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SUMMARY

In this paper, we propose a high-order finite volume hybrid kinetic Weighted Essentially Non-Oscillatory
(WENO) scheme for inviscid and viscous flows. Based on the WENO reconstruction technique, a hybrid
kinetic numerical flux is introduced for the present method, which includes the mechanisms of both the free
transfer and the collision of gas molecules. The collisionless free transfer part of the hybrid numerical flux
is constructed from the conventional kinetic flux vector splitting treatment, and the collision contribution is
considered by constructing an equilibrium gas state and calculating the corresponding numerical flux at the
cell interface. The total variation diminishing Runge–Kutta methods are used for the temporal integration.
The high-order accuracy and good shock-capturing capability of the proposed hybrid kinetic WENO scheme
are validated by many numerical examples in one-dimensional and two-dimensional cases. Copyright ©
2015 John Wiley & Sons, Ltd.

Received 27 August 2014; Revised 20 April 2015; Accepted 9 May 2015

KEY WORDS: WENO schemes; kinetic numerical fluxes; numerical dissipations

1. INTRODUCTION

Essentially Non-Oscillatory (ENO) schemes were started with the classic paper of Harten et al. [1]
and further efficiently implemented in [2, 3] for hyperbolic conservation laws. Later, Weighted ENO
(WENO) schemes were developed [4, 5], using a convex combination of all candidate stencils
instead of just one as in the original ENO idea. The WENO reconstruction is very effective in both
controlling numerical oscillations and restoring smooth distributions, which has been widely used
in many practical applications.

In recent years, the development of gas-kinetic schemes for compressible flow simulations
has attracted much attention and become mature, such as the kinetic flux vector splitting (KFVS)
methods [6–8], the various algorithms based on the Bhatnagar–Gross–Krook (BGK) model [9–13],
and many others. The gas-kinetic schemes use various kinetic equations to model the dynamic
processes around a cell interface and can provide robust and accurate numerical solutions for various
compressible flows.

The combination of the WENO reconstruction and gas-kinetic flux formulation has been recently
studied by some researchers [14–16]. In this paper, a new hybrid kinetic WENO scheme is proposed
based on the hybridization of two types of kinetic fluxes, that is, the free transfer KFVS flux and the
collision-related flux, both evaluated from the WENO reconstruction technique. The total variation
diminishing (TVD) Runge–Kutta methods [2] are employed for the temporal integration in the
present scheme. Both one-dimensional (1D) and two-dimensional (2D) test problems will be shown
to evaluate the performance of the present hybrid kinetic WENO scheme.
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The paper is organized as follows. In Section 2, we present the gas kinetic theory used in this
paper. In Section 3, the newly developed hybrid kinetic WENO scheme will be described in detail.
Numerical experiments are reported in Section 4 and conclusions are made in Section 5.

2. EULER EQUATIONS AND GAS KINETIC THEORY

The Euler equations for inviscid flows can be written as

@U
@t
C

dX
mD1

@Fm.U/
@xm

D 0; (2.1)

where d is the space dimension, x D .x1; � � � ; xd /, the conservative vector U and the flux vector
Fm.U/ are given by

U D .�; �u1; � � � ; �ud ; E/
T ;

Fm.U/ D
�
�um; �umu1 C ım;1p; � � � ; �umud C ım;dp; um.E C p/

�T
;

(2.2)

where � is the fluid density, u D .u1; � � � ; ud /
T is the velocity vector, p is the pressure, E D

�.eC 1
2

u2/ is the total energy, and ım;n is the Kronecker delta. For an ideal gas, the thermal energy
e is related to the pressure p through the relation

p D .� � 1/�e; (2.3)

where � is the ratio of the specific heats.
In the gas kinetic theory, the basic evolution equation for the distribution function f is the well-

known Boltzmann equation, which can be written as

@f

@t
C

dX
mD1

vm
@f

@xm
D J.f; f /; (2.4)

where v D .v1; � � � ; vd /
T denotes the particle velocity, the right-hand side (RHS) of Eq. (2.4) rep-

resents the particle collision term, which is in a complex integral form. The Maxwellian equilibrium
distribution function g reads

g.x; t; v; �/ D �
�
�

�

�KCd
2

e��..v�u/2C�2/; (2.5)

where .v� u/2 D
Pd
mD1.vm � um/

2, �2 D
PK
nD1 �

2
n , K is the total number of degrees of freedom

for the internal degree of freedom variable � , � DM=2kBT , here M denotes the particle mass, kB
is the Boltzmann constant, and T is the temperature. The relation between macroscopic variables
and distribution functions is

U D
Z
RKCd

 f .x; t; v; �/dvd� D
Z
RKCd

 g.x; t; v; �/dvd�; (2.6)

where  denotes the vector of moments defined as

 D

�
1; v1; � � � ; vd ;

1

2
.v2 C �2/

�T
; (2.7)

and dvd� D dv1 � � � dvdd�1 � � � d�K denotes the volume element in the phase space.
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The collisionless Boltzmann equation can be obtained by replacing the distribution function f
with the Maxwellian distribution function g in Eq. (2.4),

@g

@t
C

dX
mD1

vm
@g

@xm
D 0: (2.8)

The Euler equations (2.1) can be gained by taking moments of  to the earlier equation

@

@t

Z
RKCd

 g.x; t; v; �/dvd� C
dX

mD1

@

@xm

Z
RKCd

vm g.x; t; v; �/dvd� D 0: (2.9)

For many kinetic methods, such as the KFVS-type schemes, the collisionless Boltzmann
equation (2.8) is used in the gas evolution stage for the numerical flux evaluation.

3. HYBRID KINETIC WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEME

A finite volume hybrid kinetic WENO scheme, which combines the WENO reconstruction
technique and the kinetic formulation, will be presented in detail in this section.

3.1. Weighted essentially non-oscillatory reconstruction technique

The WENO reconstruction technique proposed in [5] is briefly described in this subsection. Assume
that f is the variable that needs to be reconstructed, Nfi is the cell-averaged value in the i th cell of a
uniform grid, and Of .l/

iC 12
and Of .r/

iC 12
are two values obtained from the reconstruction at left and right

limits of the interface xiC 12
. The evaluation of Of .l/

iC 12
using WENO technique will be presented in

the following and Of .r/
iC 12

can be obtained by a symmetric procedure with respect to xiC 12
. As shown

in [5], the 5th-order WENO reconstruction for Of .l/
iC 12

can be written as

Of
.l/

iC 12
D w1 Of

.1/

iC 12
C w2 Of

.2/

iC 12
C w3 Of

.3/

iC 12
; (3.1)

where Of .k/
iC 12

are three third-order approximated values on three different stencils given by

Of
.1/

iC 12
D
1

3
Nfi�2 �

7

6
Nfi�1 C

11

6
Nfi ;

Of
.2/

iC 12
D �

1

6
Nfi�1 C

5

6
Nfi C

1

3
NfiC1;

Of
.3/

iC 12
D
1

3
Nfi C

5

6
NfiC1 �

1

6
NfiC2;

(3.2)

and the nonlinear weights wk are given by

wk D
QwkP3

nD1 Qwn
; Qwn D

�n

."C ˇn/2
; (3.3)

with the linear weights �n given by

�1 D
1

10
; �2 D

3

5
; �3 D

3

10
; (3.4)
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and the smoothness indicators ˇn given by

ˇ1 D
13

12

�
Nfi�2 � 2 Nfi�1 C Nfi

�2
C
1

4

�
Nfi�2 � 4 Nfi�1 C 3 Nfi

�2
;

ˇ2 D
13

12

�
Nfi�1 � 2 Nfi C NfiC1

�2
C
1

4

�
Nfi�1 � NfiC1

�2
;

ˇ3 D
13

12

�
Nfi � 2 NfiC1 C NfiC2

�2
C
1

4

�
3 Nfi � 4 NfiC1 C NfiC2

�2
:

(3.5)

In Eq. (3.3), the parameter " is set to be positive to avoid the denominator to become zero and is
taken as " D 10�6 in this paper.

Recently, some improved smoothness indicators have been proposed and investigated [17–19]. In
this paper, we will mainly use the smoothness indicator by Jiang and Shu [5], that is, Eqs. (3.3)–
(3.5), for the present hybrid kinetic WENO scheme. Our numerical experiments indicate that other
smoothness indicators [17–19] can also work well for the proposed scheme; an illustration will be
shown in Example 4.3.

3.2. Hybrid kinetic weighted essentially non-oscillatory scheme for inviscid flows

This section will introduce a hybrid kinetic WENO scheme for solving the Euler equations. For
the sake of simplicity, only the one-dimensional case is presented and it can be easily extended to
multidimensional cases in a dimension by dimension manner [5]. The 1D Euler equations can be
written as

@U
@t
C
@F.U/
@x

D 0; (3.6)

where U D .�; �u;E/T and F.U/ is given by

F.U/ D
�
�u; �u2 C p; u.E C p/

�T
: (3.7)

For a uniform grid with the cell center xi , the cell interface xiC 12
, and the cell size �x, a finite

volume method can be written as

d NUi
dt
D �

1

�x

�
OFiC 12 �

OFi� 12

�
; (3.8)

where NUi is the cell-averaged value and OFiC 12 is the numerical flux at cell interface xiC 12
.

In this paper, the third-order TVD Runge–Kutta method proposed in [2] will be used to integrate
Eq. (3.8) in time. Therefore, we only need to specify the construction of the numerical flux OFiC 12
for a finite volume scheme.

In the following, first we will briefly describe the conventional WENO scheme [5], which uses
only the flux splitting approach to evaluate the numerical flux, and then the hybrid kinetic WENO
scheme will be introduced in detail.

3.2.1. Conventional weighted essentially non-oscillatory scheme. As shown in [5], the numerical
flux OFiC 12 in Eq. (3.8) can be divided into two parts:

OFiC 12 D
OFC
iC 12
C OF�

iC 12
; (3.9)
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where OFC
iC 12

is the flux along x-positive direction and OF�
iC 12

is the flux along x-negative direction.

Let NFi . NUi / be the numerical flux based on the cell-averaged value NUi . In order to evaluate OF˙
iC 12

in

Eq. (3.9), first, we split the numerical flux NFi into two parts:

NFi D NFCi C NF
�
i ; (3.10)

which can be achieved by many flux splitting approaches, such as the Lax–Friedrichs [5] or
Steger–Warming [20] flux splitting method. Then, the numerical flux OFC

iC 12
in Eq. (3.9) can be

obtained from NFCi by the fifth-order WENO reconstruction technique of Eq. (3.1), and OF�
iC 12

can be

calculated from NF�i by a symmetric procedure with respect to xiC 12
. Finally, the numerical flux OFiC 12

for a conventional WENO scheme [5] can be gained by substituting OF˙
iC 12

into Eq. (3.9). The under-

lying physical principle for such a conventional WENO algorithm is the collisionless free transfer
of gas molecules.

For a kinetic scheme, NF˙i in Eq. (3.10) can be obtained from the KFVS technique,

NFCi D
Z
RK

Z
v>0

v g. NUi ; v; �/dvd�;

NF�i D
Z
RK

Z
v<0

v g. NUi ; v; �/dvd�;
(3.11)

where  is defined as

 D

�
1; v;

1

2
.v2 C �2/

�T
; (3.12)

and g. NUi ; v; �/ is the Maxwellian equilibrium distribution function corresponding to the cell-
averaged value NUi .

The numerical flux OFiC 12 in Eq. (3.9) calculated by the KFVS approach is denoted by OFKFVS
iC 12

, and

a conventional fifth-order WENO algorithm [5] based on the KFVS technique will be called the
W5-KFVS scheme hereafter in this paper.

3.2.2. Hybrid kinetic weighted essentially non-oscillatory scheme. In the following, we will present
the construction of a hybrid kinetic numerical flux, which includes the effects of both the free
transfer and the collision of gas molecules. The hybrid kinetic flux can be written as

OFiC 12 D ˛
OFKFVS
iC 12
C .1 � ˛/ OFC

iC 12
; (3.13)

where OFKFVS
iC 12

is the collisionless KFVS-type numerical flux, OFC
iC 12

is the numerical flux due to

molecule collision effects, and ˛ is a parameter in the range 0 6 ˛ 6 1 and will be hereafter called
the jump indicator. It should be pointed out that this kind of hybrid numerical fluxes has been used
in some kinetic schemes, see for example [21–23], and to name just a few.

Because the evaluation of the collisionless KFVS-type flux OFKFVS
iC 12

in Eq. (3.13) is the same as that

described in the preceding subsection, that is, Eqs. (3.9)–(3.12), therefore, in order to use Eq. (3.13)
to get the hybrid numerical flux, we only need to determine the collision-related kinetic flux OFC

iC 12
and the jump indicator ˛.

The collision-related kinetic flux OFC
iC 12

can be constructed as follows. The basic idea of evaluating

OFC
iC 12

is to calculate the flux by Eq. (3.7) based on the collision-related state OUC
iC 12

constructed at

the cell interface xiC 12
,

OFC
iC 12
D F

�
OUC
iC 12

�
: (3.14)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:290–305
DOI: 10.1002/fld



A HYBRID KINETIC WENO SCHEME FOR INVISCID AND VISCOUS FLOWS 295

In order to get the collision-related state OUC
iC 12

, first we split the cell-averaged conservative

variable NUi into two parts:

NUi D NUCi C NU
�
i ; (3.15)

with

NUCi D
Z
RK

Z
v>0

 g. NUi ; v; �/dvd�;

NU�i D
Z
RK

Z
v<0

 g. NUi ; v; �/dvd�;

(3.16)

where  is defined by Eq. (3.12) and g. NUi ; v; �/ is the Maxwellian equilibrium distribution function
corresponding to the cell-averaged value NUi .

Then, the collision-related state OUC
iC 12

at the cell interface xiC 12
can be obtained by

OUC
iC 12
D OUC

iC 12
C OU�

iC 12
; (3.17)

where OUC
iC 12

is determined from NUCi by the fifth-order WENO reconstruction technique, that is,

Eq. (3.1), and OU�
iC 12

is calculated from NU�i by a symmetric procedure with respect to xiC 12
.

After OUC
iC 12

is determined by Eq. (3.17), the collision-related numerical flux OFC
iC 12

can be

evaluated by Eq. (3.14).
Next, we consider the evaluation of the jump indicator ˛. The principle to construct the jump

indicator ˛ is that the contribution of the flux OFKFVS
iC 12

should be dominant around strong shock waves

and small in smooth regions. This is because the collisionless flux OFKFVS
iC 12

is more dissipative than

the collision-related flux OFC
iC 12

. Similar to the way in [21–23], in the present study, we use the local

pressure jump around the cell interface to determine the jump indicator ˛ in Eq. (3.13),

˛ D 1 � exp

�
�C
j Npi � NpiC1j

Npi C NpiC1

�
; (3.18)

where Npi and NpiC1 are pressures corresponding to cell-averaged values NUi and NUiC1, respectively,
and C is an empirical positive constant. It can be seen that for the same local pressure jump, a larger
value of C results in a larger value of ˛ and therefore more KFVS-type contribution in the hybrid
kinetic flux, which makes the scheme more dissipative. Fortunately, our numerical experiments as
well as those in [21–23] indicate that the numerical results are not sensitive to the chosen value of
C ; for the present hybrid kinetic scheme, we find that C D 10 is a quite good choice based on
plenty of numerical experiments; therefore, it is used for all the numerical tests in this paper, and
the same value of C has been adopted in [22].

From Eq. (3.13), we can see that both OFKFVS
iC 12

and OFC
iC 12

need to be calculated for each cell interface

except for ˛ D 0 or ˛ D 1. In order to improve the efficiency of the proposed scheme, we introduce
the following cut-off type of hybrid flux

OFiC 12 D

8̂̂̂
<̂
ˆ̂̂̂:

OFC
iC 12

; if 0 6 ˛ 6 ı;

˛ OFKFVS
iC 12
C .1 � ˛/ OFC

iC 12
; if ı < ˛ < 1 � ı;

OFKFVS
iC 12

; if 1 � ı 6 ˛ 6 1;

(3.19)

where ı.0 6 ı < 0:5/ is a parameter to control the cut-off range of ˛. Equation (3.19) is more
efficient than Eq. (3.13) because the total number of cell interfaces for the former where both OFKFVS

iC 12
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and OFC
iC 12

need to be evaluated is less than that for the latter. From Eq. (3.19), we can see that as the

value of ı is increased, on the one hand, the efficiency of the scheme can be improved, but on the
other hand the smoothness of the transition for the hybrid flux is reduced and therefore the numer-
ical results usually become worse. So, we need to choose a suitable value of ı through numerical
experiments; based on a large number of trials, we find that ı D 0:02 is a satisfactory choice after
considering the overall performance, such as the accuracy and efficiency, of the proposed scheme,
and therefore it is adopted in this paper. Moreover, it is observed that the numerical results are not
sensitive to the value of ı, for example, Eq. (3.19) with ı D 0 (i.e., Eq. (3.13)) and ı D 0:02 pro-
duces very similar numerical results in all the test problems; however, in terms of their efficiencies,
the computational time for the former is roughly 50% more than that for the latter for most tests.

In this paper, Eq. (3.19) instead of Eq. (3.13) will be used for the newly proposed hybrid kinetic
WENO scheme. Up to now, we have evaluated all the unknowns in Eq. (3.19), which can be used
to get numerical fluxes for the finite volume scheme, that is, Eq. (3.8). Although the component
by component version of the introduced hybrid kinetic WENO scheme is effective and works rea-
sonably well for many problems, in this paper, we will use the more costly, but much more robust
characteristic decomposition technique [5] in order to test some demanding problems.

The whole construction procedure of the numerical flux OFiC 12 using Eq. (3.19) for the proposed
hybrid kinetic WENO scheme can be summarized as the following steps:

1. Use the Roe average [24] of variables NUi and NUiC1 to calculate the left and right eigenvector
matrixes LiC 12 and RiC 12 .

2. Compute the jump indicator ˛ by Eq. (3.18), the following steps (3)–(5) are for the case ı <
˛ < 1 � ı, similarly those for cases 0 6 ˛ 6 ı and 1 � ı 6 ˛ 6 1 can be easily obtained,
which are omitted here.

3. Transform all the variables NF˙
iCl

, NU˙
iCl

(l D �2; :::; 3) defined by Eqs. (3.11) and (3.16),
respectively into the local characteristic fields

QF˙iCl D LiC 12
NF˙iCl ; QU˙iCl D LiC 12

NU˙iCl : (3.20)

4. Perform the WENO reconstruction procedure [5] for each component of the characteristic

variables QF˙
iCl

and QU˙
iCl

to obtain the corresponding component of OQF˙
iC 12

and OQU˙
iC 12

at the cell

interface xiC 12
.

5. Transform OQF˙
iC 12

and OQU˙
iC 12

back into the physical space

OFKFVS
iC 12

D RiC 12

�
OQFC
iC 12
C OQF�

iC 12

�
; OUC

iC 12
D RiC 12

�
OQUC
iC 12
C OQU�

iC 12

�
: (3.21)

Calculate OFC
iC 12

based on OUC
iC 12

by Eq. (3.14).

6. Use Eq. (3.19) to obtain the hybrid numerical flux OFiC 12 .

It should be pointed out that if the collision-related state OUC
iC 12

in Eq. (3.14) is constructed

from a smooth reconstruction, such as the central interpolation from NUi , the resulting scheme
does not work well. Similar observations have been reported in [22]. This means that the
collisionless flux OFKFVS

iC 12
is very dissipative, and the collision-related flux OFC

iC 12
corresponding

to OUC
iC 12

given by Eq. (3.17) is less dissipative than OFKFVS
iC 12

, but more dissipative than that

corresponding to OUC
iC 12

given by a smooth reconstruction. Therefore, the kinetic reconstruction

of Eq. (3.17) is the key for the successful hybridization of different numerical fluxes.

The newly proposed fifth-order hybrid kinetic WENO algorithm will be called the W5-HK scheme
hereafter in this paper.
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3.3. Extension to viscous flows

For viscous flows governed by the Navier–Stokes equations, the conventional central differencing
is used for the viscous flux terms in the present method. For example, for the two-dimensional case
with x D .x1; x2/ � .x; y/, in calculating the x-direction viscous flux terms, we use the following
sixth-order central differencing formulae to obtain the derivatives,

�
@q

@x

�
iC 12 ;j

D
2250.qiC1;j � qi;j / � 125.qiC2;j � qi�1;j /C 9.qiC3;j � qi�2;j /

1920�x
; (3.22)

and
�
@q
@x

�
i� 12 ;j

can be got through replacing i by i � 1 in Eq. (3.22),

�
@q

@y

�
i˙ 12 ;j

D
45. Oq˙;jC1 � Oq˙;j�1/ � 9. Oq˙;jC2 � Oq˙;j�2/C . Oq˙;jC3 � Oq˙;j�3/

60�y
; (3.23)

where OqC;j˙l and Oq�;j˙l (l D 1; 2; 3) are defined by OqC;j˙l D .qi;j˙lCqiC1;j˙l/=2 and Oq�;j˙l D
.qi�1;j˙lCqi;j˙l/=2, respectively. The variables at the cell interface needed for calculating viscous
flux terms are gained by

qiC 12 ;j
D
37.qi;j C qiC1;j / � 8.qi�1;j C qiC2;j /C .qi�2;j C qiC3;j /

60
; (3.24)

and qi� 12 ;j
can be obtained through replacing i by i � 1 in Eq. (3.24).

4. NUMERICAL EXPERIMENTS

In this section, we will show some numerical examples in both one-dimensional and two-
dimensional cases. The uniform mesh is used for both 1D and 2D test problems. The computational
time step �t is determined by [25]

�t D

ˇ̌̌
ˇ ��L

.juj C a/.1CRe�/

ˇ̌̌
ˇ
min

; (4.1)

where �L is the representative length defined by �L D �x for 1D case and �L D min¹�x;�yº
for 2D case, a is the speed of sound, Re� is the grid Reynolds number that is set to be zero for
inviscid flows and Re� D juj�L=	 for viscous flows with 	 denoting the kinematic viscosity
coefficient, and � is the CFL number which is set to be � D 0:8 unless specified in the present study.
In Eq. (4.1), all the physical variables u; a; 	 use cell-averaged values and the minimum is taken
over the whole computational domain.

4.1. Inviscid flow problems

4.1.1. One-dimensional cases.

Example 4.1 (1D accuracy test)
The first example is to test the accuracy of the method for 1D problems. We solve the 1D Euler
equations with the initial data

�.x; 0/ D 1C 0:2 sin.�x/; u.x; 0/ D 0:7; p.x; 0/ D 1:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:290–305
DOI: 10.1002/fld



298 H. LIU

The computational domain is taken as [0,2], and the periodic boundary condition is used. The exact
solution for this problem is given by

�.x; t/ D 1C 0:2 sin .�.x � ut// ; u.x; t/ D 0:7; p.x; t/ D 1:

We compute the solution up to t D 2 with a suitably reduced time step to guarantee that spatial
errors dominate.

The errors and convergence orders of density � by the W5-KFVS and the W5-HK schemes are
shown in Table I. This table shows that the fifth-order convergence rate can be obtained by both
schemes. Moreover, the W5-HK has smaller absolute errors than the W5-KFVS given the same cell
size; this means that the former is more accurate and less dissipative than the latter.

Example 4.2 (Blast wave problem)
The blast wave problem was originally proposed in [26], which is a challenging test case because of
the complex flow structures. The initial flow field is given by

.�; u; p/ D

8<
:
.1; 0; 1000/; �5 6 x < �4;
.1; 0; 0:01/; �4 6 x < 4;
.1; 0; 100/; 4 6 x 6 5:

The computational domain is [�5,5] with a reflecting boundary condition on both ends.
Because the exact solution is unknown for this problem, the reference solution obtained by the

W5-HK scheme with 10 000 cells is used for comparison. The numerical results at t D 0:38 are
shown in Figure 1. From the figure, we can see that the W5-HK does perform better than the W5-
KFVS, especially for the complex flow regions.

4.1.2. Two-dimensional cases.

Example 4.3 (2D accuracy test)
This example is to test the accuracy of the hybrid kinetic WENO scheme for 2D problems. We solve
the 2D Euler equations with the following initial data:

�.x; y; 0/ D 1C 0:2 sin.�.x C y//; u1 D 0:7; u2 D 0:3; p D 1:

The computational domain is taken as .x; y/ 2 Œ0; 2
 � Œ0; 2
, and the periodic boundary condition
is used along both x and y directions. The exact solution for this problem is

�.x; y; t/ D 1C 0:2 sin .�.x C y � t // ; u1 D 0:7; u2 D 0:3; p D 1:

Table I. One-dimentional accuracy test.

N Scheme L1error Order L1error Order L2error Order

8 W5-KFVS 2.31E-2 — 1.53E-2 — 1.70E-2 —
W5-HK 2.08E-2 — 1.08E-2 — 1.33E-2 —

16 W5-KFVS 1.66E-3 3.80 9.57E-4 4.00 1.06E-3 4.00
W5-HK 1.58E-3 3.72 7.87E-4 3.78 9.02E-4 3.88

32 W5-KFVS 8.69E-5 4.26 3.37E-5 4.83 3.97E-5 4.74
W5-HK 6.10E-5 4.69 2.71E-5 4.86 3.17E-5 4.83

64 W5-KFVS 3.55E-6 4.61 1.07E-6 4.98 1.36E-6 4.87
W5-HK 1.94E-6 4.97 8.26E-7 5.04 9.66E-7 5.04

128 W5-KFVS 1.16E-7 4.94 3.34E-8 5.00 4.23E-8 5.01
W5-HK 6.04E-8 5.01 2.50E-8 5.05 2.93E-8 5.04

256 W5-KFVS 3.08E-9 5.24 1.00E-9 5.06 1.24E-9 5.09
W5-HK 1.76E-9 5.10 7.78E-10 5.01 8.96E-10 5.03

512 W5-KFVS 8.66E-11 5.15 2.97E-11 5.07 3.66E-11 5.08
W5-HK 5.06E-11 5.12 2.47E-11 4.98 2.79E-11 5.01
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Figure 1. Blast wave problem, N D 200 (top) and N D 400 (bottom). The right figures are zoomed-in
views of the left. The reference solution is obtained by the W5-HK scheme with 10000 cells.

Table II. Two-dimentional accuracy test.

N 2 Scheme L1error Order L1error Order L2error Order

82 W5-KFVS 3.70E-2 — 2.25E-2 — 2.50E-2 —
W5-HK 2.05E-2 — 8.78E-3 — 1.06E-2 —

162 W5-KFVS 2.66E-3 3.80 1.49E-3 3.92 1.72E-3 3.86
W5-HK 1.36E-3 3.91 5.84E-4 3.91 6.82E-4 3.96

322 W5-KFVS 1.52E-4 4.13 6.28E-5 4.57 7.41E-5 4.54
W5-HK 4.38E-5 4.96 1.84E-5 4.99 2.18E-5 4.97

642 W5-KFVS 6.96E-6 4.45 2.11E-6 4.90 2.69E-6 4.78
W5-HK 1.50E-6 4.87 5.45E-7 5.08 6.49E-7 5.07

1282 W5-KFVS 2.41E-7 4.85 6.60E-8 5.00 8.58E-8 4.97
W5-HK 4.50E-8 5.06 1.67E-8 5.03 1.98E-8 5.03

2562 W5-KFVS 6.89E-9 5.13 2.00E-9 5.04 2.56E-9 5.07
W5-HK 1.36E-9 5.05 5.23E-10 5.00 6.26E-10 4.98

5122 W5-KFVS 1.76E-10 5.29 5.70E-11 5.13 7.12E-11 5.17
W5-HK 3.97E-11 5.10 1.72E-11 4.93 2.00E-11 4.97

We compute the solution up to t D 2. The errors and convergence orders of density � are shown in
Table II, where it can be seen that the fifth-order convergence rate can be obtained by both schemes
for 2D problems. Moreover, it is also observed that the W5-HK has smaller absolute errors than the
W5-KFVS given the same cell size, which is consistent with the 1D accuracy test Example 4.1.
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In this paper, we mainly use the WENO reconstruction technique by Jiang and Shu [5], that is,
Eqs. (3.3)-(3.5), for the proposed scheme. Other recently developed WENO reconstruction tech-
niques, such as those in [17–19], can also work well for the proposed algorithm in our numerical
experiments. As an illustration, we show the results obtained by using the WENO-Z reconstruction
technique [18] for this 2D accuracy test problem in Table III, where we can see that it performs very
well, and moreover the hybrid kinetic flux is more accurate than the KFVS flux.

Example 4.4 (Shock vortex interaction)
Next we solve the shock vortex interaction problem [5]. The computational domain is taken to
be Œ0; 2
 � Œ0; 1
, a stationary Mach 1.1 shock is positioned at x D 0:5. Its left upstream state is
.�; u1; u2; p/ D .1; 1:1

p
�; 0; 1/. A small vortex centered at .xc ; yc/ D .0:25; 0:5/ is superimposed

to the flow on the left of the shock. The vortex is a perturbation to the mean flow with the velocity
.u1; u2/, temperature T D p=� and entropy S D p

��
. The perturbation denoted by the tilde values

is defined as

Qu1 D "�e
�.1��2/ sin �; Qu2 D �"�e

�.1��2/ cos �;

QT D �
.� � 1/"2e2�.1��

2/

4��
; QS D 0;

where � D r=rc with r D
p
.x � xc/2 C .y � yc/2, rc is the critical radius for which the vor-

tex has the maximum strength, " and � control the strength and decay rate of the vortex. In our
computations, " D 0:3, rc D 0:05, and � D 0:204 are adopted.

The computational grid we use is 200 � 100. Figure 2 shows the pressure contours at t D 0:6 by
the W5-KFVS and W5-HK schemes. Figure 3 gives the pressure distributions along the horizontal
line y D 0:5 at t D 0:6, where the reference solution is given by the W5-HK scheme with a refined
mesh 2000�1000. From these figures, we can see that W5-HK can provide sharper shock transition
than W5-KFVS for the same grid size.

In order to compare the efficiency for both W5-KFVS and W5-HK, we present the CPU time
of simulations for two test cases in Table IV. As shown in the table, the CPU time for W5-HK
is roughly 10–15% more than that for W5-KFVS in both one-dimensional and multi-dimensional
simulations.

Table III. Two-dimentional accuracy test using the weighted essentially non-
oscillatory-Z reconstruction [18].

N 2 Scheme L1error Order L1error Order L2error Order

82 Wz5-KFVS 1.71E-2 — 8.61E-3 — 9.60E-3 —
Wz5-HK 5.97E-3 — 2.77E-3 — 3.50E-3 —

162 Wz5-KFVS 1.27E-3 3.75 4.12E-4 3.39 5.62E-4 4.09
Wz5-HK 2.39E-4 4.64 1.26E-4 4.46 1.43E-4 4.61

322 Wz5-KFVS 5.77E-5 4.46 1.52E-5 4.76 2.23E-5 4.66
Wz5-HK 7.47E-6 5.00 4.11E-6 4.94 4.61E-6 4.96

642 Wz5-KFVS 1.95E-6 4.89 4.74E-7 5.00 7.15E-7 4.96
Wz5-HK 2.35E-7 4.99 1.30E-7 4.98 1.45E-7 4.99

1282 Wz5-KFVS 6.19E-8 4.98 1.48E-8 5.00 2.24E-8 5.00
Wz5-HK 7.30E-9 5.01 4.08E-9 4.99 4.57E-9 4.99

2562 Wz5-KFVS 1.83E-9 5.08 4.46E-10 5.05 6.65E-10 5.07
Wz5-HK 2.30E-10 4.99 1.30E-10 4.97 1.45E-10 4.98

5122 Wz5-KFVS 6.18E-11 4.89 1.49E-11 4.90 2.22E-11 4.90
Wz5-HK 7.53E-12 4.93 4.25E-12 4.93 4.81E-12 4.91

(Wz5-KFVS, the 5th-order WENO-Z scheme [18] with the KFVS flux; Wz5-HK, the
5th-order WENO-Z scheme with the Hybrid Kinetic flux.)
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Figure 2. Shock vortex interaction problem,�x D �y D 1
100

, t D 0:6. 30 equally spaced pressure contours
from 1.02 to 1.32. Left: W5-KFVS; right: W5-HK.
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Figure 3. Shock vortex interaction problem, �x D �y D 1
100

, t D 0:6. Pressure distributions along the
central line y D 0:5. The right figure is the zoomed-in view of the left. The reference solution is obtained

by the W5-HK scheme with a refined mesh 2000 � 1000.

Table IV. The CPU time (in seconds) of simulations.

Test case W5-KFVS W5-HK

Blast wave problem (1D) 1.90 2.18
Shock vortex interaction (2D) 9.59 10.70

4.2. Viscous flow problems

Example 4.5 (Navier–Stokes shock structure)
In order to evaluate the performances of W5-KFVS and W5-HK in solving the Navier–Stokes
equations, first, we consider the Navier–Stokes shock structure test [9]. The initial condition is set
as a stationary shock with Ma D 1:1, � D 1, u D 1, and � D 5=3. The constant dynamic viscos-
ity 
 D 2:5 � 10�4 and the Prandtl number P r D 0:72 are adopted. The analytic Navier–Stokes
solution can be obtained by solving the ordinary differential equations [9].

Figure 4 shows the computed density distributions based on different mesh sizes. Good mesh
convergence has been achieved for both W5-KFVS and W5-HK. Moreover, W5-HK performs
overall better than W5-KFVS, which indicates that W5-HK is more accurate and less dissipative
than W5-KFVS.
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Figure 4. Navier–Stokes shock structure, Ma D 1:1, 
 D 0:00025. Top to bottom and left to right: �x D
1
80
; 1
160

; 1
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; 1
640

.

Example 4.6 (Couette flow)
The Couette flow is a typical test governed by the compressible Navier–Stokes equations; it is the
laminar flow of a viscous fluid between two parallel plates, one of which is moving relatively to the
other. The two-dimensional Navier–Stokes equations need to be solved although the physical flow
is one-dimensional. In the following, we will consider two types of Couette flows.

Near incompressible Couette flow: With the bottom wall fixed, the top boundary is moving at
a speed Uw in the horizontal direction. The temperatures at the bottom and top are fixed with values
T0 and T1, respectively. Under the assumption of constant viscosity and heat conduction coefficients
and in the incompressible limit, a steady state analytic temperature distribution can be obtained

T � T0

T1 � T0
D

y

H
C

P rU 2w
2Cp.T1 � T0/

y

H

�
1 �

y

H

�

where H is the height of the channel, P r is the Prandtl number, and Cp is the specific heat ratio at
constant pressure.

In the present study, we take H D 1, � D 1, Uw D 1, T0 D 100=1:4, T1 D 1:0002T0, 
 D
5 � 10�3, P r D 0:72, � D 1:4, and Cp D 3:5. The Mach number corresponding to Uw and
T0 is Ma D 0:1 in this test. Figure 5 shows the temperature distributions with N D 5; 10. The
temperature profile is well captured by both W5-KFVS and W5-HK, which indicates that the heat
flux can be accurately predicted. Furthermore, it can be clearly seen that W5-HK provides more
accurate numerical solution than W5-KFVS with the same cell number N D 5.

Compressible Couette flow: In the aformentioned near incompressible test, the velocity in the
channel is almost linearly distributed. In the following, we are going to test W5-KFVS and W5-HK
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Figure 5. Temperature distributions for the near incompressible Couette flow, N D 5 (top) and N D 10
(bottom).

when the stress and heat flux are large. When the moving velocity of the upper wall Uw is large
enough, the compressibility of the fluid becomes appreciable. Under the conditions of 
 � T and
adiabatic lower wall boundary, there is an analytic solution in the compressible case [27]

�wy


1Uw
D

u

Uw
C P r

� � 1

2
Ma21

"
u

Uw
�
1

3

�
u

Uw

�3#
;

where �w is the shear stress at the top wall, 
1 is the dynamic viscosity coefficient corresponding
to the top wall temperature T1, and Ma1 is the Mach number associated with Uw and T1.

In our computations, we set � D 1:4, P r D 0:72, and 
 D 5 � 10�3T=T1. The velocity
distributions in the channel forMa1 D 1:5; 3 are shown in Figure 6, where we can see that the non-
linear velocity profiles are well predicted by both schemes with only five cells in the computational
domain. Moreover, W5-HK does provide more accurate numerical solutions than W5-KFVS.
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Figure 6. Velocity distributions for the compressible Couette flow, Ma D 1:5 (top) and Ma D 3 (bottom).

5. CONCLUSIONS

A hybrid kinetic WENO scheme is proposed for numerical simulations of inviscid and viscous flows,
in which the effects of molecule collisions are included by constructing a hybrid kinetic numerical
flux based on the WENO reconstruction technique.

Numerical experiments have demonstrated that the present method (W5-HK) is more accurate
and less dissipative than the conventional scheme with the KFVS technique (W5-KFVS) for smooth
flows; furthermore, the former can provide shaper discontinuity transition than the latter for flows
with discontinuities (inviscid) or unresolved mesh conditions (viscous). In terms of the efficiency,
the CPU time for W5-HK is roughly 10–15% more than that for W5-KFVS in both one-dimensional
and multi-dimensional simulations.

The present study indicates that the collisionless KFVS technique is intrinsically very dissipative,
the cautious consideration of the influences of molecule collisions can really reduce the numerical
dissipation of a high-order scheme.
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