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This paper elucidates the aerodynamic role of the dynamically changing

wingspan in bat flight. Based on direct numerical simulations of the flow

over a slow-flying bat, it is found that the dynamically changing wingspan

can significantly enhance the lift. Further, an analysis of flow structures and

lift decomposition reveal that the elevated vortex lift associated with the

leading-edge vortices intensified by the dynamically changing wingspan

considerably contributed to enhancement of the time-averaged lift. The non-

linear interaction between the dynamically changing wing and the vortical

structures plays an important role in the lift enhancement of a flying bat

in addition to the geometrical effect of changing the lifting-surface area in

a flapping cycle. In addition, the dynamically changing wingspan leads

to the higher efficiency in terms of generating lift for a given amount of the

mechanical energy consumed in flight.ch
.ac

.cn
1. Introduction
Biological flapping flight has always inspired human’s imagination of flight.

However, compared to the remarkable development of modern fixed-wing air-

craft, our understanding of flapping flight is still limited due to the complexity

of highly unsteady separated flows generated by flapping wings. Low-

Reynolds-number flapping flight has recently attracted considerable attention

in the aeronautical community due to the need to develop biologically inspired

micro air vehicles (MAVs), and some success of building flapping MAVs has

been achieved. Study of natural flyers is still a feasible way to improve the

flight performance of MAVs, and therefore considerable efforts have been made

on the flapping flight of insects, birds and bats [1–11].

Bats are the only flying mammals that are comparable to small birds in terms

of the flight characteristics. However, bats have some unique features that are

significantly different from birds, including the special skeletal anatomical struc-

ture with more degrees of freedom, highly deformable wing-membrane skin and

more complicated wing kinematics [12–14]. Bats are more manoeuvrable

and capable in slow flight [14–18]. Compared with a large body of literature

on the flight of birds and insects, the results on flying bats are relatively limited.

The studies of bat flight began from quantitative measurements of bat wing kin-

ematics by using multiple cameras when a trained bat flies in a wind tunnel or a

flight cage. Then, the major kinematical quantities of the flapping wing

are extracted, including the wingbeat frequency, wingbeat amplitude, stroke

plane angle, wing twist, local angle of attack (AoA) and camber. Based on

these quantities, the bat wing surface can be reconstructed for experimental

and computational analysis. Detailed measurements of the wing kinematics of

a lesser dog-faced fruit bat (Cynopterus brachyotis) flying a cage were conducted

by Tian et al. [19], and the trajectories of the wingtip and several digital points

and the Strouhal numbers were presented. Further measurements of the wing

kinematics of a lesser dog-faced fruit bat were conducted in a wind tunnel by

Hubel et al. [20,21]. The complex kinematics of the bat wings was reconstructed

by Riskin et al. [22] using the proper orthogonal decomposition from time-

resolved measurements of targets on the wings. The more complete kinematical

ac
e.i

m

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2015.0821&domain=pdf&date_stamp=2015-12-23
mailto:hgw@lnm.imech.ac.cn
http://dx.doi.org/10.1098/rsif.2015.0821
http://dx.doi.org/10.1098/rsif.2015.0821
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org/


shoulder

z

x

y

wrist

wingtip

5th digit foot
1 cm

Z

X
Y

Tr4
Tr3Tr2

Tr1

(a)

(b)

Figure 1. (a) The coordinate system and the morphology of the bat wing at
the instant when the wingspan reaches the maximum and (b) perspective
view of the three-dimensional bat model. (Online version in colour.)
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data of a Pallas’ long-tongued bat (Glossophaga soricina) were

presented by Wolf et al. [23].

To understand the flow structures generated by the bat

wings and their relationship with the aerodynamic per-

formance, particle image velocimetry (PIV) measurements

synchronized with the wing kinematical measurements have

been conducted. Wake velocity fields on the Trefftz plane

behind a dog-faced fruit bat were obtained by Tian et al. [19],

showing the organized tip vortices. Refined PIV measurements

in the wake of a Pallas’ long-tongued bat were conducted by

Hedenstrom et al. [24], revealing that a vortex loop was gener-

ated by each wing in one cycle and the wake structure was

much more complex than that of a flying bird. Further,

Hubel et al. [20,21] reconstructed the three-dimensional wake

structure and estimated the circulation that is responsible for

the lift. PIV measurements by Muijres et al. [25] at several span-

wise sections near the upper wing surface of a slow-flying bat

revealed the formation of the leading-edge vortices (LEVs) that

significantly increase the lift in slow-flying bats. In general, bats

have the distinct aerodynamic performance associated with

unique flow structures [14,18,26–28].

In contrast to insects and birds, bats have more than

10 joints on a wing to actively control the complex wing

morphology and kinematics. The dynamically changing

wingspan is one of the important kinematical aspects in bat

flapping flight especially at low speeds. For example, the

minimum wingspan of a slow-flying Pallas’ long-tongued

bat can be as low as about 60% of the maximum one [23].

It is well known that the wingspan (or wing aspect ratio) has

a significant effect on the aerodynamic force of a fixed

wing by changing the distance between the tip vortices and

the induced downwash velocity [29]. In flapping flight

where the LEV contributes considerably to lift, it is reported

that the finite wingspan could be helpful to stabilize the LEV

[30–32]. However, fixed-span flapping wings are considered

in most studies on the effects of the aspect ratio, and the

effect of the dynamically changing wingspan on lift generation

is rarely discussed.

This work focuses on the effect of the dynamically chan-

ging wingspan on lift generation of a slow-flying bat. It is

noted that the dynamically changing wingspan of bat wings

changes not only the wing aspect ratio but also the wing

area, which is significantly different from insect wings. This

paper is organized as follows. First, the geometrical and kine-

matical model of a slow-flying bat is reconstructed based on the

measurement data provided by Wolf et al. [23], and the corre-

sponding bat model with a fixed wingspan is proposed as a

reference for comparison. The numerical method and settings

are briefly described. Then, the unsteady flow fields for the

two models are obtained in direct numerical simulations

(DNS) by solving the incompressible Navier–Stokes (NS)

equations. The distinct flow structures, particularly the LEVs,

are identified and their connection to lift generation is dis-

cussed. The results indicate that the dynamically changing

wingspan can significantly enhance lift. Furthermore, based

on a decomposition of lift into vortex lift and the fluid-

acceleration term, it is shown that the elevated vortex lift

corresponds to the LEVs intensified by the dynamically chan-

ging wingspan. Finally, the conclusions are drawn, indicating

that lift enhancement is related to not only the geometrical

effect of changing the lifting-surface area but also the nonlinear

effect of the altered vortex structures (e.g. the LEVs) by the

dynamically changing wingspan.
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2. Geometrical and kinematical models
The morphology and kinematics of two bat models are recon-

structed for comparison based on the detailed measurements

of slow-flying Pallas’ long-tongued bats (G. soricina) reported

in the work of Wolf et al. [23]. The bats had the mean chord

length of c ¼ 3.7 cm and the weight of 10.7 g. The three-

dimensional wingbeat kinematics of the flying bats was

extracted from high-speed video taken in a wind tunnel in

a range of speeds (1–7 m s21). Several kinematic and geo-

metric parameters, such as the AoA, span ratio, flapping

Strouhal number and downstroke ratio, were determined at

different flight speeds. These parameters directly affect the

aerodynamic performance of bat flight particularly in lift gen-

eration. Wolf et al. [23] provided the outline of the wing when

the wingspan is at maximum, and the trajectories of the

wingtip, wrist, fifth digit, foot and shoulder. These measure-

ment data allow reconstruction of the bat wing geometry and

kinematics for numerical simulations. The case with the

upstream velocity of 1 m s21 is used in this work.

Figure 1a illustrates the coordinate system and the mor-

phology of the wing at the instant when the wingspan

reaches maximum. The perspective view of the reconstructed

three-dimensional bat model is shown in figure 1b. (The pro-

jected views of the bat model in the three directions can be

found in the electronic supplementary material.) The kin-

ematics of the wingtip, wrist and fifth digit are recovered

from the work of Wolf et al. [23] and fitted by using the Fourier

series while the foot and shoulder are fixed. The trajectories of

these key points on the left wing are shown in figure 2. The

time-dependent kinematics of these points can be found in

the electronic supplementary material. The kinematics of any

point on the wing is interpolated from these five key points

by using the bi-linear interpolation. The wingspan, defined

as the tip-to-tip distance in the spanwise direction, changes

with time during flapping flight in this model. The wingspan

reaches the maximum bmax/c ¼ 6.0 in the downstroke and

the minimum bmin/c ¼ 3.8 in the upstroke. The time-

averaged wingspan in a flapping period is bmean/c ¼ 4.4. For

convenience, the simulation based on this model is referred

to as the dynamically changing wingspan case.
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Figure 2. The trajectories of the wingtip, wrist, fifth digit, foot and shoulder used in the present work in comparison with those provided in the measurements of
Wolf et al. [23] in (a) x – y plane, (b) z – y plane, (c) z – x plane. (Online version in colour.)
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To investigate the effect of changing wingspan on lift gen-

eration, a hypothetical bat model is considered, in which the

streamwise and vertical motions remain the same as those of

the first model, but the spanwise motion is turned off. The

spanwise positions of the wingtip, wrist and fifth digit are

fixed at their time-averaged values, and the fixed wingspan

is b/c ¼ 4.4. The time-dependent kinematics of these key

points can also be found in the electronic supplementary

material. This model serves as a reference to identify the

effect of dynamically changing wingspan. For convenience,

the simulation based on this hypothetical model is referred

to as the fixed wingspan case.

To compute the local AoA, the four triangular panels of the

left wing are defined as shown in figure 1a. The same triangular

panels are taken as those given by Wolf et al. [23]. The local

AoA of each triangular panel is computed as the angle between

the panel surface and the velocity vector at its centroid. The

time histories of the AoAs in the dynamically changing wing-

span case are shown in figure 3a, where the measurement

results provided by Wolf et al. [23] are also plotted for compari-

son. The time-dependent AoAs described the model with the

dynamically changing wingspan are consistent with the

measurements in the downstroke (t ¼ 0.1–0.6), which also cap-

ture the main behaviour in the upstroke (t ¼ 0.6–1.1). Figure 3b
shows the comparisons of the time histories of the AoAs of the

four triangular panels between the dynamically changing

wingspan case and the fixed wingspan case. The time histories

of the AoAs of the panels are essentially the same in both

the cases particularly in the downstroke. Therefore, the fixed

wingspan model disables the effect of the changing wingspan

for a reference without altering the other geometric and

kinematic characteristics.
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 3. Numerical method and settings
The flows around the bat models are governed by the

incompressible NS equations and the continuity equation,

@u

@t
þ u � ru ¼ �rpþ 1

Re
r2uþ f, ð3:1Þ

r � u ¼ 0, ð3:2Þ

where u and p are the non-dimensional velocity and pressure,

respectively, f is a volume force to represent the effect of

boundaries on the flows, Re ¼ U1c/n is the Reynolds

number, v is the kinematic viscosity and U1 is the uniform

upstream velocity. The non-dimensional vorticity is defined

by v ¼ r� u.

Equations (3.1) and (3.2) are solved numerically by using an

immersed boundary method based on the discrete stream func-

tion formulation developed by Wang & Zhang [33]. In this

method, the NS equations are solved on an Eulerian grid, and

the morphology and kinematics of the bat models are described

by using Lagrangian points. The effect of the bat surface on

flows is represented by the volume forces in the momentum

equations. The volume forces are determined by solving a

linear equation on Lagrangian points to ensure the non-slip

boundary condition on the surface of models. The information

on the Eulerian grid and Lagrangian points is interpolated to

each other by using a discrete delta function provided by

Yang et al. [34] to remove the unphysical oscillations. Details

of the method can be found in our previous work [33,35].

The computational domain is [212c, 20c] � [216c, 16c] �
[224c, 24c] in the streamwise (x), spanwise (y) and verti-

cal (z) directions. The unstructured Cartesian grid with

hanging-nodes is used to refine the mesh around the body.

i
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The minimum grid size is dh/c ¼ 0.02, and the maximum

grid size is dh/c ¼ 0.32, where dh is the grid size and c is the

base chord. The total number of discretized unstructured cells

is 5 369 050. The number of the Lagrangian points on the bat sur-

face is 23 266. The time step is selected to keep the maximum

Courant–Friedrichs–Lewy number at 0.5. The independence

of the lift coefficient on the grid resolution and computational

domain has been examined (see the electronic supplementary

material for details). The validations of the method for various

flows can be found in our previous work [33,35,36].

The uniform upstream flow is set at the inlet, and the

free convection flow at the outlet. The non-slip boundary

condition is specified at the surface of the bat models. The zero-

shear slip wall conditions are used at other boundaries. The initial

condition for the incoming velocity is (1, 0, 0), where the velocity

components are normalized by the freestream velocity U1. The

Strouhal number is St¼ fc/U1¼ 1.36, which is the same as that

in the measurements [23], where f is the flapping frequency. The

Reynolds number is fixed at Re¼ U1c/v¼ 300 which is lower

than Re¼ 2371 in the measurements. This lower Reynolds

number in DNS is selected to ensure the spatial resolution of

the resolved flow field around the bat models. The underlying

assumption behind this selection of a lower Reynolds number is

that the lift and flow structures of a flapping wing is not very sen-

sitive to the viscosity in this Reynolds number range, which is

supported by some studies [28,37–40]. The Reynolds number

may affect the separation position of a flow over a blunt body.

However, the flow separation over the present bat models is not

significantly affected by the Reynolds number since the flow sep-

aration always occurs at the sharp leading edges at large AoAs.

The limited effects of Reynolds numbers on the aerodynamic

forces and vortical structures in flows over flapping wings with

sharp leading edges have been found in the studies of climbing

bats [28] and other flapping wing models [37–40].
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4. Flow structures and lift coefficient
Figure 4 is an overall top view of the streamlines and vortical

structures on the upper wing surface of the bat during the

downstroke in the dynamic changing wingspan case, where
the vortical structures are identified by using the l2-criterion

[41] and coloured by the normalized spanwise vorticity. The

value l2 is the second eigenvalue of S2 þV2, where S and V

are the symmetric and antisymmetric components of the

velocity gradient tensor, respectively. The most distinct struc-

tures are the LEVs generated in the downstroke. The LEVs

are bent towards the freestream direction at the wingtips and

merged into the wingtip vortices. The LEVs are apparently

stabilized along the leading edge in the downstroke. The

strength of the LEV increases towards the wingtip. The LEV

is an important constituent of an unsteady lift-generating

mechanism in bat flight, which will be discussed later based

on lift decomposition. The overall flow structures obtained in

DNS are consistent with the experimental observations by

Hedenstrom et al. [24] and Muijres et al. [25].

The LEVs are dominated by the spanwise vorticity. The

evolution of the vortical structures is visualized by the iso-

surfaces of the spanwise vorticity at sequential moments in

the dynamically changing wingspan case in the upper row

of figure 5. It is found that the LEVs are generated at the

beginning of the downstroke, which are intensified as the

wing moves downward, and shed at the end of the down-

stroke. The shedding LEVs stays near the upper surface of

the wing in the early stage of the upstroke, as shown in the

upper row of figure 5d. They still contribute to a posi-

tive vortex lift even in the upstroke, as shown in §5. This

phenomenon is similar to the vortex capture observed by

Wang et al. [42] on a flapping rectangular morphing wing.

For comparison, the corresponding evolution of the LEVs in

the fixed wingspan case is shown in the lower row of

figure 5. The generation and shedding of the LEVs in the

fixed wingspan case are similar to these in the dynamically

changing wingspan case. However, the LEVs in the fixed

wingspan case are weaker. Since the LEVs correspond to

vortex lift generation, the weaker LEVs in the fixed wingspan

case will cause smaller vortex lift generation. This will be

quantitatively examined based on the lift decomposition in

next section. The lift enhancement by the intensified LEVs

due to the dynamically changing wingspan is consistent

with the results reported by Wang et al. [42] on a flapping

rectangular morphing wing.
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Figure 6 shows the time histories of the lift coefficient

Cl(t) ¼ L(t)/q1Savg in one flapping period for the dynami-

cally changing wingspan case and the fixed wingspan case,

where L(t) is the lift, q1 ¼ rU2
1=2 is the dynamic pressure,
Savg is the averaged wing area. It is shown in figure 6 that

in both the cases the positive lift is generated in the down-

stroke and the certain phases of the upstroke, and the

negative lift is generated in the mid-span of the upstroke.

http://rsif.royalsocietypublishing.org/
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The lift coefficient increases from about 2/5 of the upstroke at

which the lift coefficient has a negative peak. The posi-

tive peak of the lift coefficient is attained at the middle of the

downstroke. The lift coefficient remains positive during the

transition stage from the downstroke to the upstroke, which

is attributed to the positive vortex lift in the upstroke (see §5).

The time history of the lift coefficient for the Pallas’ long-

tongued bat is similar to that reported by Wang et al. [43] for

a model of the grey-headed flying fox (Pteropus poliocephalus)
with different wing morphology at a higher Reynolds

number (1000). However, there are some differences in the

detailed histories of the lift coefficient between the two kinds

of bats, which might be associated with the different wing geo-

metry. A comparison of the lift coefficients between bat models

with different wing morphologies is given in the electronic

supplementary material. A detailed comparative study will

be presented in a separate paper.

The lift coefficient in the dynamically changing wingspan

case is denoted by the solid line in figure 6, and the time-

averaged lift coefficient in one flapping period is kCllT � 12:6,

where k†lT ¼ T�1
Ð T

0 †dt is the time-averaging operator in a

flapping period T. The dashed line in figure 6 shows the lift coef-

ficient in the fixed wingspan case for comparison. The increment

DkCllT ¼ kCllT � kCllT,ref represents the effect of the dynami-

cally changing wingspan on the lift coefficient, where kCllT,ref

is the time-averaged lift coefficient in the fixed wingspan case

as a reference. The time-averaged lift coefficient in the fixed

wingspan case is kCllT,ref � 6:6. The increment DkCllT � 6 is

about 91% of the lift coefficient kCllT,ref in the fixed wingspan

case. This indicates that the lift is significantly enhanced by

the dynamically changing wingspan of a flying bat.

Two mechanisms contribute to lift enhancement: the geo-

metrical effect of the dynamically changing lifting-surface area

in a flapping cycle and the fluid-mechanic effect of the altered

vortical structures induced by the dynamically changing wing-

span. It is clear that the changing wing area in a flapping cycle

would affect the time-averaged lift. Generally, the wingspan

stretches outward during the downstroke and retracts inward

to the body during the upstroke. For a flapping wing with the

time-dependent wing area S(t), the time-averaged lift is

kLlT ¼ q1kClsðtÞSðtÞlT , where ClsðtÞ ¼ LðtÞ=q1SðtÞ is the lift

http
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coefficient defined based on the instantaneous wing area S(t).
In the limiting case where kClslT ¼ 0, the positive time-

averaged lift ðkLlT . 0Þ could be still generated as the pure

geometrical effect associated with the dynamically changing

wing area as long as the positive correlation kClsðtÞSðtÞlT . 0

is achieved. Since the instantaneous lift coefficient Cls(t) largely

eliminates the geometrical effect, the time-averaged lift coeffi-

cient kClsl represents the lift generated by the altered vortical

structures by the dynamic changing wingspan.

Accordingly, the increment DkClslT ¼ kClslT � kClslT,ref

represents the effect of the dynamically changing wingspan

on the lift coefficient after the geometrical effect is removed,

which is a result of nonlinear interaction between the wing

and vortex structures. The increment of the lift coefficient

based on the instantaneous wing area is DkClslT � 3:2,

which is about 53% of the total increment of DkCllT � 6.

This means that the lift enhancement is not only caused

by the geometrical effect of changing wing area but also

the fluid-mechanic effect of the altered vortex structures

associated with the dynamically changing wingspan. To

illustrate this point, the distributions of the spanwise vorti-

city on the wing in the dynamically changing wingspan

case and the fixed wingspan case at the end of the down-

stroke are shown in figure 7. The strong shear layer

generated at the leading edge rolls into the LEVs that

grow in size while travelling downstream on the upper sur-

face in both the cases. It is clearly observed that the LEVs

generated in the dynamically changing wingspan case

(figure 7a) are much stronger than that in the fixed wing-

span case (figure 7b). This is also evidenced by the

distributions of the spanwise vorticity in the spanwise

slices at 60% semi-wingspan in figure 7c,d. The magnitude

of the positive spanwise vorticity on the upper surface of

the wing in the dynamically changing wingspan case

(figure 7c) is much higher than that in the fixed wingspan

case (figure 7d ). This phenomenon corresponds to lift

enhancement. Figure 8 shows the distributions of the nor-

malized spanwise vorticity at the end of the downstroke

at the spanwise locations of 20, 40, 60 and 80%

semi-wingspan. The larger magnitudes of the positive span-

wise vorticity on the upper wing surface are found at these

locations in the dynamically changing wingspan case.

It is noted that the absolute time-average lift calculated at

the flight speed of 1 m s21 in this work is about half of the

weight (10.7 g) of the slow-flying Pallas’ long-tongued bat

measured in the experiments of Wolf et al. [23]. There are

some possible reasons for underestimating the time-averaged

lift. The present bat model is reconstructed based on the

measurement data of the five key points ( joints) on the wing

(wingtip, wrist, fifth digit, foot and shoulder). Although this

model captures the main kinematical features, the complex sur-

face geometry between these joints is not considered. There is

the passive and actively controlled deformation of the flexible

muscularized membranes of a bat wing, which is characterized

by the wing cambering, bending and twisting. This defor-

mation could play an important role in lift generation and

propulsion [27,28]. In the future work, the more detailed geo-

metry and kinematics of the deformable surface should be

incorporated into an improved bat model. Since the lift

enhancement related to the dynamically changing wingspan

is the focus of this work, it is reasonable to use the lift coefficient

as a relative comparative measure even though the calculated

absolute lift is not enough to support the weight of the bat.
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Figure 7. The distributions of the normalized spanwise vorticity around the bat wings at the end of the downstroke. Panels (a,b) are the top views of the iso-surface
of vy ¼ 100 on the right wing in the dynamically changing wingspan case and on the left wing in the fixed wingspan case, respectively. Panels (c,d ) show the
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Figure 8. The distributions of the normalized spanwise vorticity at the end of
the downstroke at the spanwise locations of (a) 20, (b) 40, (c) 60 and
(d ) 80% semi-wingspan. The left column shows the dynamically changing
wingspan case, and the right column shows the fixed wingspan case.
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An interesting finding by Lentink & Dickinson [44,45]

is that the positional rotational accelerations of an insect

wing could stabilize the LEV. The rotational accelerations

of the wings as a possible kinematic mechanism could

also have effects on the LEVs and their induced lift

enhancement in bat flight. Different from an insect wing,

the bat wing should be modelled by a multiple-body

system [8,46,47]. The rotational accelerations can be

adopted for the different segments based on the original

definitions given in reference [44]. However, detailed

studies are required in the future to clarify the quantitative

connection between the rotational accelerations and the lift

enhancement in bat flight.
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5. Lift decomposition
Further, the relationship between lift generation and vortical

structures is explored based on the lift decomposition into the

vortex force and the fluid acceleration term. For a columnar

control volume whose upper and lower faces are sufficiently

far away from a wing and the vertical faces enclose all vorti-

cal structures between the leading and trailing edges of the

wing, the simple lift formula for forward flight is given in

the two dominant terms [36,48], i.e.

L � Lvor þ Lacc: ð5:1Þ

The vortex lift is

Lvor ¼ rk �
ð

Vf

u�vdV ð5:2Þ

and the lift associated with the fluid acceleration is

Lacc ¼ �rk �
ð

Vf

@u

@t
dV � rk �

þ
@B

juj2

2

 !
n dS, ð5:3Þ

where u is the velocity, v is the vorticity, Vf denotes the

columnar control volume of fluid, @B denotes the boundary

of the wing domain, k is the unit vector normal to the free-

stream velocity and n is the unit normal vector pointing to

the inside of the wing body. The volume integral of the

Lamb vector u � v in equation (5.2) represents the vortex
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Figure 9. The decomposition of the lift acting on the bat models into (a) the
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Figure 10. The distributions of the vertical component of the Lamb vector
around the bat wings at 0.2 T after the start of the upstroke. Panels (a) and
(b) are the top views of the iso-surface of (u � v)z ¼+100 on the right
wing in the dynamically changing wingspan case and on the left wing in the
fixed wingspan case, respectively. Panels (c) and (d ) show the distributions of
the vertical component of the Lamb vector in the slices at 60% of the semi-
wingspan from the body in the dynamically changing wingspan case and the
fixed wingspan case, respectively.
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force. In a special case where the flow becomes inviscid

and irrotational, Lacc is reduced to added-mass lift. The accu-

racy of the simple lift formula applied to several unsteady

flows has been validated by Wang et al. [36], and the vali-

dation of this lift formula in this present case can be found

in the electronic supplementary material. In the case where

the bat wing membrane is treated as an infinitely thin layer,

the second integral on the right-hand side of equation (5.2)

is zero.

The coefficients of the vortex lift and the lift associated

with fluid acceleration are defined as Clvor ¼ Lvor=q1Savg

and Clacc ¼ Lacc=q1Savg, respectively. The time histories

of Clvor and Clacc in one flapping period are shown in

figure 9 for both the dynamically changing wingspan case

and fixed wingspan case. The lift coefficient associated

with the fluid acceleration (Clacc) varies from 216.5 in the

upstroke to 25.3 in the downstroke in the dynamically

changing wingspan case. The corresponding variation in the

fixed wingspan case is from 215.5 in the upstroke to 19.6

in the downstroke. This lift coefficient associated with

fluid acceleration dominates the temporal variation in the lift

coefficient Cl. However, the time-average lift coefficient

associated with the fluid acceleration ðkClacclTÞ is not

the main contributor to the time-averaged lift coefficient

kCllT . The time-averaged contributions are kClacclT � 3:1 in

the dynamically changing wingspan case and kClacclT � 1:8

in the fixed wingspan case, which are about 25% and 27%

of kCllT , respectively. In contrast, the time-averaged

vortex lift coefficients of the flying bat are kClvorlT � 9:5 in

the dynamically changing wingspan case and kClvorlT � 4:8

in the fixed wingspan case, which are about 75% and 73%

of kCllT , respectively. The increment of the vortex lift

coefficient is DkClvorlT ¼ kClvorlT � kClvorlT,ref � 4:7, which

is about 78% of the total increment of the lift coefficient

of DkCllT � 6. It is clear that vortex lift contributes consider-

ably to lift enhancement in the dynamically changing

wingspan.
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An interesting finding is that the vortex lift coefficient

Clvor is positive in not only the downstroke but also the

upstroke in both the cases, indicating that the LEVs can still

contribute to lift generation even when they are detached

from the wing in the upstroke. It is observed in figure 5

that the LEVs generated in the downstroke still stay on the

inner portion of the upper surface in the initial stage of the

upstroke in the dynamically changing wingspan case. Actu-

ally, this is a kind of vortex capture mechanism similar to

that in the flapping flight of insects. This is further evidenced

in figure 10 by the distributions of the vertical component of

the Lamb vector ((u � v)z) that directly contributes to the

vortex lift on the upper surface at 0.2 T after the start of the

upstroke. From the top-views in figure 10, it is found that

the positive (u � v)z field associated with the LEVs in the

dynamically changing wingspan case [panel (a)] is much

greater in magnitude than that in the fixed wingspan case

[panel (b)]. There are the thin layers with the negative (u� v)z

near the wall that correspond to the newly generated near-

wall shear layers in the upstroke. The distributions of (u �
v)z at 60% semi-wingspan from the body [Panels (c) and

(d )] show that the magnitude of the positive (u � v)z associ-

ated with the LEVs near the leading edge and trailing edge in

the dynamically changing wingspan case is much larger than

that in the fixed wingspan case. In particular, there is a dis-

tinct blob of the large positive (u � v)z directly on the

upper surface near the trailing edge in the dynamically chan-

ging wingspan case, which contributes to the positive lift at

this phase of the upstroke. This blob is associated with the

shed LEV captured in the early stage of the upstroke,

which provides an explanation for the positive vortex lift in

the upstroke. Figure 11 shows the distributions of the vertical

component of the Lamb vector at 0.2 T after the start of the

upstroke at the spanwise locations of 20, 40, 60 and 80%

semi-wingspan. It is indicated that the larger vertical com-

ponents of the Lamb vector are generated at these locations

in the dynamically changing wingspan case.
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Figure 11. The distributions of the vertical component of the Lamb vector at
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changing wingspan case, and the right column shows the fixed wingspan case.

fixed wingspan

upstroke downstroke

9.68.6

2.0

1.8

1.6

1.4

no
rm

al
iz

ed
 k

in
et

ic
 e

ne
rg

y

1.2

1.0

0.8
8.8 9.0

t
9.2 9.4

dynamically changing wingspan

Figure 12. The time histories of the non-dimensional kinetic energy of the
fluid in the dynamically changing wingspan case and the fixed wingspan
case. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150821

9

 on December 23, 2015http://rsif.royalsocietypublishing.org/Downloaded from 

dsp
ac

e.

ac
.cn
6. Efficiency of lift generation
For additional insight into the effect of dynamically changing

wingspan, a non-dimensional parameter is defined as

hL ¼
kCllT

kÊlT
, ð6:1Þ

where Ê is the non-dimensional mechanical energy consumed

by the bat flapping wings in flight, kCllT is the time-averaged

lift coefficient, and kÊlT is the time-averaged value of the

non-dimensional mechanical energy consumed in flight. The

parameter hL describes the lift generation for a given amount

of the mechanical energy consumed by the flapping wings in

flight. Loosely speaking, hL could be considered as the effi-

ciency of lift generation if it is suitably normalized. The non-

dimensional total kinetic energy of the fluid in a control

volume V is defined as

Ê ¼ 1

2 V

XN

i¼1

û2
i Vi, ð6:2Þ

http
://
where û2
i ¼ u2

i =U2 is the normalized fluid kinetic energy in the

cell ‘i’, Vi is the volume of the cell ‘i’, N is the number of cells in

the domain and U is the incoming flow (flight) velocity.

The time histories of the non-dimensional kinetic energy

of the fluid are shown in figure 12 for the bat models

with the dynamically changing wingspan case and the

fixed wingspan case. The bat model with the dynamically

changing wingspan generates more kinetic energy of the

fluid than that with the fixed wingspan. The time-averaged

values of the non-dimensional kinetic energy of the fluid in

the dynamically changing wingspan case and the fixed wing-

span case are kÊlT ¼ 1:5 and kÊlT ¼ 1:1, respectively. The

parameter for the dynamically changing wingspan case is

hL ¼ 8.4, compared to hL ¼ 6 for the fixed wingspan case.

It is indicated that the bat model with the dynamically chan-

ging wingspan is more efficient in terms of generating lift for

a given amount of the mechanical energy consumed in flight.

It is because the dynamically changing wingspan of the bat

wings enhances the strength of the LEVs, which contribute

significantly to vortex lift.
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7. Conclusion
The analysis based on DNS of the unsteady flow fields over a

slow-flying bat reveals that the lift can be significantly

enhanced by the dynamically changing wingspan of the bat

wing. The evidence for this new observation is provided by

carefully comparing the flow structures and lift generation

between two bat models. The first bat model is reconstructed

based on the measurement data of a slow-flying Pallas’ long-

tongued bat. The second bat model used as a reference has a

fixed wingspan, while the streamwise and vertical kinematics

remains the same as that of the first model. The flow structures

and lift coefficients of the bat models are obtained in DNS by

numerically solving the NS equations. It is found that the

time-averaged lift coefficient in the first bat model with the

dynamically changing wingspan is much larger than that in

the reference model with the fixed wingspan.

The detailed flow structures obtained in DNS reveal that

the dynamically changing wingspan significantly intensifies

http://rsif.royalsocietypublishing.org/
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the LEVs on the upper surface of a flapping bat wing in the

downstroke. The generated LEVs stay near the upper surface

in the early stage of the upstroke as a vortex capture mechan-

ism. As a result, the lift is significantly enhanced by the

dynamically changing wingspan. More quantitatively, after

the lift is decomposed into the vortex lift and the fluid-

acceleration term, it is found that the vortex lift associated

with the LEVs is positive in both the downstroke and upstroke.

The vortex lift is considerably increased due to the dynamically

changing wingspan. Therefore, lift enhancement in bat flight is

contributed to not only by the geometrical effect of changing

the lifting-surface area but also by the fluid-mechanic effect

of the altered vortical structures (particularly the LEVs)

induced by the dynamically changing wingspan. The higher
efficiency is also attained in terms of generating lift for a

given amount of the mechanical energy consumed in flight.
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