JOURNAL OF THE CHINESE CERAMIC SOCIETY

June, 2015

http://www.gxyb.cbpt.cnki.net

DOI: 10.14062/j.issn.0454-5648.2015.06.03

冷冻注凝制备氮化硅陶瓷基耐高温复合材料

余娟丽1,李森2,吕毅1,郭世峰1,赵英民1,裴雨辰1

(1. 航天特种材料及工艺技术研究所,北京 100074;2. 中国科学院力学研究所,高温气体动力学国家重点实验室,北京 100190)

摘 要:采用硅溶胶冷冻胶凝陶瓷成型技术制备 Si₃N₄/BAS 陶瓷复合材料,分析了硅溶胶冷冻胶凝技术原理和特点,并对 Si₃N₄/BAS 陶瓷复合材料性能及微观形貌进行了研究。结果表明:该成型方法所获得的坯体干燥无变形无开裂,收缩率小于 1%;陶瓷烧结体密度为 2.9 g/cm³时,烧结体抗弯强度、弯曲弹性模量、断裂韧性以及洛氏硬度分别为 350 MPa、193GPa、 6.2 MPa m^{1/2}和 58。该成型技术实现了陶瓷界多年来对先进陶瓷高效、低成本、原位近净尺寸成型的追求。

关键词:冷冻;溶胶凝胶;氮化硅;钡长石;复合物 中图分类号:TM28 文献标志码:A 文章编号:0454-5648(2015)06-0723-05 网络出版时间:2015-06网络超版他址:http://www.cnki.net/kcms/detail/11.2310.TQ.20150603.1526.003.html

Preparation of High-temperature Resistance Silicon Nitride Ceramic Composite by Freeze Casting

YU Juanli¹, LI Sen², LV Yi¹, GUO Shifeng¹, ZHAO Yingmin¹, PEI Yuchen¹

(1. Research Institute of Aerospace Special Materials and Technology, Beijing 100074, China;

2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Beijing 100190, China)

Abstract: Si₃N₄/BAS ceramic composite was prepared by a frozen silicon sol gel method. The principle and characteristics of the frozen silicon sol gel were analyzed. The properties and micro-morphology of Si₃N₄/BAS ceramic composite were investigated. The results show that there are little cracking and warpage of dried green body, and its shrinkage rate is < 1%. When the density of Si₃N₄/BAS ceramic sintered body is 2.9 g/cm³, the flexural strength, bending modulus of elasticity, fracture toughness and rockwell hardness are 350 MPa, 193 GPa, 6.2 MPa m^{1/2} and 58, respectively. The *in-situ* net-shape ceramics forming technology could be a promising method for the preparation of advanced ceramics at a great efficiency ratio.

Key words: freezing; sol-gel; silicon nitride; barium aluminum silicate; composites

传统溶胶-凝胶法主要通过调节溶胶 pH 值、加入电解质盐、提高温度实现溶胶-凝胶的转化^[1],形成三维空间网络结构的凝胶。近十几年来,国内外关于溶胶-凝胶的应用研究主要集中于生产陶瓷粉末、微球体、涂层和纤维等方面,而在陶瓷制备领域的研究相对较少,这主要是由于传统溶胶-凝胶法制备陶瓷材料成型过程耗时长,而且成型样品在升温干燥过程中易收缩变形并出现开裂等问题,严重制约了溶胶-凝胶法制备陶瓷材料的产业化生产应用。

Ronald 等^[2-3]研究发现: 硅溶胶能够在低温条 件下(<-50℃)胶凝,因此,以硅溶胶作为液相,添 加陶瓷粉体混和形成浆料,利用低温冷冻硅溶胶粒 子发生缩聚反应形成-Si-O-Si-三维网络状凝 胶结构特性,可实现陶瓷浆料原位固化成型。目前 利用硅溶胶冷冻胶凝技术进行陶瓷制备研究的主要 有 SiO₂、Al₂O₃、SiC、HAP、YSZ、TiO₂等多种材 料体系,而对 Si₃N₄陶瓷材料的制备研究鲜见涉及。

Si₃N₄是一种综合性能优良的陶瓷透波材料,在 高温和常温下都具有良好的力学性能,同时还具有

收稿日期: 2015-01-24。 修订日期: 2015-01-30。

第一作者:余娟丽(1978一),女,高级工程师。

Received date: 2015–01–24. **Revised date:** 2015–01–30.

First author: YU Juanli(1978–), female, Ph.D., Senior Engineer. E-mail: yujuanlli@126.com

良好的热稳定性、低的介电损耗、高的耐冲蚀性能。 钡长石(BaAl₂SiO₈, BAS)是 BaO-Al₂O₃-2SiO₂ 系玻 璃经晶化处理后获得的玻璃陶瓷,它的理论熔点高 达1760 ℃^[4],以它为基体的 Si₃N₄陶瓷基复合材料 有望应用于1250 ℃以上的使用环境^[5-8]。

开展硅溶胶冷冻胶凝陶瓷成型技术制备 Si₃N₄/BAS 陶瓷复合材料,分析该成型方法的原理 和特点,并对所制备的 Si₃N₄-BAS 陶瓷复合材料性 能及微观形貌进行分析。

1 硅溶胶冷冻胶凝陶瓷成型原理及工

艺流程

1.1 硅溶胶冷冻胶凝陶瓷成型原理及特点

硅溶胶冷冻胶凝是利用低温硅溶胶发生凝胶化 反应的特性实现溶胶胶凝。在冷冻过程中,硅溶胶 颗粒被排挤出固化界面而进入冰晶的交界面,硅表 面的-OH 受到挤压相互接近而发生缩聚反应(见式 1),形成以—Si—O—Si—三维网络状结构为主体的 具有固态特征的凝胶体系^[9]。

硅溶胶冷冻胶凝陶瓷成型技术是利用硅溶胶冷冻所形成的—Si—O—Si—三维网络状结构将陶瓷粉体颗粒包裹网络中,而实现陶瓷浆料原位快速固化成型,最终获得所需形状的陶瓷素坯。

1.2 硅溶胶冷冻胶凝陶瓷成型工艺流程

溶胶冷冻胶凝制备陶瓷可以归纳为4个步骤: 制备陶瓷浆料、冷冻固化、干燥和烧结(见图1)。在 工艺流程中,硅溶胶、陶瓷粉体以及少量分散剂配 制成陶瓷浆料,通过球磨混料得到分散性较好的浆 料。浆料注入模具,在液氮中低温冷冻并发生胶凝, 使浆料由液相变为固相,实现浆料的快速固化,脱 模之后得到一定形状和强度的陶瓷坯体;坯体直接 升温快速干燥后烧结,最终制得所需的陶瓷制品。

图 1 硅溶胶冷冻成型工艺流程 Fig. 1 Forming process of frozen silicon sol

在工艺流程中,冷冻胶凝环节至关重要,在冷冻过程中需通过调节冷冻参数(冷冻温度、冷冻速 率、冷冻时间等)控制冰晶生长,使其中的溶剂水以 微小冰晶的形式析出,以保证陶瓷制品微观结构 均匀。

2 实验

2.1 原料

采用分析纯 BaCO₃, Al₂O₃和 BaCO₃粉体的纯 度均大于 99%(质量分数); Si₃N₄ 粉(α 相>94%, d_{50} =0.57 μ m)采用硅粉氮化法合成的微粉; 硅溶胶为 碱性硅溶胶,浓度为 20%,硅溶胶中 SiO₂颗粒平均 粒径为 20 nm。

2.2 样品制备

以硅溶胶作为配制浆料的液相,添加 Si₃N₄陶 瓷粉体,并根据 BaO-Al₂O₃-2SiO₂(BAS)化学计量比, 基于溶胶中 SiO₂的含量,加入 Al₂O₃ 粉和 BaCO₃ 粉; 1%(质量分数)的四甲基氢氧化铵作为分散剂, 浆料中氮化硅质量含量为 70%。浆料球磨 8 h 之后 抽真空脱气,然后注模,并在液氮中冷冻,使浆料 快速充分固化,脱模,湿坯在烘箱中直接升温至 100 ℃彻底干燥后,干坯在烧结炉中以 5 ℃/min 速 率升温至 1 800 ℃烧结,并保温 3 h,最终得到 Si₃N₄/BAS 玻璃陶瓷复合材料。

2.3 样品表征

用 WDW3020 型电子万能试验机测试样品的三 点弯曲强度、弹性模量,试样尺寸为 3 mm×4 mm× 35 mm,跨距为 30 mm,加载速率为 0.5 mm/min, 测试 6 根试条取平均值。用 WDW3020 型电子万能 试验机,采用单边切口梁法测试样品断裂韧性。用 S-2700 型扫描电子显微镜观察样品表面和断口微观 形貌。用 IPT04105C 型工业 CT 无损检测仪对样品 进行无损检测。

3 结果与讨论

3.1 硅溶胶冷冻胶凝

为了分析硅溶胶冷冻胶凝特性,对纯硅溶胶进 行冷冻解冻以及冷冻干燥微观形貌观察研究(见图 2)。由图 2a 可知,纯硅溶胶冷冻解冻后保持一定的 固态形貌,在解冻过程中有轻微的离浆现象,但凝 胶固态形貌依然保持,表明硅溶胶冷冻过程中发生 了胶凝化。由图 2b 可知,纯硅凝胶冷冻干燥后具有 均匀的三维网络结构,进一步说明硅溶胶冷冻发生 了胶凝化反应。因此,采用硅溶胶通过冷冻可实现

陶瓷浆料原位固化成型。

(a) Frozen silicon sol morphology after thawing

(b) Fracture surface morphology of silica gel after drying

图 2 纯硅溶胶冷冻胶凝形貌及冷冻干燥后断口微观形貌 Fig. 2 Frozen silica sol morphology and fracture surface morphology of silica gel after drying

3.2 硅溶胶冷冻胶凝成型 Si₃N₄/BAS 陶瓷坯体

试验中, 坯体成型干燥收缩率小于 1%(通常凝 胶注模成型干燥收缩率大于 10%, 注浆大于 20%), 图 3a 为干坯形貌, 结果显示坯体无变形无开裂。对 干燥后的坯体进行 CT 扫描实验,结果如图 3b 所示。 干坯 CT 结果进一步显示,所成型的坯体外部结构 完整, 内部结构均匀, 无明显缺陷。坯体干燥无需 特殊的干燥设备, 可直接在烘箱中升温干燥。

凝胶注模是多年来先进陶瓷制备中备受关注的 一种成型技术,该成型技术仍存在成型的坯体在干 燥过程中有明显的变形、收缩、排胶开裂等问题, 这些问题会在烧结体中继承并进一步恶化陶瓷制品 的性能^[10-12]。硅溶胶冷冻胶凝陶瓷成型技术成功的 回避了传统胶态成型所需的单独干燥和排胶环节, 坯体可直接升温干燥烧结,成型及干燥过程坯体几 乎无收缩破裂,烧结成品率高。另外,该成型方法 操作简单,条件易于控制,生产周期短,实现了高 效、低成本、原位近净尺寸陶瓷成型。

(a) TMorphology of dry green body

(b) CT picture of green body图 3 干坯表观形貌及 CT 扫描图Fig. 3 Dry green body morphology and CT picture

利用溶胶-凝胶法成型制备陶瓷材料,通过调节 pH 值和冷冻方式,都可以实现浆料固化成型,从而 制得坯体,虽然这两种固化方式反应机理基本相同 (均是在固化过程中形成—Si—O—Si—三维网络状 结构实现浆料原位固化),但调节 pH 值方法在成型 和干燥过程中坯体易收缩变形和破裂, 而冷冻方法 在成型干燥过程中坯体没有收缩变形和破裂,引发 该明显差异的原因为: 由于调节 pH 值法浆料固化 耗时较长,通常需要几小时甚至几天,整个固化过 程浆料中的水以液相的形式存在,胶凝固化时易产 生毛细收缩作用,而且随着固化程度的加深,毛细 收缩作用更明显,导致明显的坯体收缩和由于不均 匀的收缩力而导致的坯体变形破裂;而对于冷冻固 化成型坯体,冷冻时液态水随浆料整体在瞬间被冻 结为固态,并且冷冻时通过冷冻参数的控制,确保 固态水是以微小冰晶的形式均匀弥散于坯体中,后 续干燥初期时坯体中的大量固态水能够不经过解冻 为液态水而直接升华, 坯体具有一定强度, 可抵消 后期少量水分干燥过程毛细管力的作用,从而避免 坯体干燥时的变形和收缩[11]。

3.3 陶瓷烧结体 XRD 谱

图 4 为溶胶冷冻胶凝成型 Si₃N₄/BAS 陶瓷烧结体 X 射线衍射(XRD)谱。图 4 结果表明,烧结体由 β -Si₃N₄以及 BaAl₂Si₂O₈(BAS)组成。在烧结过程中, α -Si₃N₄ 完全转化为 β -Si₃N₄,按化学计量比 BaO-Al₂O₃-2SiO₂添加的 BaO 和 Al₂O₃与硅溶胶中 的 SiO₂ 完全反应生成了 BAS,最终烧结获得了 Si₃N₄/BAS 陶瓷复合材料。

图 4 两元烷结体 AKD 谙 Fig. 4 XRD patterns of ceramic sintered body

3.4 陶瓷烧结体微观结构及性能

由图 5 可见,材料微观结构均匀、致密,棒状 β-Si₃N₄无规分布在连续的 BAS 基质中(见图 5a),微

(a) Low magnification

(b) High magnification

```
图 5 陶瓷烧结体断口微观形貌
```


观结构中存在明显的β-Si₃N₄晶须拔出、桥联以及脱 黏(见图 5b)等陶瓷增韧机制。

Si₃N₄液相烧结通常经历液相生成、颗粒重排、 溶解--扩散--析出和晶粒长大等阶段。BAS 的共熔点 为 1760 ℃,在烧结过程中,远低于 BAS 共熔点温 度的高温下(1 200 ℃左右),Si₃N₄表层原始 SiO₂ 开 始形成 SiO₂ 富集区和液相层,包围在 α -Si₃N₄粒子 的表面,这非常有助于 α -Si₃N₄向 β -Si₃N₄的早期晶 型转化。当液相 BAS 出现时,BAS 液相与 Si₃N₄颗 粒具有充分的可润湿性和可溶性,使得 β -Si₃N₄晶粒 能够在 α -Si₃N₄上原位充分生长,所以 BAS 液相对 于 α -Si₃N₄向 β -Si₃N₄的晶型转变和促进 β -Si₃N₄的生 长非常有利,在此过程中,同时也促进了材料致密 化 程度^[13-14]。因此,研究获得了性能优异的 Si₃N₄/BAS 陶瓷复合材料。

表 1 为制备的 Si₃N₄/BAS 陶瓷复合材料性能。 由结果可见,烧结体性能良好,密度为 2.9 g/cm³, 抗弯强度 350 MPa,弯曲弹性模量 193 GPa,断裂 韧性 6.2 MPa m^{1/2},洛氏硬度为 58。

表 1 Si₃N₄/BAS 陶瓷基复合材料性能 Table 1 Properties of Si₃N₄/BAS ceramic composite

Density/ (g cm ⁻³)	Flexural strength/ MPa	Bending modulus of elasticity/GPa	Fracture toughness/ (MPa m ^{1/2})	Rockwell hardness
2.9	350	193	6.2	58

4 结论

1) 硅溶胶在低温下发生凝胶化反应,形成—Si —O—Si—三维网络状结构,可用于陶瓷浆料固化成 型。

2) 坯体成型干燥无变形无开裂,收缩率小于
 1%。

 3)烧结体材料微观结构中存在明显的晶须拔 出、晶须桥联以及晶须脱黏等陶瓷增韧机制。

 当陶瓷烧结体密度为 2.9 g/cm³时, Si₃N₄/BAS 陶瓷复合材料抗弯强度 350 MPa、弯曲 弹性模量 193 GPa、断裂韧性 6.2 MPa m^{1/2},洛氏硬 度为 58。

参考文献:

- 黄剑峰. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005: 59-70.
- [2] RONALD J, RAYMOND T. Freeze casting [P]. US Patent,

20100167020, 2010-7-1.

- [3] MARTIN O, RONALD J. Ceramic products [P]. US Patent, 5811171, 1998-9-22.
- [4] LEE W E, CHEN M, JAMES P F. Crystallization of celsian (BaO-Al₂O₃-SiO₂) glass [J]. J Am Ceram Soc, 1995, 78(8): 2180–2186.
- [5] ZHOU W C, ZHANG L T, YANG J M. Effect of composition on the tendency of forming BAS(barium aluminosilicate) [J]. J Mater Sci, 1997, 32: 4833–4836.
- [6] HYATT M J, BANSAL N P. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite[J]. J Mater Sci, 1996, 31: 172–184.
- [7] DRUMMOND C H. Crystallization behavior and properties of BaO-Al₂O₃-2SiO₂ glass matrices [J]. Ceram Eng Proc, 1990, 11(7-8): 1072–1086.
- [8] 杨觉明,周万成,包小平,等.成分对烧结 BAS(BaAl₂SiO₈)凝胶玻 璃形成的影响[J]. 无机材料学报,2003,18(6):1187–1191.
 YANG Jueming, ZHOU Wangcheng, BAO Xiaoping, et al. Inorg Mater (in Chinese), 2003, 18(6): 1187–1191.
- [9] 罗杰盛,谢志鹏,黄勇,等. 硅溶胶-凝胶化反应在陶瓷胶态成型中

的应用[J]. 无机材料学报, 2003, 18(6): 1205-1209.

LUO Jiesheng, XIE Zhipeng, HUANG Yong, et al. J Inorg Mater (in Chinese), 2003, 18(6): 1205–1209.

- [10] YANG J L, Yu J L, Huang Y. Recent developments in gelcasting of ceramics[J]. J Eur Ceram Soc, 2011, 34(14): 2569–2591.
- [11] YU J L, WANG H J, ZHANG J, et al. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers[J]. J Sol Gel Sci Tech, 2010, 53(3): 515–523.
- [12] YU J L, WANG H J, ZENG H, et al. Effect of monomer content on physical properties of silicon nitride ceramic green body prepared by gel casting[J]. Ceram Int, 2009, 35(3): 1039–1044.
- [13] 刘子峰,王国栋,范景林,等.用钡长石作烧结助剂制备氮化硅陶 瓷的研究[J].现代技术陶瓷,2004,3:3-6.
 LIU Zifeng, WANG Guodong, FAN Jinglin, et al. Modern Tech Ceram(in Chinese), 2004, 3: 3-6.
- [14] YU Feng, NAGARAJAN N, FANG Yi, et al. Microstructural control of 70% silicon nitride-30% barium aluminum silicate self-reinforce [J]. J Am Ceram Soc, 2001, 84(1): 13–22.