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Abstract

A novel kind of supramolecular polymer filament with a diameter of 2–5 μm
was artificially synthesized, which is in fact a bundle of self-assembled
nanotubes with a diameter of about 40 nm. The filament can be drawn
from a special alkaline aqueous solution directly and free standing in room
temperature, which has never been performed earlier. A microtensile tester was
developed with the aid of an electronic balance to investigate the mechanical
properties of the new filament. Monotonic and load–unload tensile tests
were performed, respectively. The maximum tensile strength and the elastic
modulus of the filament were 23.8 MPa and 1.9 GPa, respectively, which
were higher than previous supramolecular polymers and comparable to some
covalent-linked polymers.

Introduction

Supramolecular polymers are made by the self-
assembly of many monomeric units with directional
and reversible non-covalent bonds.1 They have a
wide range of applications in biomaterials,2–4 smart
materials,5,6 medicines,7–9 electronic devices,10,11

and optical technologies.12,13 Because of their highly
organized nanostructures, supramolecular polymers
present many advantages, such as molecular oper-
ability, cycle applicability, self-healing properties, and
molecular recognition.14 However, until now, most
supramolecular polymer filaments are not free stand-
ing, which may bring out poor mechanical properties
and may limit their applications.

In this paper, a kind of free-standing supramolec-
ular polymer filament, with a diameter of 2–5 μm,
was artificially synthesized. We have found that
an L-histidine-terminated bolaamphiphile could

self-assemble into supramolecular polymer filaments
in slightly alkaline aqueous solution (pH 8–9). Then,
the supramolecular polymer filament could be drawn
from the aqueous solution by a needle directly. It is
in fact a bundle of hollow nanotubes self-assembled
by non-covalent bonding, which may mean a weaker
tensile strength. However, the phenomenon of free
standing indicates a better tensile strength. Further
experimental study is needed to investigate the novel
supramolecular polymer filament.

However, the test force should be very tiny
(much less than 10−3 N), estimated according to
the diameter of the filament and the strength of
some superpolymers. The commercial material testing
machines, such as INSTRON 5848 Micro Tester
(INSTRON, Norwood, MA, USA)15 and SIROLAN-
TESTER (CSIRO, Australia),16 have no sufficient force
resolution for this test due to the strain-gaged force
transducer.
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In order to acquire enough force resolution, more
sensitive elastic components are adopted as a sub-
stitute for the strain-gaged force transducer, such as
the atomic force microscope (AFM) cantilever,17–20

microelectromechanical system (MEMS)-based
cantilever21–23 and other specially designed film
cantilevers.24,25 These cantilevers have good force
resolution and are suitable for the tensile tests of
microscale filaments. However, it is difficult to install
the specimen because the sensitive elastic component
is fragile and small in size.

In addition to the above apparatuses, another kind
of apparatus is designed based on electromagnetism. A
coil-magnet component is adopted as actuator, as well
as force transducer.26–30 In this way, the tiny force
can be easily measured by recording the currents in
the coil. In fact, there are two kinds of design, namely
moving coil or moving magnet. The former have a
better force linearity in a long displacement range
than the latter.26 This technique has been applied
commercially, such as MTS NanoBionix31,32 (now
taken over by Agilent, Santa Clara, CA, USA). It has
the distinct advantage of perfect force resolution, low
hysteresis, and easy control. However, a spring with
a stiffness of about 80 N/m is used to support the
moving mass in order to avoid bearing friction, which
seriously limits the testing ability of small stiffness
specimens.33 In this paper, a new microtensile tester
was developed with the aid of an electronic balance
in order to test the novel supramolecular polymer
filament. This tester is suitable for tensile test of
microspecimens with very low stiffness, and is easier
to manipulate. Moreover, the electronic balance has
ideal force accuracy without additional calibration.

Experiments

Specimen

In slightly alkaline aqueous solution (pH 8–9), EDH
(N,N-eicosanedioyl-di-L-histidine) can assemble into
extremely long supramolecular nanotubes with a
length-to-diameter ratio of more than 5000. These
nanotubes are randomly distributed and nicely
separated from each other. The internal diameters
and wall thicknesses of nanotubes are about 22 and
10–14 nm, respectively. When a needle is put into the
solution and carefully lifted out of the liquid surface, a
supramolecular filament with length of about several
centimeters can be dragged out directly. More details
are described in Ref. 34. The SEM inspections show
that the filament has an approximately uniform
diameter of 2–5 μm (Fig. 1(a)). The magnified view
demonstrates that the filament is constructed by many

well-aligned hollow nanotubes. The microstructure is
illustrated in Fig. 1(b). Each supramolecular polymer
filament is speculated to contain at least 2000
nanotubes as the single nanotube’s outer diameter
is about 40 nm.

Apparatus

In order to investigate the mechanical properties
of the novel supramolecular polymer filaments,
a microtensile tester was constructed using an
electronic balance (Fig. 2).

The actuator of the tester is a step motor, which
has a step of about 1.2 μm per pulse with a stroke
of 30 mm. The force is measured by using an
electronic balance with a readability of 0.1 mg and
a measurement range of 120 g. This means that the
force resolution is about 1 μN and the force range is
about 1.2 N. More details of force measurement will
be described in the following. The displacement of the
step motor is measured by a linear variable differential
transformer (LVDT) with a resolution of 0.1 μm in
2 mm displacement range. It should be noted that the
electronic balance must be isolated from the tester’s
main frame in order to avoid the motor’s vibration.

The upper grip is a metal hook linked to the core
rod of LVDT, whereas the lower grip is settled on
the electronic balance. Before testing, the filament is
attached to the upper and lower grips with a relaxed
state. At this time, the reading of the balance is the
mass M of lower grip. Then, the step motor drives
the upper grip, the filament specimen is stretched,
and the reading of the balance will be changed to
MN. The force F applied on the filament can be easily
calculated by Eq. (1):

F = (M − MN) g (1)

where the gravity acceleration g at Beijing, China,
39◦55′N and 116◦55′E, is 9.8012 N/kg.

At the same time, the displacement of the upper
grip is measured by the LVDT, which is regarded as
the extension of filament.

Testing procedure

Firstly, the supramolecular polymer filament was
drawn from the aqueous solution by using a needle,
and then rolled to the grips directly. It should be
noted that the filament specimen must be kept
relaxed before extension. The gage length of the
specimen was about 10 mm. Special care must be
taken to align the filament accurately between the
two grips.
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Figure 1 Illustrations of the

supramolecular polymer filament.

(a) SEM photograph and (b)

structure diagram in microscale.

The filament is actually constructed

by many well-aligned hollow

nanotubes.

Figure 2 Illustration of the

experimental apparatus. (a)

Photograph and (b) schematic

arrangement. The force is

measured by the electronic

balance, and the displacement is

measured by the LVDT sensor.

Monotonic tensile tests were carried out on the
tester. The force–displacement curves were recorded
automatically, and then converted to engineering
stress–strain curves by taking the cross sectional
area and the gage length into consideration. All the
specimens were tested at room temperature and a
strain rate of 10−3/s. In order to ensure enough
balance time, there is 3-s interval between the two
steps of motor.

In addition, load–unload tensile tests were carried
out at a strain rate of 10−3/s to further investigate the
deformation mechanism of the filament. The max-
imum extension of each load–unload loop was set
to increase about 10 μm per loop until the filament
broke. Similarly the force–displacement curves were
recorded automatically, and the corresponding engi-
neering stress–strain curves were obtained.

Results and Discussion

Monotonic tensile tests

The test results of four specimens are shown in
Fig. 3. The results exhibited good linear extension
behavior. No plasticity was observed. The slopes of
these curves were similar, which indicated the good
repeatability of the tests. The mean Young’s modulus

of about 1.9 GPa was calculated. The maximum tensile
strength scattered from 10.9 to 23.8 MPa, which
was higher than that of previous supramolecular
polymers, such as PCL2000UPy2 (7 MPa),35 and
even closed to some covalent-linked superpolymers,
such as polypropylene random copolymer (about
30 MPa).36 The scatter of the data may be caused by
the uncertain defects of the specimen or the damage
of grips.

The failure mode of the supramolecular poly-
mer filaments was brittle fracture, different from
most superpolymer filaments. The SEM fractog-
raphy (Fig. 4) clearly showed that almost all
nanotubes were fractured at the same cross
section, without any necking and longitudinal split-
ting. This phenomenon is directly related to the
self-assembly microstructure of the non-covalent
bond.

Load–unload tensile tests

A typical load–unload curve is shown in Fig. 5. The
results clearly showed that the load and unload curve
coincided very well, which means a good resilience
properties of the filaments. Moreover, it can be
deduced that the elongation of the filament results

Experimental Techniques (2014) © 2014, Society for Experimental Mechanics 3



Experimental Study of a Novel Supramolecular Polymer H. Yong et al.

Figure 3 Stress–strain curves of four specimens with different

diameters and gage lengths.

Figure 4 SEM photograph of the fractured specimen.

from the elastic deformation of the nanotubes, rather
than sliding among them.

Conclusions

In this study, a novel kind of free-standing
supramolecular polymer filament, with a diameter of
2–5 μm, was artificially synthesized. A new microten-
sile tester was developed with the aid of an electronic
balance to investigate the mechanical properties of the
filament. Monotonic tensile tests and load–unload
tensile tests were performed, respectively. The spec-
imens exhibited good linear extension behavior and
good resilience without any plasticity. The failure
mode was brittle fracture. Of note was the max-
imum tensile strength and the elastic modulus of
the filament were as high as 23.8 MPa and 1.9 GPa,

Figure 5 Load–unload tensile test results of the supramolecular

polymer filament.

respectively, which were much higher than previ-
ous supramolecular polymers and even comparable
to some covalent-linked polymers.
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