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Abstract: In many applications, the objective function is determined by several 
parameters simultaneously. Properly assessing the relative contribution of each 
parameter can give the decision maker a better understanding of the problem. 
However, widely used assessing methods are qualitative or semi-quantitative. In 
this paper, a new concept, relative contribution ratio (RCR), is proposed. The concept 
follows the idea of proof by contradiction, and estimates the impact of absence 
of each parameter, based on the fact that the absence of a parameter with more 
contribution will bring more divergence. Based on surrogate models, a statistical 
method for calculating RCR is also presented. Numerical results indicate that RCR 
is capable of analyzing multi-parameter problems, regardless of whether they are 
linear or nonlinear.

Subjects: Applied Mathematics; Applied Physics; Mathematical Modeling; Mathematics & 
Statistics; Non-Linear Systems; Physical Sciences; Physics; Science; Statistics & Probability

Keywords: multi-parameter problem; quantitative assessment; data-driven modeling; 
impact of absence; relative contribution ratio

1. Introduction
Many parameters could affect the aerodynamic forces of hypersonic vehicles simultaneously. The 
most sensitive parameters include Mach number (of the free stream, determined by flight speed and 
altitude), Reynolds number (determined by free stream and characteristic length), and angle of  
attack, etc. (refer to Anderson, 2006 for more details).Proper evaluation of the relative contribution 
of each parameter to the aerodynamic coefficient is very important for its shape design and flight 
control. However, in this case, to assess a parameter’s relative contribution is not easy. It is a non-
linear, multi-parameter problem. In practical study, a number of easy and intuitive methods have 
been applied to indicate the relative sensitivity of an individual parameter. For example, to evaluate 
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the contribution of each parameter to the dimensionless heat flux density around a hypersonic air-
craft, the approach described in Table 1. 

The result in Table 1 is easy to understand and it works fine for the qualitative analysis. Note that 
each of the sensitivity result in Table 1 is drawn by observing a series of data curves, on the assump-
tion that the other parameters are fixed to some given values. If the other parameters are fixed at 
different values, the result may vary. This means such conclusions are drawn manually, and are  
inevitably subjective. Meanwhile, the sensitivity (marked by the number of stars) in Table 1 is quasi-
quantitative, and it has a vague meaning to some extent.

Although the above method or something like that is widely used in practical applications, it can 
only provide qualitative (or at most quasi-quantitative) information to the decision maker. However, 
sometimes the qualitative result is not enough to make a further analysis. This motivates us to  
define a new concept, relative contribution ratio (RCR), to make it possible to quantitatively assess 
the contribution of an individual parameter to the objective value.

The rest of the paper is organized as follows. Pairwise correlation graph, the rudiment of RCR, is 
presented and discussed in Section 2. The concept of RCR is described in Section 3, and Section 4 
provides a numerical computation of RCR based on surrogate models. Section 5 gives a real-world 
application of RCR. The concluding remarks are drawn in Section 6.

2. Foundation and observations
For a given multi-parameter problem Y = f (X

1
,X

2
,… ,Xn), X ∈ Ω, if the contribution of an individual 

parameter Xi is small, the change of Xi will not bring much variation to the objective values Y. Thus Xi 
and Y should be statistically uncorrelated, or the absolute value of the correlation coefficient will be 
very small. Based on this fact, we have suggested using a pairwise correlation graph to study multi-
parameter problems, in which the data are projected onto a 2-D plane pairwise, and then the correla-
tion coefficient between each parameter and the objective is determined based on data distribution 
on the 2-D plane. For example, consider a scalar valued problem with two parameters. Both of the 
parameters X

1
 and X

2
 could affect the value of objective Y. One needs to find the RCR of each param-

eter to the objective value. Suppose a set of 50 samples {(x(i)
1
, x(i)

2
, y(i)), i = 1, 2,… , 50} has been 

obtained. To get the pairwise correlation graph, the 50 points are projected onto planes X
1
− X

2
, 

X
1
− Y and X

2
− Y, respectively, as shown in Figure 1. It is obvious that X

1
 and X

2
 are uncorrelated 

since their correlation ellipses are close to a circle. X
1
 and Y are positively correlated, while X

2
 and Y 

are inversely correlated since their correlation ellipses are both flat and the slopes of ellipse’s semi-
major axes are positive and negative, respectively. In fact, the exact relationship between the three 
variables is Y = X

1
∕X

2
,  where  (X

1
, X

2
) ∈ [1, 5]2 in this case.

Table 1. The sensitivity of each parameter to the dimensionless heat flux density around a 
hypersonic aircraft
Parameter Influence on heat flux density Degree of sensitivity
Static pressure Little influence

Static temperature Medium influence, positively correlated

Mach number Small influence, positively correlated

Flight altitude Medium influence, negatively correlated

Angle of attack Large influence, positively correlated

Model scale Little influence

Wall temperature Small influence, negatively correlated
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In general, the proposed pairwise correlation graph can help to identify the qualitative impact of 
each parameter on the objective value, and can even give a good quantitative value to show the 
degree of its impact, provided that all of the other parameters have little impact. However, when the 
parameter and objective have a strong nonlinear relationship, the pair wise correlation graph cannot 

Figure 1. An example of 
pairwise correlation graph.

(a) Linearity dominated case

(b) Nonlinearity dominated case
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give helpful information. This can be illustrated by the following example. Suppose we have a set of 
50 sample points randomly drawn from the nonlinear function 
Y =

(
5 ∗ X

2
+ 0.2 ∗ X2

1

)
∕
(
3 + X

1

2
+ X

2

2
)

 in the domain (X
1
, X

2
) ∈ [−5, 5]2, and we try to detect 

the impact of each parameter Xi(i = 1, 2) on the objective Y. The pairwise correlation graph is pre-
sented in Figure 1. It can be seen that the correlation ellipse of X

1
 and Y is almost round, which 

means X
1
 and Y are uncorrelated. This is not what we expect because X

1
 and Y are actually corre-

lated in the sense of nonlinear correlation. In other words, the pairwise correlation graph has failed 
to detect the desired correlation in this example.

Another drawback of the pairwise correlation graph is that it might give a misleading result. In 
fact, in many practical applications, the sample points could not be sampled evenly due to the limi-
tations of experimental conditions. As a result, although the correlation ellipse looks very flat, the 
parameter and objective are not actually correlated.

Thus, for nonlinear problems with multiple parameters, we need some new concepts to quantita-
tively measure the relative contribution of each parameter to the objective.

3. Concept of RCR

3.1. Quick view of relevant concepts
As early as 1895, Pearson proposed a concept of correlation coefficient (Pearson, 1895). Although 
this concept is defined in 2-D space, it is still used to analyze multi-parameter problems in many 
practical applications. Pearson’s correlation coefficient is strongly dependent on linearity. So 
Spearman (1904/2010) introduced a rank concept for correlation, which enables it to be capable of 
analyzing problems with monotone decreasing (or increasing) relationships. Thereafter, Kendall 
(1938) introduced another new concept of concordant and discordant, and made a further exten-
sion of correlation. Both Spearman and Kendall’s correlation coefficients can depict part of the non-
linear relationship provided that there exists some partial ordering relations between the parameter 
and the objective. However, all of the above three correlation coefficients might fail to get the right 
correlation in general nonlinear cases. To address this problem, Wang, Shen, and Zhang (2005) pro-
posed a nonlinear correlation measure, nonlinear correlation information entropy (NCIE), defined as 
NCC(X; Y) = Hr(X) + Hr(Y) − Hr(X, Y), where Hr(X, Y) is the revised joint entropy of the two varia-
bles X and Y. Zheng, Shi, and Zhang (2012) proposed a new concept, generalized measure of correla-
tion (GMC) as follows.

Both NCIE and GMC can handle nonlinear correlation problems properly. However, essentially, both 
of the metrics are still defined in a 2-D space and using the two metrics it is difficult to analyze data 
with multiple parameters for their relative contributions. This motivates us to make a further exten-
sion of these concepts to n-D space.

3.2. Definition of relative ratio of contribution
Existing correlation coefficients are all defined in a 2-D space. To handle multi-parameter problems, 
one has to resort to dimensionality reduction, and project the data onto a 2-D plane pair by pair, as 
illustrated in Section 2. This could give misleading results, as discussed in Sections 2 and 3.1.

In our opinion, during the above projection process, the information contained in the data is over-
compressed, and useful information might be lost. In our new concept, we try to define a less com-
pressed projection process, so as to keep the valuable information as much as possible. That is, 
among the several parameters X

1
,X

2
,… ,Xn, to determine the contribution of parameter Xi, the 

sampled data are projected onto its complement space (X
1
,X

2
,… ,Xi−1,Xi+1,… ,Xn) − Y. The 

{GMC(Y|X), GMC(X|Y)} =

{
1 −

E({Y − E(Y|X)}2)
var(Y)

, 1 −
E({X − E(X|Y)}2)

var(X)

}
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projection is mapped from (n + 1)-D space to n-D space P:Rn+1 ↦ R
n. Only one dimension is reduced 

during the projection. Thus, more information could be retained.

The parameter Xi will be absent after the projection process. It is obvious that the projected points 
will become more divergent if Xi has much contribution to the objective Y. Otherwise, the divergence 
will be little, and the projected points will converge to a curve (in 2-D), surface (in 3-D), or hypersur-
face (in k-D, k ≤ n). To quantitatively measure its degree of convergence , we suggest using a sur-
rogate model as the reference object. The surrogate model mi(X1,X2,… ,Xi−1,Xi+1,… ,Xn) is a 
data-driven model, determined by the projected points. The more divergent they are, the further 
they will deviate from the model. To illustrate the relationship between the relative contribution of a 
parameter and the divergence of projected data, we take a simple intuitive example as follows. 
Suppose we have a set of 200 sample points uniformly drawn from the rectangular region [0, 5]2, 
and the objective function has an explicit expression Y

1
= X

1
+ 2X

2
, then we can get an illustrative 

result of each parameter’s relative contribution to the 200 points (x(k)
1
, x(k)

2
, y(k)), k = 1, 2,… , 200 as 

follows. First, project these points onto plane X
2
− Y

1
 and X

1
− Y

1
 respectively, and then draw their 

data-driven models (see Figure 2(a) and (b)). It can be seen that the projected points are much more 
divergent when X

2
 is absent, which means the parameter X

2
 has more contribution to the objective 

Y than the parameter X
1
. Of course, the actual RCR is known in this example, i.e. X

2
 has double con-

tribution than X
1
. This example is used only for demonstration. In practical applications, the RCR is 

not so easy to observe in general.

If the problem involves only two parameters, X
1
 and X

2
, the divergence of the projected points can 

be easily shown with a scatter-point plot on a 2-D plane, as shown in Figure 2(a) and (b). Similarly, 
3-D scatter-point plot can also be used to show the divergence of the projected points if there are 
only three influence parameters X

1
, X

2
 and X

3
. However, scatter-point plot cannot help if the prob-

lem involves four or more influence parameters, which is usual in practical applications. So we sug-
gest using an observation-prediction plot (Y ,mi(X1,X2,… ,Xi−1,Xi+1,… ,Xn)) to show the divergence 
of the projected points, where the observation denotes the objective value of samples, and the pre-
diction denotes their predicted value with the data-driven model mi. The more divergent the pro-
jected points are, the further they will deviate from the observation-prediction line segment (on the 
angle bisector of the first and third quadrants). For the above case, its observation-prediction figures 
are shown in Figure 3(a) and (b).

Based on these facts, the RCR of Xi to its objective function f can be defined as follows.

Definition  Suppose the function Y = f (X
1
,X

2
,… ,X

n
) is continuous and bounded on the box-con-

strained domain Ω, where f :Ω ↦ R, (X
1
,X

2
,… ,X

n
) ∈ Ω ⊂ R

n. Let the subspace S
X
i

= (X
1
,X

2
,… ,X

i−1
,X

i+1
, 

… ,X
n
, Y) = Rn be the orthogonal complement of X

i
, the continuous region P

f ,X
i

⊂ S
X
i

 be the projection 

Figure 2. Divergence of 
projected points and the 
deviation from the data-driven 
model.
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of the hypersuface Y = f (X
1
,X

2
,… ,X

n
) onto the subspace S

X
i

, the scalar V
f ,X

i

 be the volume (or area 
in 2-D space) of P

f ,X
i

 in its subspace, i = 1, 2,… ,n. Then the RCR (RCR) of X
i
 to its objective function f 

is defined as r
X
i

=

V
f ,X

i∑n

i=1
V
f ,X

i

.

In this definition, the volume/area of the projection reflects the divergence brought by the absence 
of parameter Xi. As a special case, when n = 2, the above definition has a geometric interpretation, 
which will be illustrated by some simple examples in Figure 4. The first two functions are linear and it 
is easy to get the volume of projection (the area of the projected parallelogram). From Figure 4(a), 
one can see that the area of the projection on the complemented subspace of X

2
 (on the left) is twice 

Figure 4. Geometric 
interpretation of RCR.

Figure 3. Divergence of 
projected points and the 
deviation from the observation-
prediction line.
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that of X
1
 (on the left). So it is easy to get the RCR rX

1

= 1∕3, and rX
2

= 2∕3. Similarly, for the example 
in Figure 4(b), we have rX

1

= 1∕11, and rX
2

= 10∕11. The RCR is proportional to the product of its 
absolute coefficient and interval length.

As can be seen, the RCR of each parameter is easy to get if the problem is linear. However, it is not 
so easy to get the volume of projection when the problem is nonlinear (see Figure 4(c) and (d)), and 
the difficulty will increase as the problem involves more parameters (say, n is above 3). Therefore, 
special algorithms are needed to calculate RCR. To this end, a surrogate model-based method is 
proposed in the following section.

4. Numerical computation of RCR
Suppose the objective function has an explicit expression Y = f (X

1
,X

2
,… ,Xn), as examples in Figure 4, 

the RCR can be approximated by the following steps.

Step 1. �(Random sampling) Randomly generate a sufficient number of sample points   (x(k)
1
, x(k)

2
,… , x(k)n ) 

within the given domain Ω, and calculate their corresponding objective values f (k), 
k = 1, 2,… ,K. The sample data forms an (n + 1)-by-K matrix, where each row is determined 
by a sample point, the first n columns indicate its parameter values, and the last column 
gives its objective values.

Step 2.� (Subspace projecting) For each influence parameter Xi, remove its corresponding column for 
the (n + 1)-D data to make Xi absent. The projected points lie in space 
(X
1
,X

2
,… ,Xi−1,Xi+1,… ,Xn) − Y.

Step 3. �(Data-driven modeling) Construct a surrogate model Y = mi(X1,… ,Xi−1,Xi+1,… ,Xn) based 
on the projected points and their corresponding objective values (x(k)

1
,… , x(k)

i−1
, x(k)

i+1
,… , x(k)n ) 

and f (k).
Step 4. �(Residuals summarizing) Find the total residual
              Vi =

∑K

k=1

���f
(k) −mi(x

(k)

1
,… , x(k)

i−1
, x(k)

i+1
,… , x(k)n )

���.
Step 5. �(Cycling) Repeat step 2 to step 4 until all total residuals Vi are obtained, i = 1, 2,… ,n, and let 

the residual represent the volume of projection V
f ,X

i

= V
i
 (since they are proportional to each 

other). Calculate and output the RCRs r
X
i

=

V
f , X

i∑n

i=1
V
f , X

i

.

In the above steps, the surrogate modeling plays the most important role, in which the approxima-
tion models are constructed with a set of sample points. Although increasing the number of samples 
could help get better models, it will involve much higher computation costs. To enhance the stability 
and efficiency of the algorithm, the distribution of the samples should be as uniform as possible. 
Therefore, controlled sampling methods such as Latin hypercube sampling (Beachkofski & Grandhi, 
2002) and orthogonal sampling (Steinberg & Lin, 2006) are preferred for sample generation.

After the sample generation and projection, one needs to choose a reliable method for data-driven 
modeling. There are many model construction methods, including classical linear/nonlinear fitting/
interpolation, Kriging regression, radial basis function (RBF) interpolation/regression (Wendland, 
2010), and parse matrix evolution (PME) (Luo & Zhang, 2012). For classical fitting/interpolation, the 
configuration of the model structure does not lead to a good approximation, especially in multidi-
mensional space. RBF interpolation/regression and PME are distinguished for their good performance 
with fewer requirements on the number of sample points. Kriging regression is famous for its capabil-
ity of noise-resistance. Note that the distribution of the projected points could be rugged in the sub-
space. Therefore, an improved version of Kriging regression, DACE (Lophaven, Nielsen, & Søndergaard, 
2002), is recommended for the surrogate modeling to ensure its robustness.

For example, consider the problems in Figure 4 with the above method, randomly generate 100 
sample points by Latin hypercube sampling, and use DACE for the model construction in the sub-
space, one can get each parameter’s RCR as follows. rX

1

= 0.33, rX
2

= 0.67 for the first problem; 
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rX
1

= 0.09, rX
2

= 0.91 for the second problem; rX
1

= 0.83, rX
2

= 0.17 for the third problem; And 
rX

1

= 0.57, rX
2

= 0.43 for the forth problem.

However, in most practical applications, no explicit function is available to describe the relation-
ship between the influence parameters and the objective, and only some test data or simulation 
results could be obtained. Note that these sample data contain meaningful information that reflects 
their influence relationship. Therefore, again, we can use DACE to construct a surrogate model to 
represent the objective function before the first step. Then the RCR could be determined by following 
the above steps.

Note that DACE needs sufficient number of sample points to construct a surrogate model of high 
fidelity. This could be quite costly in practical applications. Therefore, in the case of small-sized sam-
ples (the amount of data is small relative to the number of influence parameters), we suggest using 
PME (Luo & Zhang, 2012) or radial basis function interpolation/regression (Wendland, 2010) to con-
struct the surrogate model to approximate the underlying function.

5. A real-world application
As mentioned in Section 1, for a hypersonic aircraft, several parameters could affect its axial force 
coefficient CA, including Mach number (Ma), Reynolds (Re) and wall temperature ratio (T̂w). It is of 
great importance to properly evaluate the relative influence ratio of each parameter for the aircraft 
design and the behavior control. Suppose we have got sufficient number of sample points for a given 
aircraft in a certain domain by wind tunnel tests, flight tests and validated CFD simulations, and the 
surrogate model has been deduced by PME (the surrogate modeling procedure is omitted here):

where the Mach number Ma ∈ [5, 8], Reynolds Re ∈ [3.8 × 105, 4.8 × 107], and wall temperature 
Tw ∈ [60, 250.3] K. With the method described in the above section, the RCR of Ma, Re and T̂w is 58, 
35 and 7%, respectively (Figure 5).

6. Conclusion
Motivated by the real-world problem, to measure each parameter’s relative contribution to the aerody-
namic-force coefficient of a hypersonic vehicle, a new concept, RCR, has been presented. It considers 
the relative impact of absence of every parameter by projecting onto its orthogonal complement sub-
space. Thus, only one dimension is reduced, and more valuable information of the original data is 

CA = 0.029 + 0.907

(
1

Ma2
+

1

Re1∕4
+
0.260

T̂w

)

Figure 5. The RCR of Ma, Re 
and Tw to the axial force of an 
aircraft at  hypersonic flight 
conditions.

Ma: 58%

Re: 35%

Tw: 7%
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maintained. This makes RCR capable of dealing with multi-parameter problems with linear or non-linear 
relations. RCR has provided an intuitive way to quantitatively assess different parameters’ relative con-
tribution to the aerodynamic coefficient of hypersonic vehicles, and it can also be used as a scientific 
metric for other multi-parameter problem analyses without any subjective prejudice.

Based on surrogate modeling, random sampling, subspace projecting, and data-driven modeling, 
a problem specific algorithm to calculate the RCR is also provided. The proposed algorithm has a 
good feature of global optimization and has shown its reliability in practice, which brings great con-
venience in the application of the algorithm.

The concept presented in this paper (RCR) is domain dependent. It is defined on a given domain (Ω), 
and the RCR value of a parameter will vary if the range of any parameter has changed. Therefore, this 
concept is easy to be extended to a local one, or even in the limit sense. These topics will be addressed 
in our future study.
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