by long-pulsed laser is
divided into three macroscopic stages, i. e. the reverse-bulge formation, shear deformation
localization and perforation. The RPE is also a typical 3 - F (Flow-Fracture-Fragmentation)
process. The temperature distribution analysis has shown that the temperature gradient in the
axial direction is the key factor to induce the RBM. The discontinuity of temperature and its
gradient on the rim of laser spot in the radial direction is the key factor to induce. shear
deformation localization!®,

Based on the temperature- field analysisin[3],the present study explores the characteristics
of the RBM in the metallic foils irradiated by a spatially cylindrical type Iong -pulse laser
beam, where the classical thin-plate theory is used. The exact solution is derived as the
superposition of two displacement fields, representing the ‘quasi-static and the dynamic
behaviors. In Section II, the theoretical considerations and the governing equations are
outlined. In Section III, the quasi-static behavior of the transverse motion is obtained. In
Section IV, the dynamic behavior of the transverse motion is investigated by using the Hankel
transform and Laplace transform. Some numerical results, discussions and dimensionless
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analysis are detailed in Section V. We conclude in Section VI with a summary of the main
feartures of the present study.

II. Governing Equations

In the present study the transverse deflection of a thin plate irradiated by a pulse laser
beam can be modelled on the basis of the assumptions: ‘ '

(1) The thermal-mechanical coupling effect is neglected. The neglect of thermoclastic
coupling is generally justifiable for the problems in which thermoelastic dissipation is not of
primary interest!¥. '

(2) We shall confine ourselves to the infinitesimal deformation theory. And thus, the effect
of membrane force and shear force on the transverse deflection and their coupling cffect are
ignored.

(3) All the material parameters are constant. This implies that the temperature-dependence
of parameters is neglected.

However, although the assumptions (2) and (3) may be invalid for the whole process of
the PRE, they should be reasonable for the RBM. According to the classical (Kirchhoff) plate
theory, the transverse displacement of the plate middle plane, as described in Fig. 3 in [3],
is governed by the equations as follows:

D1A2w+l—:_£;AMa+Ph%l%-=0 W2.1)
initial condition
o =5y =0 (2.2
boundary condition
@ r-b=%z': .--b=o (2'3)

where A is the Laplace operator, w represents the transverse displacement of the plate middle
plane, D,=ER’/. 12(1—v°) denotes the bending stiffness, and E, v, p denote, respectively, the
Young’s modulus, Poisson ratio and mass density. Other notations are defined in [3]. The
thermal moment or equivalent external loading in Eq. (2.1) is defined in term of the
temperature rise 0(r, 2, 1) by

As

2
M,—_—aoES MzG(r,z,t)zdz (2.4)

where «; is the coefficient of thermal expansion.
For the conveniente in the subsequent analysis, we introduce the following dimensionless

variables. u 8 w M,
0= y W= y My=—rr—o,
hiTm wed Lirem
g
M, M
Mr=f‘q-—L"“‘, Me:"‘T“o’— (2.5)
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Also, the basic dimensionless parameters are defined as

2 . ‘2
h1=%’ A= aB » B=(a+£)a, 3=0
Im.xa (I—Ro)Pmnx __ E __PD"'
b= =" fmeT. * "=, "=TF (2,6)

Meanwhile, the following dimensionless parameters are used in the present study
wy=24(1+v)hshi, My=8hshihs, mo=8h1hshihs/(1~»)
my=12(1—v*)he/h} ' (2.7)

where o, is the yield strength at ambient temperature, M, and M, are, respectively, the bending
moments in the radial and circumferential directions,

+2 Sw
M= —D‘ o )-l—-v (2.8)

aw aw ‘Ma
(~ ar 1= (2.9)

For the convenience of writing in the subsequent derivation, the dimensionless variables
6, w, M,, M,, M, # and % are, respectively, replaced by 0, w, My, M, M, randz.
Therefore, the governing equations of the RBM are expressed in dimensionless form as

follows:
Awt AM Am S~
w+71 ¢+my oF = (2.10)
initial conditions
Jw
wi = =
,t-o ot lt-o 0 (2'“)
boundary conditions
Jw
w = — = 2.12
r=Ah: or r=h: (2. )

The dimensiorless thermal moment M, is rewrittca as

PYP
M,=—L§ v fzdz (2.13)

2h% ) _min
Just-as in the previous investigationst®~, the deflection w is regarded as the sum of two terms,
namely,
4 we=w,+w; (2.14)

where w, and wqrepresent; respectively, the quasi-static deflection and dynamic deflection. The
quasi-static deflection w, satisfies the differential equation

A’w.+7'1-1AM.=o (2.15)
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. /
together with the prescribed boundary conditions

Sw.,
w , = =0 2,186
‘ r=hs Or lrep, ' (2.16)
The dynamic deflection wy must then satisfy the equation
d’w
wd+mlaatz +m173711 0 (2.17)
together with the boundary conditions
awd
Wy = =0 2,18
r=h; or r=h ( )

In addition, the initial conditions should be expressed as follows

1 —— — aw‘ __aw.
U'q i =Wy (= ’ ot im0 = at“ (2_19)

=0

Consequently, (2.14)—(2.19) are the basic governing equations of dimensionless deflection
w. Substituting somc dimensionless variables into (2.8) and (2.9), the dimensionless bending
moments M, and M, are expressed as follows

"’(a»“": ?;f Jf,‘) (2.20)
=—(» a*"‘l a'f "‘"A;%’) (2.21)

ITI. Quasi-Static Solution
Substitufing the dimensionless temperature risc expression (44) in {3]) into the dimensionless

thermal moment expression (2.13), we have

Bp s o

where the §(kn,, t) is expressed as

1 s (—)m—1] ,
7 (knst) =L +2 DU o)

() (exp=s] —At]—exp(=CH] _expl=Bl—exp[=Cll| , ,)

For Eq. (2.15), we have

b S S () o ()= (3.3)

Integrating Eq. (3.3) and referring to the finiteness of w. and ?-g:- at the point r=0, we

obtain tomz U Jo(kar) f*(ka) .
w._—.:Ter ""'h—:kE. k272 (kahs) g(ku,f)’l'cz (3.4)
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where C, and C; are integral constants which are determined with boundary conditions (2.16),
Then we have

w.=*“"2__7€£’_f’2-(zé%’)t—'[1 (kn")'i‘ l k J (k,h,)(r’—h})] (3.5)

In order to understand the characteristics of the quasi-static bending moments
distribution, we insert (3.5) into (2.20)—(2.21) and obtain the dimensionless bending moments

1 - T TN T o [

* g (k .
_'hz 2 ! k(”,;":)(gk(.h:,)t) [ (l—l’)kufo(k-r)

+1;;|:”]'1 (kﬁh’)—l;rvfx (k,r)] (3.7)

IV. Dynamic Solution

To obtain an exact solution to Eq. (2.17) together with the prescribed 'boundary
conditions (2.18) and the initial conditions (2.19), the dynamic deflection w, is expanded in
following form

wem So0f (an ) 1o (aur) =322 s, ()] (4.

where a, are the roots of the following equation

Jo(anhs) 1 (ashs) +T1(anhs) o (auhs) =0 (4.2)

and /,, J, are, respectively, the n-th order imaginary variable Bessel function and the n-th order
Bessel function. Setting y, as

oI (a@r) —%h(w) (4.3)

utilizing repeatedly the Bessel equation and some transforms, we prove readily that the
eigenfunctions y, are complete and orthogonal, that is;

Sf’ YmUardr=0  (m#n) (4.4)

In order to solve exactly the dynamic deflection w., the modulus and some transforms are
derived in the following.

1. The derivation of modulus - S Yyirdr

Substituting (4 3) into the expresswn of modulus S yirdr we obtain

o his
So y.rdr—— [I!(a..r)+___((&h_’.%,[z( aar )—%Io(anf)h (aur) Jrdr  (4.5)

According to the fpllowmg expression .
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S I3 (awr) rdr=1-h3 14 (auhs) ~ S rly(ar)2] “’") r (4.6)
and the imaginary variable Bessel equation,
d I'ﬁz") 47 dl (a..r) —airtl,(a.,r)=0 (4.7)
utilizing Eq. (4.7) and some transforms, we obtain
§ 13 (aur)rdrm—p iU )= 2 aahe) (4.8)
Similarly, utilizing the Bessel Equation
adi o(agr) 4, d""(a"r)—'—a’ ri o (aar)=0 (4.9)
we obtain easily
§ 73 (our rdrm-pht 3 ashe) £ (ashe) (4.10)
S"’ Io(anr)d o{@nr)rdr=0 (4.11)
0

Substituting (4.8), (4.10) and (4.11) into (4.5), and referring to Eq. (4.2), we obtain the
modulus as follows

2.

h
{ " yirdr=hiI%(anhs) (4.12)
0
The transform coefficients
h1 -
) S To(Knr)yn(anr)rdr
V]

Substituting (4.3) into. the above expression, we have

" Lotk yun(antrdr={" 1 (k)] Taar) = 38Be) s () Jedr  (4.13)

0

Utilizing the Bessel Eq. (4.7) and the following equation,

d’J o(k
dr?

dfo(

ar) "»’) k272 o (eur) =0 (4.14)

we have

— (ki at) o) o(kar) =] rlo(ar) SLeker) _ dlalaar)p )] (4 1)

Consequently, we obtain

ha . . .
§." Loarakar)drm el (ashs) 1 (k) (4.18)
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where the identity Jo(kafs) =0 is used. Similarly, we obtain the following expression

[ (a,r)fo(k,r,dr——ﬁ"—'—f.,(aﬂh,)uk.hn (4.17)

0
Finally, we have the following transform coefficient,

(" Tu(kar)ya(aar)rdrom — SR L (ashe) T (K (4.18)

]

ha .
() s (At —r*)ya(aer)rdr

0

According to the following expressions

h2 h,_ ] h2 hz
S Iy (awr)rdr=—""1I\(ash), S Jo (aur)rdr=—4-J\(aah) (4.19)
n 0 n

0

we have

h2
S Yu (aur)rdr=

[

i}:’ I\ (anhs) (4.20)

h2 s s
(" Tutawn)rtdrm—tbd, (ayh) ~ 21, (ayhy) +-402

[

Ii(ah,) (4.21)

h2 A3
S Jo (anr)ridr= a’

0

2
J (a,.h,)+—2ah—,’.lo (a,,/zz)—iah?z—fl(a,.hz) (4.22)

Finally, we have the following transform coefficient,

h2 4],;
S (A} —r*)yYn (@ur) rdr= PE Iy (anhs) (4.23)
[} L]
3. Transform coefficient wh(an,t)

Substituting expression (4.1) into Eq. (2.17), we have the following equation on the
unknown variable wj(an,,t)

d*w% ¢ a*

Za wi(anst) Yn (a,.r)+m12——ﬂ‘(—i%%ﬂ)—y,,(a,,r)+m,—5t—;—o (4.24)
Referring to the orthogonality of the eigenfunction y,, the right side and the left side of
Eq. (4.24) times, simultaneously, ys(asr)r and integrating them, meanwhile substituting the
modulus (4.12) into the new equation, finally, we obtain the ordinary differential equation on
the unknown variable w;(a,,, 1) as follows
h2 3w,
=fyardr=0 (4,25)

2,,.%
athilf(anhs)wi(an,t)+mhil}(anhs) d wzi(tf"’tl +mx8

Substituting (4.18) and (4.23) into the last term on the left side of Eq. (4.25), we have

h2 dw fr(ka) k3o (anhy) d*g(knst)
{, “qr vaedr=1 le(k,.hz) (ki-al)al — dF (4.26)
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Furthermore, we obtain the ordinary differential equation as follows

d L] ns
L w:+z:7===F<kﬂ,an)—!”T,_L (4.27)
where
N my kif¥*(ka)
F (knyan)= h’ Ti(kabs) o(anhs) (K —al)as (4.28)
Using Eq. (3.2) and the following formula
((=1nm—1]
st S (4.29)
we have
dg |
ylt-o =0 dt ’,-_o =0 (4.30)

Consequently. referring to Eq. (4.27) we have the transform coefficient w. (a., 1) as follows

. a:
wi(ay,t)=C,(f) cos(——-~t)+D,.(t)sm( T t) (4.31)
where
: , dig(k,.t') . o\ ‘
Cn(t)#sokZF(kn.a..)-——%—tz—l31n( =1/t (4.32)
\ d2g(ka,t/ R YW
D,.(t)-_-_s Z;F(k,,, )2 g(dt” ) cos A/‘fml 1)t (4.33)
Setting the notations L,(r) and L:(;]) as
Li(n)= Sexp[ -7t sm(A/ +/ )dt’ (4.34)
$ . .
— —nt’ ) 4,35
La(n)={ expl—nt JCOS( ) (4.35)
we obtain . L@
L(n)—“#——w%’“: E;,a-—f———ml -—7exp[ nt]sm( r'—— )
nT m
—;7===exp[ nt]cos(A/——t)] (4,36)
1 11 _ a,
Lz(n)=l—;—l——5:—[7]-—?exp[ nt]cos(ﬁt)
7 m
1 ai _ , al .
o=t sin( ) (4.37)

Substituting (3.2) into (4.32) and (4.33), we obtain, respectively, the following expressions
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El(a,..k,.t)zS:M sin (

4
’ ’
L =i )dt

o7 [A°La(A) ~ B’Lx(B‘}-l-zZ-[—(:—l—)—)'-‘-]- {A*Li(A) = B*Ly(B)

) [A’Lx(A)-C Li(C) BzL:(’B)C—-_C;LxCC) ]}

(4.38)

. 2 ’ 2
El(anpknvt)=-\:d—g(§;,’_t ) COS A/Cl',;“ f’)di/

= LI ALy(A) =B Ly(B)] +o§:_[_‘__)_:ll{A~“~L,(A) —B*L.(B)

m=1 (m )4

( mm)-[AzL,(A ~C*L,(C) B’L:(B;—C L,(C) ]} (4.39)
Finally, we have _ :
w:(a,..t)=l.kE'F(k...a,.)E,(a,. k..,t)]cos (A/"_Et)
_[Ep(k..a.)&(n;,k,.:) Jsin (7%7:) (4.40)

Conscquently, inserting (4.40) into (4.1), we obtain the exact solution of dynamical deflection
w, in the following

---E{F(k..a.)E. (a,.,k..,t)]cos (J‘%-—t)—[ZF(kuvan)E! (an,k-,f)]
1 x,

t)}[f (anr) ~ I, (a:Z:)f (a. r)] (4.41)

Finally, subsmutmg (4.1) and (4.41) into (2.14) we obtain the exact solution of dimensionless
deflection w.

sm

teu{1.0E—3)
1.0

—~M{1.0E—-3)
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0.8

0.6t

0.4}

0.2

ol L KLOE—3) 0.0 o LU
00 08 16 24 32 40 48 0 5 10 15 20 25 30 35 40 45

Fig. 1 Histories of M, at point r=0 Fig. 2 The variation of T,.. and Tna: with 7',
with differexnt values of /n where Tt and Tna: are, respectively,
the time, when M, at point (r=0) and
8M,/8r on the rim of laser 'spot
reach their maximum values



616

Zhou Yichun, Duan Zhuping and Xic Bomin -

; {Yg.(l.()l'}"- 3)
3 /}/‘\\;

0.36
0.33

\.\

0.30
0.27

0.24
0.21

1.0/h,
00 60 .12.0 18.0 24.0 30.0 36.0 42.0

The variation of M., with 47,
where M. is the maximum
value of M, at the point r =0

Fig. 3

M, and M/(.0E-3)

(me
0.32
0.24}
0.6

0.08

R

I i 1 1 A Lo,
000 025 050 0.76 1.00 1.25 1.50
Fig. 4 The variation of M, with r, where
1=37X10™" and h'=25

1.50 l

1.00 AY M.

0.50

00 [~
> L poa? o
&

0.50 73

-1.00 g
~1.50 1R

00 06 1.2 1.8 24 30 3642
Fig. 5 .The variation of M, and M, with r, where r=1.5%X10"" and /; '=25

- W{L.OK—3)

0.30 T g »
b y . %
RSN G
N | W y /;W 2 «/'j/ 4
0.:20 N /?}‘,j&! ./J’?‘V/ﬁ > ’?.%/",’ :I;;fij
N .
04Ut S = - /{ jf}{/{/ ;;f/}i&// ﬁff’}f"”o's
~ ~\\ [ 7 tiziﬁ?},}éﬁ%@ﬂ; :-—1.5
0o N S
‘<:$‘4 R § —-00 ‘0.7 L4 21"
B0 030 060 GUu. Lai 10 180 x
(a) two-dimensional shape (b) three-dimensional shape
» \ . . .
Fig. 6 Deflected shape of the middle plane of a thin plate,
where 1=3.0X10™ and /i'=25
— W(LOE~2) — W(1.0E—2y
0.30 W 7 0.40
/ ; : o—ow /"
0.20 : ' 0.32
—i= W, ¢ a——a W,
0,107~ Y /- ('\‘ - 0.24
; ,', \\ '7 ‘\m/\ ~.§ - a—ia W,
—0.00 <~ Tt — 0.16 o
\\_/' \\“ "( \ f ] \‘\ |I / / /
—-0.10 e L =y 0.08 2 <
W, /
020 1.06~3)] 00 - h.0/R
0.00 030 060 090 120 150 00 60 120 180 240 300 360

¥ig. 7 The histories ofw,, w, and w at
the point r=0, where hi'=25

Fig. 8 The variations of W, Wem.. and
W With 7', where W, Wi
and w,., are, respectively, the
maximum values ofw,,w, and w
-at the point r=0 ‘



The Reverse-Bulge Motion of the Reverse-Plugging Effect 617

-W, W, (1L0E—2)
20.0 - 0.36
wd,
N /[ 0.30 N\t
10.07; - T W,
77 \ 0.24
0.0 H — \

—10.0

o W \/ \J 0.12 / /?’.»— \\‘XM‘Y"
N\ .

e H1LOE~—3) Obﬁ 2 ‘ \\ l R

ANEAYE .
\",'l V\ ]— 1 0.18 / l,/’ \\\_

00 704 06 08 10 12 14 16 000 030 060 090 120 150 1.80
. . . dw OJw, . o . - dw dw,
Fig. 9 Tahe histories of TR and Fig. 10 The :;arlatl,ons of 235 "B
Wy . = a wy .
31 at the point r=0 ad 35 with r

V. Calculated Results and Discussions

Experimental results”" "% and the analysis of temperature fields show that only the spatially
cylindrical distribution of laser offers a formidable potential for the RPE. Consequently, the
spatially cylindrical laser beam, which was described in Fig. 2 in [3]. is supposed in the present
study. Meanwhile, the temporal shape is expressed as formula (22) in [3] and the target
material is H65 copper alloy foils. The characteristics of the thermal moments, the transverse
deflection and the quasi-static bending moments are analyzed in the following.

1. Dimensionless analysis

The characteristics of the RBM, i. e., the motion state at the ecarly stage of laser
irradiation, are dctermined by the laser parameters, the material parameters and the geometric
parameters. In other words, there is the following implicit function

W[h,a,a,D,(a+,3),ao,Tm,Im.x/ko,E,Uo,P]=0 (5.1)

where Imax=(1—Ro)Pmax/76" is the maximum laser intensity absorbed by the target.
If the dimensions of distance [L], time [7], mass [M] and temperature [K] are selected as
basic dimensions, the dimensions of these variables are:

[R1=[L] {a)=[L] [a)=[T"'] [DI=[L°T™"} {(a+ﬂ)]=[T")]
(aol=(K"] [Tal=[K] Uns/ks]=[KL"] (E]=(ML"T"]
(O d=[ML"'T*] [P]=[ML™] (5.2)
According to the I1 theorem, we have
d)[h’xa'za’aD'a(a+ﬂ)’sa,,’an,v(Im.x/k,,)’nEﬁcrn’xop'::]=o (5.3)

Substituting - the dimension of each variable in (5.2) into Eq. (5.3), and let the factors of {L],

(7], [M] and [K] on the left part of Eq. (5.3), respectively, be zero, we obtain the following
four equations:

X1 Xs 2%, — Xg— X9 — X9 — 3%X11=0 (5.4)
X3t 2, F x5+ 2%+ 2%1,=0 (5.5)
Xo+Xx104%11=0 (5.6)
—XgF X+ x3=0 (5.7)

From Egs. (5.4)—(5.7), eliminating x,, X,, x7 and xs, we have the following expression
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W{(h/a)*s1(aa*/D)"s[(a +ﬂ)a:/D]"(auTm")“(Imn;a/kon)”
(0o/ E)*u(PD*/a*E)*u}=0 (5.8).

Finally, we obtain seven basic dimensionless parameters. which are the same as that in
expression (2.6) in the following

hi=h/a, A=aa*/D, B=(a+p)6*/D, h;=a,Tm
h"-:Imua/koT',,., h5=E/00, ha=pD2/02E (5,9)

In the above expressions, / is the laser-target geometric dimensioniess parameter. 4 and B are
the coupled dimensionless parameters which are concerned with the temporal-spatial shape of
laser beam and the thermophysical properties of materials. /; is the maximum deformable
quantity of solid target. /. is the coupled dimensionless-parameter which is concerned with the
laser intensity, geometric parameter and the thermophysical properties of materials. A is the
dimensionless parameter of mechanical property of materials. /. is the coupled dimensionless
parameter which is concerned with the mechanical-thermal properties of materials. From (2.5)
and (2.7), we see cdsily that the temperature rise 0, deflection w, equivalent thermal loading
M, quasi-static bending moments ‘M, and M, all depend linearly on h. This implies that the
above physical variables depend linearly on the intensity of the incident laser beam.
Mecanwhile, w, M,, M, and M, all dcpend‘lincarly on /1. The rcason is that M, M, and M,
result in target deformation, and w reflects the deformable quantity of target. Also, we sce that
M. M. and M. all depend linearly on /. In other words, the larger Young's modulus £ is and
the less yield strength g is, the more easily the target approches the yicld threshold. From (2.5)
and (2.7), we also see that each variable depends nonlinearly on hi, A, B and /. respectively.
Now supposing that the laser parameters are fixed, we only study the dependence of some
physical variables on A,. The basic parameters of H65 copper alloy for our typical experiment
are: D=0.335cm?/s, a=0.25cm. Consequently, we have 1, =0.187s, A=2800, B=1.77X 10", he
=1.562X107" and v=0.163.
2. Thermal moment and quasi-static bending moments

[3] shows that the thermal moment A, is the key factor to induce the early motion, i. .,
the RBM. Fig. 1 displays histories of M, at the point r=0 with different values of /. A
comparison of Fig. 1 with Fig. 3 and Fig. 4 in [3] shows that the temperature difference of
both surfaces and the thermal moment reach  simultaneously maximum values. Additionally,
when the temperature. distribution in axial direction comes into close agreement, the thermal,
moments diminish to zero. Meanwhile, the less A, is, the shorter 7. is, where ¢, is the time, when
M, takes effect on the RBM. The more A is the longer 1. is.

Fig. 2 shows the‘ variations of Tww and Tme with A7, where Tuw and T are,

oM, .
or

respectively, the time when M, at the point r=0 and on the rim of laser spot reach

their maximum values. It is seen easily that Tow and T are inversely proportional to Ar'.
Fig. 3 shows the variation of M. With i', where M .. is the maximumi value of M, at the
point r=0. From this figure, we see that M, increases with the increasing of /' when Ai'<15.
However, M, decreases with the increasing of k' when A7' >15. There is a extreme value
point of A;' for which the incident laser damages the target most effectually.

Fig. 4 displays the variation' of M, with r, where 1=3.7X107* and h;'=25. As expected,’
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the response ‘of M, across the irradiated target generally follows the temperature distribution
and the laser ‘profile. M, is uniform within the laser spot and drops sharply near the edge of
the laser profile. The special distribution of M, implies that the spatially cylindrical type pulse
laser offers a formidable potential for the exhibition of the RPE.

Fig. S displays the variation of M, and M. with r, where 1=1.5X10"*and i'=25. M, is
uniform within the laser. spot and decrease gradually to zero near the edge of laser spot.
However, the characteristic of M, is very different from that of M,. M, is positive and uniform
within the laser spot. However, near the édge of laser spot, M, drops sharply to minimum
negative value and then increases gradually to zero. The extraordinary feature of M, and M,
demand us to investigate emphatically the characteristics of deformation near the edge of the
laser spot.

3. The analysis of deformation

The results of numerical analysis .of the RBM are graphically displayed in the figures
which follow. The analysis of the RBM include quasi-static deformation w,, dynamical
ow, aw..,‘ ow

3 " ot T and gradicnt —‘—91-”—

deflection w,, total deflection w and their velocity 3

dw, Owq
“ér’ or

Fig. 6 (a) and (b) display, respectively, two and three dimensional deflected shape of the
middle plane of a thin plate, where 47'=25. In the geometric configuration of the structure,

discribed in Fig. 3 in [3], the deflection value is positive if the thin plate deflects in the same
direction as the lasecr incident direction. The negative values of deflection in the carly stage of
laser irradiation show that the middle plane of the -thin plate bulges in the direction opposite
to the laser incident direction. The maximum value of w is 0.26; obtained from Fig. 6 (4). The
corresponding factual deflection is 1.84/4 in the case of 4,=0.0155 and h.=66.4, where, we
observed that the specimen had exhibited the RPE. The prediction of the RBM presented here
agrees qualitatively with the experimental observation.

Fig. 7 displays the histories of w,, w, and w at the point r=0, where /iy '=25. 1t is sten
that the contribution of w, to the RBM takes positive effect during the whole period of laser
irradiation. However, the contribution of w, to the RBM takes negative effect at the beginning
of laser irradiation. Meanwhile, the dynamical deflection induces flexural vibration. Fig. 8
shows ‘the variation of W snax, Wamix aNd W With /7', Where wamm, Wamx and wma are, respectively,
the maximum values at point r=0. wam. increase rapidly with the increasing of Ii'. Wam
increase slowly with the increasing of A;'. Therefore, k, has important effect on the RBM.

Fig. 9 displays the histories of ial;’— s 9—;’—;- and iautﬁ at the point r=0. Note that

the characteristics of the velocity shown in Fig. 9, and the deflection shown in Fig. 8 are
2

identical. Fig. 9 shows that -a—u;—;lﬁ =16.5 and ‘?—%;“—;‘-‘ =22X10°. The corresponding

factual velocity and acceleration are, respectively, 6.2m/s and 4.53X10°m/s’ in th_e case of h;=
0.0155 and h,=66.4, where, we observed that the specimen had exhibited the RPE.

. . .- ow  Ow, duwg . £ th
Fig. 10 displays the variations of or B and ar with r. Because of the

spatially cylindrical distribution of the laser shape, temperature and equivalent thermal
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loading, the deflection gradients have a point of inflection which is on the rim of laser spot.
Although the above numerical results and experimental observation show that the deflection

. . . o *w .
is not quite large, the discontinuities of 7 on the rim of laser spot demand us to

consider the effect of membrane forces.
V1. Concluding Reniarks

The RBM on the newly-discoversed RPE is examined by using the uncoupled thin plate
theory. Meanwhile, the equivalent thermal loading was presented. The dimensionless analysis
of the thin plate motion at the early stage of laser irradiation is given. Numerical results
presented show that the rim of laser spot is an extraordinary recgion which we should
emphatically study.

Whereas, the plate material properties have been assumed 1o be independent of
temperature in this study. For the situation with large temperature variation, especially on the
rim of laser spot, it will be necessary to account for temperature-dependent properties. This
effect, along with the inclusion of thermomechanical coupling in the heat conduction equation
and the membrane forces and the shear forces, will be dealt with in forthcoming papers.
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