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1

Table 1 Computation ofwater volumetric multiple

P P
P,/MPa B, C,/MPa~! B, B B, C,/MpPa~! C,/MPa~! Sy N,/m’
64. 48 1.146 8 8.25x10~* 1.25 1.048 1.048 0.000451  1.10x10"* 0.10 47914.71
Vlm
W, /m® P/MPa Ap/MPa  /(m®+MPa™!)  V,/10*m’ N/10*m? N/10*m? 1 3
17.29 61.75 2.73 21 991.52 3 671.68 116.87 123.24 27.30 27.40 25.89
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Adaptive Codebook Detection Algorithm Based on Regional Information

ZHANG Hong-ying LI Zhi—zhong’
( Aeronautical Automation College Civil Aviation University of China Tianjin 300300 P. R. China)

Abstract  Moving object detection is one of the key techniques for automatic video analysis especially in the
domain of video surveillance. To solve the problem of low ability in adaptive dynamic background and low accuracy
of detection under complex environment a novel adaptive codebook target detection algorithm based on regional in—
formation analysis was proposed. Firstly it utilizes adding two learning rates in order to update adaptively the back—
ground model in the presence of background motion. Secondly it combines the observable codebook with neighbor—
ing codebooks to obtain more accurate moving targets. Lastly it models and updates the foreground and background
respectively and converts them to eliminate false detection caused by the partial change of background. The results
of experiment show that the improved algorithm has higher recognition rate and better robustness even in complex
environment conditions with illumination variation and random noise. It basically meets the demands of moving ob-
ject detection in dynamic scenes in terms of precision speed noise resistance light adaptability and so on.

Key words object detection codebook adaptive regional information
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Pseudo-steady Method for Water Volumetric Multiple Computation

HAN Guo-feng' CHEN Fang+fang” LIU Yue-wu' ZHU YongHeng® MA Xiao-ping’
(Institute of Mechanics Chinese Academy of Sciences' Beijing 100190 P. R. China;
PetroChina Company Limited Tarim Oilfield Company? Kuerle 841000 P. R. China)

Abstract  The water volume of bottom water has an important role in the reservoir exploitation. The quantity of
bottom water is represented by the water volumetric multiple of bottom water. By far there are four methods of the
computation method of water volumetric multiple which are volumetric method material balance method unsteady
water invasion method and numerical simulation method. Every method has its working condition and characteristic.
In this research a new computation method of water volumetric multiple is gained on the assumption of peso-steady
state. The new method has three sub-methods by combining oil in place multiple test and material balance method
respectively. The new method can get water volumetric multiple and oil in place. Using the new method a water
volumetric multiple and oil in place have been computed with actual data. The results are closed to these of other
methods  which imply the feasibility of the new method.

Key words  bottom water water volumetric multiple pseudo-steady



